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Abstract – This work presents the application of the Hilbert-Huang transform and its marginal spectrum,
for the analysis of the stator current signals for bearing faults diagnosis in asynchronous machines. Firstly,
the current signals are decomposed into several intrinsic mode functions (IMFs) using the empirical mode
decomposition (EMD). The Hilbert Huang spectrum for each IMF is an energy representation in the time-
frequency domain using the instantaneous frequency. The marginal spectrum of each IMF can then be
obtained. Secondly, the IMFs that includes dominant fault information are modeled using an autoregressive
(AR) model. Finally, the AR model parameters serve as the input fault feature vectors to support vector
machine (SVM) classifiers. Experimental studies show that the marginal spectrum of the second IMF can
be used for the detection and classification of bearing faults. The proposed approach provides a viable
signal processing tool for an online machine health status monitoring.
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1 Introduction

Asynchronous machines are widely used in the indus-
try. They are used in many different applications: wind,
military, electric drive for high speed train and pumping.
To ensure continuity of operation, establishment of main-
tenance programs is required. Traditionally the mainte-
nance procedure, known as repair procedure, was to re-
pair or replace faulty equipment. A new approach, called
predictive maintenance, is the detection and localization
of faults and failures and act earlier to minimize their sec-
ondary effects [1]. There are many condition monitoring
methods for detection of fault defects, such as vibration
analysis, axial flux analysis, lubricating oil debris analysis
and motor current signature analysis (MCSA). Studies on
the analysis of the current signal offers the widest appli-
cation range, which is ideal as a core detection technique
for the condition monitoring strategy [2–6].Moreover, in
addition to the information contained in the vibrations
signal, information specific to electrical phenomena ap-
pears in the stator current signal [7].

Many methods based on MCSA have been developed.
These methods include the assessment of the power spec-
trum, the fast Fourier transform (FFT) and the spec-
trum analysis of the envelope. It turned out that they
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are effective in the detection of bearing faults. However,
they are limited to stationary signals.

To treat non-stationary signals, several time-
frequency analysis tools are commonly used such as the
short-time Fourier transform (STFT) [8], the Wigner-
Ville distribution (WVD) [9], the TFR (Time-frequency
representation) of Cohen’s class and the wavelet trans-
form (WT) [10]. The main drawback of these methods is
that they depend on different parameters. For example,
selection of a suitable window size is intended when
applying the STFT to match with the specific frequency
content of the signal, which is not known a priori.
Wavelets require the specification of a core or a core
function; and there is no universal core. In addition, one
limitation of TFR, such as the WVD is the presence of
interfering terms which affects the interpretation and
the readability of the resulting representations [11]. The
time-frequency smoothing can reduce the interferences
but it introduces time and frequency localization errors.

In this work, we propose a combination of the Hilbert
Huang Transform (HHT), autoregressive model (AR) and
the support vector machine (SVM) for bearing fault
diagnosis.

HHT is a method for analyzing non- stationary signals
developed by Huang et al. [12]. HHT is a combination of
Empirical Mode Decomposition (EMD) and the Hilbert
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transform. EMD is a self-adaptive signal decomposition
method, which is based upon the time scale local char-
acteristic of the signal. It can decompose complex sig-
nals into a number of simple intrinsic mode functions
(IMFs) [13]. The IMFs components can reveal the hid-
den information within the original signal. Moreover, the
generated IMF components are stationary [14]. AR model
is a time sequence analysis method whose parameters con-
tain important information of the system condition. An
AR model can accurately reflect the characteristics of a
dynamic system [13]. Additionally, it is indicated that the
autoregression parameters of AR model are very sensitive
to the condition variation [15, 16]. However, AR model
can only be applied to stationary signals, whereas the
fault current signals of a rolling element bearing are non-
stationary. Aiming at this problem, the EMD method is
used as a pretreatment to decompose the non-stationary
current signal of a roller bearing.

The SVM is a statistical learning method with good
performances in many classification applications (Vapnik
1998). It can be claimed that the SVM classifier outper-
forms neural network classifiers in terms of generaliza-
tion [17]. The last few years, SVMs have been found to
be remarkably effective in many real-world applications.
Due to the fact that it is difficult to obtain sufficient
fault samples in practice, SVMs are introduced because of
their high accuracy and good generalization for a smaller
number of samples.

2 Hilbert-Huang transform (HHT)

The EMD is defined by a sifting process. It can de-
compose a multi-components signal into a series of IMFs.

Huang et al. [12] have defined the IMFs as a function
class that satisfies two conditions:

1. At any point, the mean value between the envelope
defined by local maxima and the envelope defined by
the local minima is zero.

2. The number of extrema and the number of zero-
crossings are either equal to each other or differ by
at most one.

To extract the IMFs, the sifting process used is defined
in [12]. Having obtained the IMFs, we apply the Hilbert
transform to each IMF.

To calculate the instantaneous characteristics (fre-
quency and amplitude) of each IMF, the analytic signal
zi (t) associated to ci (t) is used:

zi (t) = ci (t) + jH [ci (t)] (1)

where:

H {ci (t)} =
1

π
P

+∞
∫

−∞

ci (τ)

t − τ
dτ (2)

and P is the Cauchy principal value.
zi (t) defined as:

zi (t) = ai (t) exp (jwi (t)) (3)

The amplitude and instantaneous phase are defined by:

ai (t) =
√

c2
i (t) + H2 [ci (t)]

θi (t) = arctan

(

H [ci (t)]

ci (t)

)

(4)

The instantaneous frequency of zi (t), is simply the deriva-
tive of the instantaneous phase:

ωi =
dθi (t)

dt
(5)

Thus, the original signal can be expressed as:

x (t) = Re
n

∑

i=1

ai (t) exp

(

j

∫

wi (t) dt

)

(6)

where the residue rn(t) was omitted. Re {·} denotes the
real part of a complex quantity.

This time-frequency distribution is designated as the
Hilbert-Huang spectrum H (w, t):

H (w, t) = Re

n
∑

i=1

ai (t) exp

(

j

∫

wi (t) dt

)

(7)

Equation (7) allows us to represent the instantaneous am-
plitude and frequency in three dimensions, in which the
amplitude is the height in the time-frequency plane.

The time integral of Huang-Hilbert spectrum is the
marginal Hilbert spectrum h (w) defined as:

h (w) =

T
∫

0

H (w, t) dt (8)

where T is the signal duration.
The marginal spectrum offers a measure of the energy

at each frequency. It represents the cumulated amplitude
over the entire data span in a probabilistic sense [18].

Therefore, the marginal spectrum of each IMF can be
defined, as:

hi (w) =

T
∫

0

Hi (w, t) dt (9)

3 Support vector machine (SVM)

SVM is a method of classification inspired by the sta-
tistical theory of supervised learning by Vapnik. It is con-
sidered today as one of the most powerful classification
methods in many real applications [19, 20]. The SVM al-
gorithm is based on the research of the optimal separating
hyperplane which maximizes the training data margin.

For a given training sample set G =
{(xi, yi) , i = 1 . . . l}, each sample xi ∈ Rd belongs
to a class by y ∈ {+1,−1}. The boundary can be
expressed as follows:

wx + b = 0 (10)
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where x is a weight vector and b is a bias. The decision
function can be done as:

f (x) = sgn (w · x + b) (11)

The optimal hyperplane separating the data can be ob-
tained as the solution of an optimization problem.

Minimize
1

2
‖w‖

2
(12)

Subject to

yi [(w · xi) + b] − 1 � 0, , i = 1, . . . , l (13)

Introducing Lagrange multipliers αi � 0, the optimiza-
tion problem can be rewritten as

Maximize:

L (w, b, α) =

l
∑

i=1

αi −
1

2

∑l

i,j=1
αiαjyiyj (xi · xj)

(14)
Subject to:

αi � 0, (15)

l
∑

i=1

αiyi = 0 (16)

When perfect separation is not possible, for samples
within the margin, slack variables are introduced. The
optimization problem can be reformulated as

Minimizes
1

2
‖w‖

2
+ c

∑

i

ξi (17)

Subject to constraints

yi [(w · xi) + b] � 1 − ξi (18)

Here ξi are slack variables, which measure the degree of
misclassification of the observation, and c is a parameter
which controls the trade-off between the slack variable ξi

and the margin ω [21].
Using Lagrange multipliers, we finally obtain

Maximize

L (w, b, α) =

l
∑

i=1

αi −
1

2

∑l

i,j=1
αiαjyiyj (xi · xj)

(19)
Subject to constraints

l
∑

i=1

αiyi = 0 , c � αi � 0, i = 1, . . . , l. (20)

The decision function can be obtained as follow

f (x) = sgn

(

l
∑

i=1

αiyi (xi · x) + b

)

(21)

If the linear boundary in the input space is not sufficient
to separate into two classes correctly, it is possible to cre-
ate a hyperplane that allows linear separation in a higher
dimension. The hyperplane is obtained by a transforma-
tion Φ (x) that maps the data from the input space to the
feature space.

K (x, y) = Φ (x) · Φ (y) (22)

Introducing a kernel function, the basic form of SVM can
be obtained:

f (x) = sgn

(

l
∑

i=1

αiyiK (x, xi) + b

)

(23)

The most commonly used kernel functions are linear func-
tions, radial basis functions, polynomials functions and
sigmoid functions.

4 Description

4.1 Main faults in asynchronous machine

A study conducted for IEEE [22] established statisti-
cal flaws that may occur on asynchronous machines; bear-
ing: 41%, stator: 37%, rotor: 10%, and other: 12%.

This distribution shows that faults come mainly from
bearings. Faulty bearings cause air gap eccentricities due
to irregular motion of the rotor. These eccentricities affect
the stator current due to the variations of the electromag-
netic field.

4.2 Characterization of ball bearings faults

A ball bearing fault is characterized by a continual
repetition of faulty contacts with the bearing outer and
inner cage. And, as the ball bearing supports the rotor,
each fault will produce a radial motion of the rotor rela-
tive to the stator [23, 24].

According to Schoen [7], these variations generate sta-
tor currents at frequencies:

|fa ∓ k · ffault| were : k = 1, 2, 3 . . . (24)

with:

fa; power source frequency

ffault; characteristic frequency induced by the fault.

The characteristic frequencies of the fault depend on
the bearing dimensions and on the type of bearing de-
fect [7, 25]. The bearing fault can be classified as inner
ring, outer ring or ball. The characteristic fault frequen-
cies are defined by the following equations:

Outer race bearing fault frequency:

fo = (N/2) · fr · (1 − (BD/PD) · cosβ) (25)
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Table 1. Characteristics of the machine.

Parameter Value
Power 1.1 kW

Power Frequency 51 Hz
Motor connection Y

Phase voltage 400 V
Rated speed 1445 rpm

Number of pole pair P = 2
Number of rotor slots 28
Number of stator slots 48

Table 2. Bearing dimensions.

ball diameter BD 7.9 mm
Inside diameter D 20 mm

Outside diameter d 47 mm
pitch diameter PD = (D + d)/2 33.5 mm

Inner race bearing fault frequency:

fi = (N/2) · fr · (1 + (BD/PD) cosβ) (26)

Ball defect frequency:

fb = (PD/BD) · fr ·
(

1 − ((BD/PD) · cosβ)
2
)

(27)

with:

PD: pitch diameter,

BD: ball diameter

β: Contact angle of the ball on the race

N : number of balls

4.3 Description of the monitoring system

The tests were carried on the test bed at the LEG
Laboratory of Grenoble. The defects were created artifi-
cially by an electrical erosion of a 1 mm diameter hole at
the outer ring, inner ring or ball [26].

The monitoring system of the stator current is com-
posed of:

– A three-phase power source with a frequency of 51 Hz.
– A sampler which aims to acquire the three phase volt-

ages and currents of the stator. After a low pass fil-
tering, signals are sampled at 10 kHz.

– An asynchronous squirrel cage with the characteristics
given in Table 1.

– Bearing type SNR 6204, with the following character-
istics:

– 8 Balls.
– Contact angle β = 0.

5 Characterization of bearing fault using
the HHT

The purpose of this section is to describe the sig-
nature bearing fault as it has been observed on the

Table 3. Characteristic frequencies of the bearing.

Fault Characteristic frequency Value with
frequency frot = 1500 rpm

Ball fault fb = 3.983 frot 99.6 Hz
Outer race fault fo = 3.052 frot 76.3 Hz
Inner race fault fi = 4.974 frot 124.3 Hz

frot: rotation frequency.

0.5 1 1.5 2

x 10
4

-2

0

2

Fig. 1. Current signal for a healthy bearing.

Table 4. Theoretical frequencies of outer race fault.

k ffault = |fa + kfo| ffault = |fa − kfo|
1 127.3 25.3
2 203.6 101.6
3 279.9 177.9

steady state signals. Analyses were performed on blocks
of 60 000 points; the 10 kHz sampling frequency allows a
spectral resolution of 1/6 Hz.

5.1 Motor with healthy bearing

To the data of Figure 1, the EMD algorithm is ap-
plied. Figure 2 displays the empirical mode decomposition
in seven IMFs of the current signal. The decomposition
highlights seven modes: IMF1 ∼ IMF7 and the residue.
IMF1 contains the highest signal frequencies band, IMF2
the next higher frequency band and so on.

The marginal spectrum of IMF 2 and IMF 3 are pre-
sented in Figures 3 and 4, respectively. We can note that
the marginal spectrum for a healthy motor reveals spec-
trum lines at frequencies (fa) and (2fa).

5.2 Motor with outer race fault

Motor with outer race fault generates, in the stator
current spectrum, lines at frequencies shown in Table 4.

Figure 5 represents the decomposition of the current
signal with outer race fault. The decomposition identifies
nine modes: IMF1 ∼ IMF9 and the residue.

The marginal spectrums of the IMF 2 are shown in
Figures 6 and 7. We show that themarginal spectrum of
the IMF2 produces an amplitude variation of the spec-
trum lines at (fa − 2fo) and (fa + fo), corresponding to
the theoretically calculated frequencies.
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Fig.2. Decomposition by EMD 
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Fig. 2. Decomposition by EMD.

Fig. 3. Marginal spectrum of IMF 2.

The marginal spectrum of the IMF 3 (Fig. 8) il-
lustrates spectrum lines at frequencies (fa − frot) and
(fa + frot), characteristics of an air gap eccentricity. We
note that the marginal spectrum of the IMF 3 can’t high-
light the characteristic frequencies of an outer race fault.
From now on, we rely only on the analysis of second IMF.

Fig. 4. Marginal spectrum of IMF 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.5

0

0.5

im
f1

-5

0

5

im
f2

-0.02

0

0.02

im
f3

-0.01

0

0.01

im
f4

-0.01

0

0.01

im
f5

-0.01

0

0.01

im
f6

-5

0

5
x 10

-3

im
f7

-2

0

2
x 10

-3

im
f8

-0.085

-0.08

-0.075

im
f9

-0.085

-0.08

-0.075

re
s.

Fig. 5. Decomposition by EMD.

5.3 Motor with inner race fault

Theoretically, an inner race fault generates spectrum
lines at frequencies shown in Table 5.

Figure 9 shows the decomposition results for a bearing
with inner race fault. Nine modes: IMF1 ∼ IMF9 and the
residue are identified.
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Fig. 6. Marginal spectrum of IMF 2.

Fig. 7. Marginal spectrum of IMF 2 for different frequency
range.

Table 5. Theoretical frequencies of inner race fault.

k ffault = |fa + kfi| ffault = |fa − kfi|

1 175.3 73.3

2 299.6 197.6

3 423.9 312.9

Figures 10 and 11 show the marginal spectrum of the
IMF 2. Peaks of the spectrum lines at (2fa), (fi) and
(fa + 2fi), corresponding to the theoretically calculated
frequencies, are revealed.

5.4 Motor with ball fault

Theoretically it generates, in the stator current spec-
trum, lines at frequencies as shown below.

 

Fig. 8. Marginal spectrum of IMF 3.
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Fig. 9. Decomposition by EMD.

Table 6. Theoretical frequencies of ball fault.

k ffault = |fa + k fb| ffault = |fa − k fb|

1 150.6 48.6

2 250.2 148.2

3 349.8 247.8
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Fig. 10. Marginal spectrum of IMF 2.

Fig. 11. Marginal spectrum of IMF2 for different frequency
range.

The current signal is decomposed into eight IMF
(Fig. 12). The marginal spectrum of the IMF 2 is pre-
sented in Figures 13–16 for different frequency ranges.
We see clearly peaks at frequencies (fa + fb), (fa + 2fb),
(fa − 2fb) and (fa − 4fb), which are related to the fault
characteristic frequencies.

From the tests results, we can say that:

• bearing faults affect the marginal spectrum of the IMF
2 of the stator current;

• the ball fault is easier to detect;
• ball faults are characterized by frequencies corre-

sponding to the theoretical outer and inner ring faults.
The ball faults can be seen as outer and inner ring
faults [7];

• the amplitude of the ray corresponding to faults is very
small compared to the harmonics of the stator current.
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Fig. 12. Decomposition by EMD.

Fig. 13. Marginal spectrum of IMF 2.

This could be due to the fact that the faults are not
severe enough to generate large amplitude streaks.

6 Implementation of the classification
by SVM

6.1 Feature extraction

According to expression (25), a fault creates a fre-
quency shift of the stator current spectrum; this shift is
proportional to the characteristic frequency of the fault.
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Fig. 14. Marginal spectrum of IMF2 for different frequency
range.

Fig. 15. Marginal spectrum of IMF2 for different frequency
range.

We have shown in Section 5 that the marginal spec-
trum of IMF 2 contains the key fault information of roller
bearing; the fault characteristics could be extracted. The
AR model of IMF 2 is used as input vector of the SVM
classifier. The fault diagnosis method is given as :

1. Roller bearings in four conditions (normal bearing,
bearing with inner-race fault, bearing with out-race
fault and bearing with ball fault) are tested respec-
tively and 10 current signals of roller bearings in each
condition are obtained.

2. Each signal is decomposed into IMFs using EMD, the
second IMF that includes the most dominant fault
information is chosen to extract the classification fea-
tures.

3. The IMFs 2 of each signal are represented by their AR
models; we estimate the order p and the coefficients

Fig. 16. Marginal spectrum of IMF2 for different frequency
range.

Table 7. Confusion matrix.

Outer race Inner race Ball Healthy
Outer race 100% 0% 0% 0%
Inner race 0% 100% 0% 0%

Ball 0% 0% 100% 0%
Healthy 0% 0% 0% 100%

Average classification rate = 100%.

(ai) of each signal based on the FPE (Final Predic-
tion Error) criterion. The parameters are obtained by
averaging the estimated parameter over 300 periods
of 200 points.

4. The model order estimation curves of the four condi-
tions are shown in Figure 17. We can see that when
the model order is 4, each model’s residual tends to
be stable. Therefore, the model order is selected as 4
for the database.

A total of 480 feature vectors- were collected (120 normal
bearing, 120 bearing with inner-race fault, 120 bearing
with out-race fault and 120 bearing with ball fault). 400 of
the feature vectors (100 feature vectors for each condition)
were used for training the classifier and 80 (20 feature
vectors for each condition) as the test feature vectors.

Tables 7 list classification results for a linear Kernel
functions. The average classification rate is 100%. For ra-
dial basis and polynomial function Kernel, the same av-
erage classification rate achieved.

The classification using SVMs allowed us to obtain
very good result. The classification rate obtained is higher
than the one in [27] where the AR model of the envelope
of the stator current and SVMs were used.

6.2 Linear-SVMs

The results are obtained using the optimal value for
the parameter c = 10.
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Fig. 17. Model order estimation curves.

6.3 RBF (Radial Basis Function)-SVMs

The results are obtained using the optimal value for
the parameter c = 1.

6.4 Polynomial-SVMs

The results are obtained using the optimal value for
the parameters c = 1, d = 3 (polynomial degree).

7 Conclusion

In this work, to overcome the limitations of tradi-
tional time/frequency analysis methods, we applied a new
method for the detection of bearing faults namely the
Hilbert Huang Transform and its marginal spectrum. Us-
ing EMD method, the current signal of the bearing fault
can be decomposed into intrinsic modes. Therefore, we
have a better understanding of the nature of the fault
information within the current signal. According to the
marginal spectrum of IMF 2, the characteristic frequen-
cies of the bearing fault can be easily recognized. The ex-
perimental result have shown that HHT and its marginal

spectrum can be used as an effective diagnostic method
for bearing faults detection.

Classification of bearing faults using AR model of the
IMF 2 of the stator current and SVM was presented. It has
been shown that the proposed approach can be applied
to classify the bearing fault pattern. This approach offers
a new method for the diagnosis of bearing faults.
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