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Abstract This paper explores the challenges raised by
big data in privacy-preserving data management. First, we
examine the conflicts raised by big datawith respect to preex-
isting concepts of private data management, such as consent,
purpose limitation, transparency and individual rights of
access, rectification and erasure. Anonymization appears as
the best tool to mitigate such conflicts, and it is best imple-
mented by adhering to a privacy model with precise privacy
guarantees. For this reason, we evaluate how well the two
main privacy models used in anonymization (k-anonymity
and ε-differential privacy) meet the requirements of big
data, namely composability, low computational cost and
linkability.

Keywords Big data · Consent · Privacy models ·
k-anonymity · ε-differential privacy

1 Introduction

Big data have become a reality in recent years: Data are being
collected by a multitude of independent sources, and then
they are fused and analyzed to generate knowledge. Big data
depart from previous data sets in several aspects such as vol-
ume, variety and velocity. The large amount of data has put
too much pressure on traditional structured data stores, and
as result new technologies have appeared, such as Hadoop,
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NoSQL, MapReduce [7]. The amount and variety of data
have made sophisticated data analyses possible. Data analy-
sis is no longer only a matter of describing data or testing
hypotheses, but also of generating (previously unavailable)
knowledge out of the data.

While a valuable resource inmanyfields, there is an impor-
tant side effect of big data. The privacy of the individuals
whose data are being collected and analyzed (often without
their being aware of it) is increasingly at risk. An illustrative
case of this is reported in [9]. Target, a large retailer, created
a model for pregnancy prediction. The goal was to send dis-
count coupons on several baby-related products as soon as
possible with the aim to shape long-standing buying patterns
to Target’s advantage. Some time later, a father complained
to Target that her daughter, still at high school, had been
sent coupons for baby clothes; he asked whether they were
encouraging her to get pregnant. It was later discovered that
she was pregnant but her father was still unaware of it.

While in a different setting and scale, disclosure risk
has long been a concern in the statistical and computer
science communities, and several techniques for limiting
such risk have been proposed. Statistical disclosure control
(SDC, [14]) seeks to allow one to make useful inferences
about subpopulations from a data set while at the same time
preserving the privacy of the individuals that contributed
their data. Several SDC techniques have been proposed to
limit the disclosure risk in microdata releases. A common
feature in all of them is that the original data set is kept
secret and only a modified (anonymized) version of it is
released. In recent years, several privacy models have been
proposed. Rather than determining the specific transforma-
tion that should be carried out on the original data, privacy
models specify conditions that the data set must satisfy to
keep disclosure risk under control. Privacy models usually
depend on one or several parameters that determine how
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much disclosure risk is acceptable. Existing privacy models
have been mostly developed with a single static data set in
mind. However, with big data this setting does not suffice any
more.

We next sketch the contributions and the structure of this
paper. In Sect. 2, we examine the conflict between big data
and the legal and ethical requirements in private datamanage-
ment. Given that anonymization appears as the best option
to mitigate that conflict, and since privacy models seem the
soundest approach to anonymization, in Sect. 3 we seek to
determine the properties that a privacy model must have
to be appropriate for big data privacy. In Sects. 4 and 5,
respectively, we evaluate the two best-known privacy mod-
els, namely k-anonymity [24] and differential privacy [11],
in terms of the desirable properties for big data protection
established in Sect. 3. Finally, Sect. 6 summarizes the con-
clusions of our work.

2 Privacy in Big Data

The potential risk to privacy is one of the greatest downsides
of big data. It should be taken into account that big data
are all about gathering as many data as possible to extract
knowledge from them (possibly in some innovative ways).
Moreover, more than often, these data are not consciously
supplied by the data subject (typically a consumer, citizen),
but they are generated as a by-product of some transaction
(e.g., browsing or purchasing items in an online store), or they
are obtained by the service provider in return for some free
service (for example, free email accounts, social networks)
or as a natural requirement for some service (e.g., a GPS
navigation system needs knowledge about the position of an
individual to supply her with information on nearby traffic
conditions).

At themoment, there is not a clear view of the best strategy
or strategies to protect privacy in big data. Prior to the advent
of big data, the following principles were of broad applica-
tion in several regulations for the protection of personally
identifiable information (PII) [6]:

– Lawfulness. Consent needs to be obtained from the sub-
ject, or the processing must be needed for a contract
or legal obligation, for the subject’s vital interests, for
a public interest, or for legitimate processor’s interests
compatible with the subject’s rights.

– Consent. The consent given by the subject must be sim-
ple, specific, informed and explicit.

– Purpose limitation. The purpose of the data collection
must be legitimate and specified before the collection.

– Necessity and data minimization. Only the data needed
for the specific purpose should be collected. Furthermore,
the data must be kept only for as long as necessary.

– Transparency and openness. Subjects need to get infor-
mation about data collection and processing in away they
can understand.

– Individual rights. Subjects should be given access to the
data on them, as well as the possibility to rectify or even
erase such data (right to be forgotten).

– Information security. The collected data must be pro-
tected against unauthorized access, processing, manipu-
lation, loss or destruction.

– Accountability. The data collector/processor must have
the ability to demonstrate compliance with the above
principles.

– Data protection by design and by default [6]. Privacy
must be built-in from the start rather than added later.

Without anonymization, several potential conflicts appear
between the above principles and the purpose of big data:

– Purpose limitation. Big data are often used secondarily
for purposes not even known at the time of collection.

– Consent. If the purpose of data collection is not clear,
consent cannot be obtained.

– Lawfulness.Without purpose limitation and consent, law-
fulness is dubious.

– Necessity and data minimization. Big data result pre-
cisely from accumulating data for potential use.

– Individual rights. Individual subjects do not even know
which data are stored on them or even who holds data on
them. Accessing, rectifying or erasing the data is there-
fore infeasible for them.

– Accountability. Compliance does not hold and hence it
cannot be demonstrated.

Given the above conflicts between privacy principles and big
data, it has been argued that, in order to avoid hampering
technological development, privacy protection should focus
only on potentially privacy-harming uses of the data (rather
than on data collection) or even allow for self-regulation.
In the opposite camp, it has been also argued that it is the
mere collection of the data that triggers any potential privacy
breaches. Indeed, once the data have been collected, many
potential threats arise [3]:

– Data breach. This may happen as a result of aggressive
hacking or insufficient security measures. The more data
are collected, the more appealing they become for an
attacker.

– Internal misuse by employees [4].
– Unwanted secondary use.
– Changes in company practices. The policies that prevent
a company from engaging in uses of the data that harm
the subjects’ interests may change.

– Government access without due legal guarantees [27].
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Anonymization techniques are a possible solution to over-
come the conflicts between privacy principles and big data.
As the privacy principles above refer to PII, once the data
have been anonymized they may be viewed as being no
longer PII and hence one may claim that principles no
longer apply to them. However, anonymization techniques
face some difficulties when applied to big data. On one side,
too little anonymization (e.g., mere de-identification by just
suppressing direct identifiers) may not be enough to ensure
non-identifiability [2,13]. This becomes more problematic
with big data because, as the amount and variety of data about
an individual accumulates, re-identification becomes more
plausible. On the other side, too strong an anonymization
mayprevent linkingdata on the same individual subject (or on
similar individual subjects) that come from different sources
and, thus, thwart many of the potential benefits of big data.

While it is obvious that there are some tensions between
big data and data anonymization, we should not rule out the
latter. Admittedly, it is true that anonymization can hamper
some of the uses of big data (mainly those uses targeting
a specific individual), but anonymized data still enable most
analyses in which the target is a sufficiently large community
or the entire population.

3 Properties of Privacy Models for Big Data

SDC techniques [14] (e.g., global recoding, supression, top
and bottom coding, microaggregation) specify data transfor-
mations whose purpose is to limit disclosure risk. Yet, in
general they do not specify any mechanism to assess what
is the disclosure risk remaining in the transformed data. On
the other side, privacy models (such as k-anonymity [24],
l-diversity [18], t-closeness [17], ε-differential privacy [11],
probabilistic k-anonymity [28]) specify some properties that
the data set must satisfy to limit disclosure risk, but they
leave it open which SDC technique is to be used to satisfy
these properties. In this sense, privacy models seem more
appealing. The reality, however, is that most privacy models
have been designed to protect a single static original data
set and, thus, there are several important limitations in their
application to big data settings.

The three characteristics often mentioned as distinctive
of big data are volume, variety and velocity. Volume refers
to the fact that the amount of data is are subject to analysis
is large. Variety refers to the fact that big data consist of
heterogeneous types of data extracted and fused from several
different sources. Velocity refers to the speed of generation
and the processing of the data. Certainly, not all the above
properties need to concur for the name big data to be used,
but at least some of them are required. Even though volume is
reflected in the name of “big” data, usually variety is regarded
as the most relevant feature of big data.

For a privacy model to be usable in a big data environ-
ment, it must cope well with volume, variety and velocity.
To determine the suitability of a privacy model for big data,
we look at the extent to which it satisfies the following three
properties:

– Composability. A privacymodel is composable if the pri-
vacy guarantees of the model are preserved (possibly to a
limited extent) after repeated independent application of
the privacy model. From the opposite perspective, a pri-
vacy model is not composable if multiple independently
data releases, each of them satisfying the requirements
of the privacy model, may result in a privacy breach.

– Computational cost. The computational cost measures
the amount of work needed to transform the original data
set into a data set that satisfies the requirements of the pri-
vacy model. We have previously mentioned that, usually,
there is a variety of SDC techniques that can be employed
to satisfy the requirements of the privacy model. Thus,
the computational cost depends on the particular SDC
technique selected.When evaluating the cost of a privacy
model, we will consider the most common approaches.

– Linkability. In big data, information about an individ-
ual is gathered from several independent sources. Hence,
the ability to link records that belong to the same (or a
similar) individual is central in big data creation. With
privacy protection in mind, the data collected by a given
source should be anonymized before being released.
However, this independent anonymization may limit the
data fusion capabilities, thereby severely restricting the
range of analyses that can be performed on the data and,
consequently, the knowledge that can be generated from
them. The amount of linkability compatible with a pri-
vacy model determines whether and how an analyst can
link data independently anonymized under that model
that correspond to the same individual. Notice that, when
linking records belonging to the same individual, we are
increasing the information about this individual. This is
a privacy threat, and thus, the accuracy of the linkages
should be less in anonymized data sets than in original
data sets.

All of the above properties of a privacy model seem to be
important to effectively deal with big data. We next discuss
the importance of each property in some detail.

Composability is essential for the privacy guarantees of a
model to bemeaningful in the big data context. In big data, the
process of data collection is not centralized, but distributed
among several data sources. If one of the data collectors is
concerned about privacy and decides to use a specific privacy
model, the privacy guarantees of the selectedmodel should be
preserved (to some extent) after the fusion of the data. Com-
posability can be evaluated between data releases that satisfy
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the same privacy model, between data releases that satisfy
different privacymodels and between a data release that satis-
fies a privacy model and non-anonymized data. In this paper,
we evaluate only composability between data releases that
satisfy the same privacy model. The strongest case, compos-
ability against a non-anonymized data release, is equivalent
to requiring the privacy model to offer protection against
arbitrary side knowledge.

Low computational cost is also a very important feature
of a privacy model if it has to remain practical for big data,
given that one of the main properties of big data is volume
(that is, large data sets). Algorithms having linear or log-
linear cost on the size of the data set seem to be feasible
alternatives. Algorithms with quadratic cost or above are not
feasible for large data sets. Several simple modifications on
a costly algorithm are conceivable to make it more efficient.
One such modification is to partition the original data set in
several smaller data sets and anonymize each of these sepa-
rately. Of course, partitioning may have implications on the
utility and the privacy of the resultant data; such implications
ought to be analyzed on a case-by-case basis.

Finally, linkability is also essential as big data are obtained
by fusing inputs fromdifferent sources.More precisely, being
able to link data about the same individual in different data
sets is of foremost importance for data analysis. Thus, to be
useful for big data, a privacy model must allow anonymized
data to stay linkable to some extent.

4 Evaluating k-Anonymity

k-Anonymity seeks to limit the disclosure risk of a data set
by limiting the capability of intruders to re-identify a record,
that is, k-anonymity seeks to prevent identity disclosure. To
that end, k-anonymity assumes that record re-identification is
performed based on a fixed set of combinations of attributes.
Each such combination is known as a quasi-identifier. The
goal in k-anonymity is tomake the combination of values of a
quasi-identifier in the anonymized data set to refer to at least
k individuals; these individuals form a so-called equivalence
class.

Definition 1 (k-anonymity [24]) Let T [A1, . . . , An] be a
microdata set with attributes A1 to An , and letQI be a quasi-
identifier associated with it. T is said to satisfy k-anonymity
with respect to QI if and only if each sequence of values in
T [QI ], the projection of T over the attributes in QI, appears
at least k times in T [QI ].

Aquasi-identifier is a set of attributes in the data set that are
externally available in combination (i.e., appearing together
in an external data set or in possible joins between external
data sets) and associated with an identified individual. How-
ever, determining which combinations of attributes should

Algorithm 1 Intersection attack
R1, . . . , Rn ← n independent data releases
P ← population consisting of subjects present in all R1, . . . , Rn
for each individual i in P do

for j = 1 to n do
ei j ←equivalence class of R j associated to i
si j ←set of sensitive values of ei j

end for
Si ← si1 ∩ si2 ∩ . . . ∩ sin

end for
return S1, . . . , S|P|

be taken as quasi-identifiers is controversial, as it seems
difficult to argue that the data protector knows all such com-
binations of attributes. If we are to protect against informed
intruders (with knowledge of some confidential information),
probably all attributes in the data set should be taken as a
quasi-identifier.

It is important to keep in mind that disclosure may occur
even without the re-identification of a record. Attribute dis-
closure happens when access to the released data gives the
intruder a better knowledge about the value of a confiden-
tial attribute of a specific individual. In a k-anonymous data
set, there is attribute disclosure if the variability of the con-
fidential attributes in a k-anonymous group of records is
small. Several extended models have been proposed that try
to address this shortcoming of k-anonymity; l-diversity [18]
and t-closeness [17] are among them. We do not analyze
these extended models in this paper; however, most of the
big data related properties of k-anonymity also apply to such
extensions.

4.1 Composability

k-Anonymity has been designed to limit the disclosure risk
in a single static data set; thus, in general, the k-anonymity
model does not compose. A good analysis of the composabil-
ity properties of k-anonymity can be found in [12]. To break
the guarantees of k-anonymity in multiple data releases, the
intruder tries to use the information about the confidential
attribute provided by each of the data releases to further
restrict the feasible values. This is the way that the inter-
section attack [12] proceeds (see Algorithm 1). This attack
can lead to reduced privacy guarantees (a smaller k) or even
to exact re-identification of some records.

In spite of k-anonymous data releases being in general
not composable, in some restricted scenarios composability
may be satisfied. By observing Algorithm 1, it is clear that
two conditions must be satisfied for the attack to be suc-
cesful: (i) There must be some overlapping subjects across
the independent data releases, and (ii) information about the
same confidential attribute must be present in several data
releases. If we can guarantee that there are no overlapping
subjects or confidential attributes in the k-anonymous data
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releases, k-anonymity is preserved. However, it seems diffi-
cult to guarantee such conditions in a big data environment.

4.2 Computational Cost

Attaining k-anonymity requires modifying the original data
in such a way that the combination of values of each quasi-
identifier is shared by at least k records. Although this could
be achieved in many different ways, in order to minimize
the information loss one usually resorts to clustering quasi-
identifier values that are as close as possible (given some
previously defined closeness criterion).

Generalization (a.k.a. recoding) and suppression are two
commonly used techniques to attain k-anonymity. Initial
approaches were based on one-dimensional global recod-
ing, where a hierarchy of generalizations is defined for each
individual attribute and the goal is to find a minimal gen-
eralization over all the attributes that satisfies k-anonymity.
Finding the optimal generalization based on these primitives
has been shown to be an NP-hard problem [1,21]. Several
cost-effective heuristics for finding an approximate solution
have been proposed. In [24], an algorithm based on binary
search among the set of possible generalizations is proposed
for a specific notion of minimality. In [15], an algorithm is
proposed that is capable of dealing with an arbitrary mini-
mality notion. Although both [24] and [15] have, in the worst
case, an exponential cost on the size of thequasi-identifier, the
optimizations they perform allow them to deal with relatively
large quasi-identifiers [15]. The cost is linear in the size of the
data set. Multi-dimensional global recoding can be used to
attain k-anonymity, instead of one-dimensional global recod-
ing. The additional flexibility of multi-dimensional global
recoding allows for improved utility. As for the running cost,
optimal multi-dimensional global recoding is an NP-hard
problem, but an approximation algorithmwith costO(n ln n)

in the size of the data set has been proposed in [16].
Microaggregation can be used as an alternative to global

recoding to attain k-anonymity. The optimal microaggrega-
tion has been shown to be an NP-hard problem [23], but
several approximation heuristics have been proposed that
reduce its cost. For instance, MDAV [8] has a O(n2) cost
in the size n of the data set. Partitioning the data set and
separately microaggregating each subset resulting from the
partition is a way to make MDAV usable on large data sets.

Which of the above approaches is the best performer
depends on the actual data set (see Table 1). For one-
dimensional global recoding the cost is exponential in the
size of the quasi-identifier, so it is not a valid option beyond
a given size of the QI. In spite of this, its cost is linear in
the number of records; thus, it is a good option for deal-
ing with large data sets with quasi-identifiers consisting of
relatively few attributes. See [15] for empirical evaluations.
When one-dimensional global recoding is not applicable

Table 1 Cost of attaining k-anonymity in terms of the primitives used

Primitive Cost Algorithm

Single-dim. global
recoding

Exp. in the size of the QI
linear in the no. of records

Incognito

Multi-dim. global
recoding

Quasilinear in the no. of
records

Mondrian

Microaggregation Quadratic in the no. of
records

MDAV

because of the size of the quasi-identifier, we can resort
to multi-dimensional global recoding and microaggregation.
Multi-dimensional global recoding, with cost O(n ln n) in
the size of the data set, seems a feasible approach even for
the large values of n that can be expected in a big data envi-
ronment. On the other hand, although microaggregation has
O(n2) cost, it has appealing utility features, especially for
numerical attributes (see [8]), and it can still be used for
large n if combined with partitioning.

4.3 Linkability

The scenario we consider for evaluating linkability consists
of two independently anonymized data sets whose popula-
tions of subjects partially overlap. We want to determine
whether it is possible to link the records that belong to the
same individual.

For a subject that is known to be in both data sets, we
can determine the corresponding groups of k-anonymous
records containing her (approximately if microaggregation is
used instead of generalization). Thus, we can at least link the
groups of k-anonymous records containing the given individ-
ual. If some of the confidential attributes are shared between
the data sets, the accuracy of the linkage improves. It could
even be possible to accurately link individual records (not
just k-anonymous groups).

5 Evaluating Differential Privacy

Differential privacy [10,11] is a privacy model offering
strong privacy guarantees. It seeks to limit the impact of any
single individual subject’s contribution on the outcome of
any analysis. Its primary setting is based on a trusted party
that holds the original data set, receives queries and returns
randomized answers for those queries so that the following
differential privacy guarantee is satisfied.

Definition 2 A randomized function κ gives ε-differential
privacy if, for all data sets D1 and D2 that differ in one record,
and all S ⊂ Range(κ)

Pr(κ(D1) ∈ S) ≤ exp(ε) × Pr(κ(D2) ∈ S).

123



26 J. Soria-Comas, J. Domingo-Ferrer

In the definition above, κ represents the (randomized)
query/analysis that the data user wants to perform on the
data. Because the data sets D1 and D2 differ in one record
(where each record corresponds to a subject), and differential
privacy seeks to limit the impact of each single subject in the
result of any analysis, the outcomes κ(D1) and κ(D2) must
be similar. This similarity is measured by differential privacy
in terms of the certainty of getting a specific outcome. The
level of privacy is controlled by the parameter ε. The smaller
ε, the more privacy, but on the other hand, more noise needs
to be introduced to randomize the query outcome (and more
noise means less utility).

Several approaches have been proposed to generate dif-
ferentially private data sets [19,29–32], although the main
purpose of differential privacy remains to provide privacy-
preserving answers for queries performed on the original
data. However, data analysts usually expect to have access
to the underlying data set, rather than be given noise-added
answers to specific interactive queries. For this reason, this
paper focuses on differentially private data sets.

There are two main approaches to generate differentially
private data sets: (i) create a synthetic data set from an
ε-differentially private model for the data (usually from a
differentially private histogram), or (ii) add noise to mask
the values of the original records (probably in combination
with some prior aggregation function to reduce the amount
of required noise).

A synthetic data set can be either partially synthetic or
fully synthetic. In partially synthetic data sets, only some of
the values of the original data set are replaced by synthetic
(simulated) values, usually the ones that are deemed too sen-
sitive. On the contrary, in fully synthetic data sets a new data
set is generated from scratch. When generating a fully syn-
thetic data set, the original data set is viewed as a sample
from some underlying population and the synthetic data set
is generated by taking a different sample. The attributes in
the original data set are split in two groups (see Fig. 1): those
that are known for the entire population (labeled A in the fig-

Fig. 1 Setting for fully synthetic data generation. A attributes whose
values are available for all population subjects. B: attributes whose val-
ues are only available for the subjects in the original data set (Bobs :
available values of B attributes; Bmis : missing values of B attributes)

ure), and those that are known only for the sample (labeled
B in the figure). Apop refers to the matrix of values that are
available for all population subjects (in a survey, these are
usually the attributes used in the design of the sample), Bobs

refers to the part of the matrix B with available (observed)
values and Bmis refers to the part with missing (unobserved)
values. To generate the fully synthetic data set, the values of
Bmis are imputed (by adjusting a model for the joint distrib-
ution of (A, B) to the observed data and then drawing from it
conditional to the value of A).

5.1 Composability

Differential privacy offers strong composability properties.
We focus on two of them [20]: sequential composition and
parallel composition. Sequential composition refers to a
sequence of computations, each of them providing differ-
ential privacy in isolation, providing also differential privacy
in sequence.

Theorem 1 Let κi (D), for some i ∈ I , be computations over
D providing εi -differential privacy. The sequence of compu-
tations (κi (D))i∈I provides (

∑
i∈I εi )-differential privacy.

Parallel composition refers to several ε-differentially private
computations each on data from a disjoint set of subjects
yielding ε-differentially private output on the data from the
pooled set of subjects.

Theorem 2 Let κi (Di ), for some i ∈ I , be computations
over Di providing ε-differential privacy. If each Di contains
data on a set of subjects disjoint from the sets of subjects
of D j for all j �= i , then (κi (Di ))i∈I provides ε-differential
privacy.

The above composition properties hold for differentially pri-
vate query answers and also for differentially private data
sets. For the case of data sets, sequential composition can
be rephrased as: the release of εi -differentially private data
sets Di , for some i ∈ I , is (

∑
i∈I εi )-differentially private.

Sequential composition says that by accumulating differ-
entially private data about a set of individuals, differential
privacy is not broken, but the level of privacy decreases.
Parallel composition can be rephrased as: The release of ε-
differentially private data sets Di referring to disjoint sets of
individuals, for some i ∈ I , is ε-differentially private.

5.2 Computational Cost

Computing the value of a function f in a differentially private
manner usually boils down to computing the value of f and
then adding some noise to it [11,22]. The amount of noise
required depends on the sensitivity of f (howmuch changes in
a single record alter the value of f ). Computing the sensitivity
for an arbitrary function f can be a complex task. In such
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cases, the sample and aggregate framework [22,26], based
on computing the value of f on several population samples
and then aggregating, is a good option. However, we are
mainly interested in the computational cost associated with
the generation of a differentially private data set.

For the case of a synthetically generated differentially pri-
vate data set, the computational cost is highly dependent on
the model used to approximate the distribution of the popula-
tion. Hence, we restrict ourselves to the alternative approach
that consists of computing a differentially private histogram.
The cost of computing this histogram is proportional to the
number of histogram bins. When the number of attributes is
small, we can afford defining a set of prefixed bins for each
attribute and generating the bins for the joint histogram by
takingCartesian products. However, since the number of bins
for the joint histogram grows exponentially with the number
of attributes, this approach is only applicable to data sets with
a small number of attributes. Several approaches have been
proposed to overcome this issue: In [5], bins are adjusted
to the underlying data; in [32], the dependency between
attributes is analyzed to limit the number of attributes in the
histograms.

For the case of aggregation plus noise, the computational
cost and the amount of noise needed to attain differential pri-
vacy are determined by the type of aggregation used. In [29],
a multivariate microaggregation function is used to generate
clusters containing k records and the average record of each
cluster is computed. In [25], individual ranking microaggre-
gation is used to group records and the average record is
computed for each attribute. The cost of both proposals is
quasilinear:O(n ln n) on the number of records n of the data
set.

5.3 Linkability

Likewe noted above, when generating a differentially private
synthetic data set, we can generate either a partially synthetic
data set or a fully synthetic data set. Strictly speaking, a par-
tially synthetic data set generated from an ε-differentially
private model (histogram) of the original data does not sat-
isfy ε-differential privacy. However, we consider partially
synthetic data sets here for two main reasons. The first one
is that the protection they offer may be enough in some sit-
uations. The second reason is that partial synthesis usually
allows a very accurate linkage of records.

If the values used for the linkage between synthetic data
sets have not been synthesized, we can expect perfectly accu-
rate linkages. For a partially synthetic data set, these values
would usually correspond to all the values of non-sensitive
attributes and to non-sensitive values of sensitive attributes.
For fully synthetic data sets, these values correspond to the
attributes that are known for the entire population (the ones
that correspond to matrix A in Fig. 1). However, there is

a difference between partially and fully synthetic data that
can have a great impact on linkability. In partially synthetic
data, the subjects in the original data set are the ones that are
present in the synthetic data set; thus, if data about a subject
are collected and anonymized independently, we will be able
to link the records. In fully synthetic data, a new sample from
the underlying population is used to generate the new data
set; thus, even if data about the same subject are collected by
different sources, there is no guarantee that the subject will
be present in the synthetic data sets.

For the case of a data set generated by masking the values
of the original records, the discussion is similar. If the val-
ues used in the linkage have not been masked, then we can
expect perfect linkage accuracy. However, it must be kept in
mind that the values of the masked attribute are no longer the
original values.

6 Conclusions

This paper has examined the privacy concerns raised by big
data. In particular, big data seem to clash with preexisting
private data management principles such as consent, purpose
limitation, necessity anddataminimization, transparency and
openness, and individual rights to access, rectify and erase.

Although data anonymization is not an all-encompassing
solution for privacy in big data (for example, it may thwart
some types of data analysis), it can certainly be a useful
tool to deal with the above clashes. However, the particular
characteristics of big data (mainly the linkability requirement
and the accumulationof data collected frommultiple sources)
challenge usual SDC approaches.

Privacy models are a relatively new development in the
computer science literature on disclosure risk limitation. We
have evaluated k-anonymity and ε-differential privacy in
terms of composability, computational cost and linkability,
all of them essential properties when dealing with big data.
Themain limitation of k-anonymity is related to composabil-
ity: The release of several k-anonymous data sets may lead to
re-identification of individuals. In contrast, differential pri-
vacy has strong composition properties: Releasing multiple
differentially private data sets may, of course, increase the
risk of disclosure, but one still has differential privacy (pos-
sibly with a greater value of the parameter and hence less
privacy). Regarding computational cost and linkability, the
exact performance of these privacy models depends on the
approach used to generate the anonymized data, but there are
options to deal with them.

In addition to adapting current privacy models for opera-
tion with big data, future research avenues include coming
up with new privacy models designed from scratch with big
data requirements in mind. In fact, changes may even be
necessary in the definition of privacy guarantees, in order for
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these to be naturally compatible with data continuously and
massively collected from multiple data sources.
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