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Abstract Research on big data analytics is entering in the

new phase called fast data where multiple gigabytes of data

arrive in the big data systems every second. Modern big

data systems collect inherently complex data streams due

to the volume, velocity, value, variety, variability, and

veracity in the acquired data and consequently give rise to

the 6Vs of big data. The reduced and relevant data streams

are perceived to be more useful than collecting raw,

redundant, inconsistent, and noisy data. Another perspec-

tive for big data reduction is that the million variables big

datasets cause the curse of dimensionality which requires

unbounded computational resources to uncover actionable

knowledge patterns. This article presents a review of

methods that are used for big data reduction. It also pre-

sents a detailed taxonomic discussion of big data reduction

methods including the network theory, big data compres-

sion, dimension reduction, redundancy elimination, data

mining, and machine learning methods. In addition, the

open research issues pertinent to the big data reduction are

also highlighted.
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1 Introduction

Big data is the aggregation of large-scale, voluminous, and

multi-format data streams originated from heterogeneous

and autonomous data sources [1]. The volume is the pri-

mary characteristic of big data that is represented by the

acquisition of storage spaces in large-scale data centers and

storage area networks. The massive size of the big data not

only causes the data heterogeneity but also results in

diverse dimensionalities in the datasets. Therefore, efforts

are required to reduce the volume to effectively analyze big

data [2]. In addition, big data streams are needed to be

processed online to avoid lateral resource consumption for

storage and processing. The second key characteristic of

big data is velocity. The velocity refers to the frequency of

data streams, which is needed to be abridged in order to

handle big data effectively. For example, solar dynamics

observatory generates excess of one terabytes data per day

and the analysis of such a fast big data is possible only after

reduction or summarization [3]. On the other hand, big data

inherits the ‘curse of dimensionality.’ In other words,

millions of dimensions (variables, features, attributes) are

required to be effectively reduced to uncover the maximum

knowledge patterns [4, 5]. For example, behavior profiles

of the Internet users that mainly comprise of searches,

page-views, and click-stream data are sparse and high

dimensional with millions of possible keywords and URLs

[6]. Similarly, personal genomic high-throughput

sequencing not only increases the volume and velocity of

data but also adds to the high dimensionality of the data

[7]. Therefore, it is imperative to reduce the high dimen-

sions while retaining the most important and useful data.

Data reduction methods for big data vary from pure

dimension reduction techniques to compression-based data

reduction methods and algorithms for preprocessing,
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cluster-level data deduplication, redundancy elimination,

and implementation of network (graph) theory concepts.

Dimension reduction techniques are useful to handle the

heterogeneity and massiveness of big data by reducing

million variable data into manageable size [8–11]. These

techniques usually work at post-data collection phases.

Similarly, cluster deduplication and redundancy elimina-

tion algorithms that remove duplicated data for efficient

data processing and useful knowledge discovery are pri-

marily post-data collection methods [12–15]. Recently, the

network theory concepts have also been employed for big

data reduction [16–18]. The aforementioned methods first

extract the semantics and linked structures from the

unstructured datasets and then apply graph theory for net-

work optimization. Conversely, some methods to reduce

big data during the data collection process are also pro-

posed in the recent literature [19–21]. In this study, we

presented a detailed discussion of these data reduction

methods.

This article presents a thorough literature review of

methods for big data reduction. A few similar prior studies

have also been conducted. However, these studies either

present a generic discussion of big data reduction or dis-

cuss a specific group of relevant systems or methods. For

example, the authors in [1] discussed the big data reduction

to be the critical part of mining sparse, uncertain, and

incomplete data. Similarly, the authors in [22, 23] argue

big data reduction as the critical part of data analysis and

data preprocessing. However, both of the studies lack in

presenting discussion about specific systems and methods

for big data reduction. The authors in [4] discussed big data

reduction issue specifically by focusing on dimension

reduction, whereas the authors in [24] emphasized on the

data compression. However, a wide range of methods

remain unexplored. Currently, there is no specific study in

the literature that addresses the core issue of big data

reduction. Therefore, we aim to present a detailed literature

review that is specifically articulated to highlight the

existing methods relevant to big data reduction. In addition,

some open research issues are also presented to direct

future researchers.

The main contributions of this article are:

• A thorough literature review and classification of big

data reduction methods are presented.

• Recently proposed schemes for big data reduction are

analyzed and synthesized.

• A detailed gap analysis for the articulation of limita-

tions and future research challenges for data reduction

in big data environments is presented.

The article is structured as follows: Sect. 2 discuses the

complexity problem in big data and highlights the importance

of big data reduction. The taxonomical discussion on big data

reduction methods is presented in Sect. 3. The discussion on

open issues and future research challenges is given in Sect. 4,

and finally, the article is concluded in Sect. 5.

2 Big Data Complexity and the Need for Data
Reduction

Big data systems include social media data aggregators,

industrial sensor networks, scientific experimental systems,

connected health, and several other application areas. The

data collection from large-scale local and remote sensing

devices and networks, Internet-enabled data streams, and/

or devices, systems, and networks-logs brings massively

heterogeneous, multi-source, multi-format, aggregated, and

continuous big data streams. Effectively handling the big

data stream to store, index, and query the data sources for

lateral data processing is among the key challenges being

addressed by researchers [25, 26]. However, data scientists

are facing data deluge issue to uncover the maximum

knowledge patterns at fine-grained level for effective and

personalized utilization of big data systems [3, 27]. The

data deluge is due to 6Vs properties of big data, namely the

volume, variety, value, velocity, veracity, and variability.

The authors in [26] discussed the 6Vs as follows.

• Volume The data size characterizes the volume of big

data. However, there is no agreed upon definition of big

data which specifies the amount of data to be consid-

ered as ‘big’ on order to meet the definition of big data.

However, a common sense is developed in research

community who consider any data size as big in terms

of volume which is not easily processable by underly-

ing computing systems. For example, a large dis-

tributed system such as computing clusters- or cloud-

based data centers may offer to process multiple

terabytes of data but a standalone computer or resource

constrained mobile devices may not offer the compu-

tational power to process even a few gigabytes of data.

Therefore, the volume property of big data varies

according to underlying computing systems.

• Velocity The velocity of big data is determined by the

frequency of data streams which are entering in big data

systems. The velocity is handled by big data systems in

two ways. First, the whole data streams are collected in

centralized systems, and then, further data processing is

performed. In the second approach, the data streams are

processed immediately after data collection before

storing in big data systems. The second approach is

more practical; however, it requires a lot of program-

ming efforts and computational resources in order to

reduce and filter the data streams before entering in big

data systems.
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• Variety Big data systems collect data stream from

multiple data sources which produce data streams in

multiple formats. This heterogeneity in data sources

and data types impacts the variety property-related

characteristics. Therefore, big data systems must be

able to process multiple types of data stream in order to

effectively uncover hidden knowledge patterns.

• Veracity The utility of big data systems increases when

the data streams are collected from reliable and

trustworthy sources. In addition, the data stream

collection is performed with compromising the quality

of data streams. The veracity property of big data

relates to reliability and trustworthiness of big data

systems.

• Variability Since all data sources in big data systems do

not generate the data streams with same speed and same

quality. Therefore, variability property enables to

handle the relevant issues. For example, the elastic

resource provisioning as per the requirements of big

data systems.

• Value The value property of big data defines the utility,

usability, and usefulness of big data systems. This

property tends more toward the outcomes of data

analytics and data processing processes and is directly

proportional to other 5Vs in big data systems.

The well-designed big data systems must able to deal

with all 6Vs effectively by creating a balance between data

processing objectives and the cost of data processing (i.e.,

computational, financial, programming efforts) in big data

systems.

Moreover, the complexity in big data systems emerges

in three forms: (1) data complexity, (2) computational

complexity, and (3) system complexity [28]. The data

complexity arises due to multiple formats and unstructured

nature of big data, which elevate the issue of multiple

dimensions and the complex inter-dimensional and intra-

dimensional relationships. For example, the semantic

relationship between different values of the same attribute,

for example, noise level in the particular areas of the city,

increases the inter-dimensional complexity. Likewise, the

linked relationship among different attributes (for example,

age, gender, and health records) raises the intra-dimen-

sional complexity issue. In addition, the increasing level of

data complexity in any big data system is directly pro-

portional to the increase in computational complexity

where only the sophisticated algorithms and methods can

address the issue. Moreover, the system-level complexity is

increased due to extensive computational requirements of

big data systems to handle extremely large volume, com-

plex (mostly unstructured and semi-structured), and sparse

nature of the data. The extensive literature review exhibits

that the big data reduction methods and systems have

potential to deal with the big data complexity at both

algorithms and systems level. In addition to data com-

plexity, the big data reduction problem is studied in various

other perspectives to articulate the effects and the need of

data reduction for big data analysis, management, com-

mercialization, and personalization.

Big data analysis also known as big data mining is a

tedious task involving extraneous efforts to reduce data in a

manageable size to uncover maximum knowledge patterns.

To make it beneficial for data analysis, a number of pre-

processing techniques for summarization, sketching,

anomaly detection, dimension reduction, noise removal,

and outliers detection are applied to reduce, refine, and

clean big data [29]. The New York Times, a leading US

newspaper, reports that data scientists spend 50–80% of the

time on cleaning the big datasets [30]. The terms used in

the industry for the aforementioned process are ‘data

munging,’ ‘data wrangling,’ or ‘data janitor work.’ Another

issue with the large-scale high-dimensional data analysis is

the over-fitting of learning models that are generated from

large numbers of attributes with a few examples. These

learning models fit well within the training data, but their

performance with testing data significantly degrades [31].

Data management is another important aspect to discuss

the big data reduction problem. The effective big data

management plays a pivotal role from data acquisition to

analysis and visualization. Although data acquisition from

multiple sources and aggregation of relevant datasets

improve the efficiency of big data systems, it increases the

in-network processing and data movement at clusters and

data center levels. Similarly, the indexing techniques dis-

cussed in [26] enhance the big data management; however,

the techniques come across data processing overheads.

Although the conversion of unstructured data to semi-

structured and structured formats is useful for effective

query execution, the conversion in itself is a time- and

resource-consuming activity. Moreover, big data is huge in

volume that is distributed in different storage facilities.

Therefore, the development of learning models and

uncovering global knowledge from massively distributed

big data is a tedious task. Efficient storage management of

reduced and relevant data enhances both the local learning

and global view of the whole big data [32, 33]. Currently,

visual data mining technique of selecting subspace from

the entire feature spaces and subsequently finding the rel-

evant data patterns also require effective data management

techniques. Therefore, the reduction in big data at the

earliest enhances the data management and data quality and

therefore improves the indexing, storage, analysis, and

visualization operations of big data systems.

Recently, businesses particularly the enterprises are

turning into big data systems. The collection of large data

streams from Web users’ personal data streams (click-
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streams, ambulation activities, geo-locations, and health

records) and integration of those data streams with per-

sonalized services is a key challenge [34]. The collection of

irrelevant data streams increases the computational burden

that directly affects the operational cost of enterprises.

Therefore, the collection of fine-grained, highly relevant,

and reduced data streams from users is another challenge

that requires serious attention while designing big data

systems. Currently, user data collection by third parties

without explicit consent and information about commer-

cialization is raising the privacy issues. The participatory

personal data where users collect and mine their own data

and participate for further utilization and customization of

services in ubiquitous environments can address the issue

of fine-grained data availability for enterprises. Keeping in

view the big data complexity, the need for big data

reduction, and analyzing big data reduction problem in

different perspective, we present a thorough literature

review of the methods for big data reduction.

The core technological support for big data reduction

methods is based on multilayer architecture (see Fig. 1).

The data storage is enabled by large-scale data centers and

networks of different computing clusters [35]. The storage

infrastructures are managed by core networking services,

embarrassingly parallel distributed computing frameworks,

such as Hadoop map-reduce implementations and large-

scale virtualization technologies [36]. In addition, cloud

services for the provision of computing, networking, and

storage are also enabled using different cloud-based oper-

ating systems. A recent phenomenon in cloud computing is

enabling the edge-cloud services by the virtualization of

core cloud services near the data sources. Recently, Cisco

released a Fog cloud to enable the intercommunication

between core cloud services and proximal networks of data

sources [37, 38]. At the lowest layers of the big data

architecture resides the multi-format data sources which

include standalone mobile devices, Internet-enabled social

media data streams, remotely deployed wireless sensor

networks, and large-scale scientific data streams among

many others. This layered architecture enables to process

and manage big data at multiple levels using various

computing systems with different form factors. Therefore,

wide ranges of application models are designed and new

systems have been developed for big data processing.

3 Big Data Reduction Methods

This section presents the data reduction methods being

applied in big data systems. The methods either optimize

the storage or in-network movement of data or reduce data

redundancy and duplication. In addition, some of the

methods only reduce the volume by compressing the

original data and some of the methods reduce the velocity

of data streams at the earliest before entering in big data

storage systems. Alternatively, some of the methods extract

topological structures of unstructured data and reduce the

overall big data using network theory approaches that are

discussed as follows.

3.1 Network Theory

Network (also known as graph) theory is playing a primary

role in reduction of high-dimensional unstructured big data

into low-dimensional structured data [39]. However, the

extraction of topological structures (networks) from big

data is quite challenging due to the heterogeneity and

complex data structures. The authors in [40] proposed

network theory-based approach to extract the topological

and dynamical network properties from big data. The

topological networks are constructed by establishing and

evaluating relationships (links) among different data

points. The statistical node analysis of the networks is

performed for optimization and big data reduction [41].

The optimized networks are represented as small-world

networks, free-scale networks, and random networks and

are ranked on the basis of statistical parameters, namely

mean, standard deviation, and variance. Mathematically,

scale-free networks are formally represented as given in

Eq. 1 using the main parameter as shown in Eq. 2.

pk � k�c ð1Þ

cpk ¼ � log pk

log k
ð2Þ

where pk represents fraction of nodes having k degree and

parameter c having range of 2\c\3.

Similarly, formal representation of random networks is

presented in Eq. 3 using the main parameter as shown in

Eq. 4.

pk � zke�z

k!
ð3Þ

log
pkk!

n� 1ð Þk
¼ k � log pð Þ þ 1 � nð Þp ð4Þ

where p is the probability distribution of edges between

any two nodes, n shows the number of nodes and z is

calculated as z ¼ n� 1ð Þp. The mathematical representa-

tion of small-world networks is performed using Eq. 5 with

main parameter as shown in Eq. 6.

d a log nð Þ ð5Þ
d ¼ a log nð Þ ð6Þ

where n represents the nodes in network and d is the dis-

tance between two randomly chosen nodes in the network.
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Traditionally, causality analysis is performed to estab-

lish the connection between different nodes. However, the

extraction of topological networks from unstructured data

is hard due to high dependency and one-way relationship

on the links. The alternate to causality analysis is the

assessment of influence among different nodes and estab-

lishing the connection between them on the basis of their

co-occurrence. Although the technique does not ensure that

nodes in the network can influence each other, the assess-

ment of their co-occurrence could become a strong rela-

tionship parameter to link different nodes. Preferential

attachment property enables influence assessment [41]. The

property exhibits that newly established connections are

most probably made with highly connected nodes in the

topological networks. In addition, the identification of

influential nodes and effective assessment of their co-oc-

currence can significantly reduce big data. Mathematically,

the co-occurrence-based influence measure D vi1; vilð Þ
between two nodes vi1 and vil is represented as shown in

Eq. 7.

D vi1; vilð Þ ¼ 1

p vi1; vilð Þj j � 1ð Þ x� að Þn
P

pi2p vi1;vilð Þ Wpi

� L̂ vi1;vilð Þ
Xp vi1;vilð Þj j

i6¼j¼1

"

�
Yl�2

i¼2

W vi; viþ1ð Þ þ
Yl�2

j¼2

W vj; vjþ1

� �
 !#

ð7Þ

where Wpi ¼
w vi1;vi2ð Þ
deg vi1ð Þ and p vi1; vilð Þ is the shortest path

between vi1 and vil and 0�D vi1; vilð Þ� 1.

Aside from the influence-based assessment, similarity

graph and collapsing simplicial complexes in network

structures are used for topological network reduction in big

datasets. Similarity graph is used to model the relationship

among different datasets on the basis of their similarity

matrix [17]. Further optimization of similarity graph is per-

formed by merging every vertex with the maximal similarity

clique (MSC), where a similarity clique (SC) is the collection

Application entity

Data Data

Data Center Cloud

Core Networking and Services

Multi-Service Edge

5 U

Embedded Systems and Sensors

Fig. 1 Multilayer architecture

for big data systems
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of nodes with negligible distance. The notion is to convert a

SC into MSC by adding an adjacent vertex that violates the

properties of the SC. The graph is reduced when every MSC

in the similarity graph is merged into a single node and the

number of nodes and their edges are reduced in turn.

Although the MSC is an efficient scheme to reduce topo-

logical networks, finding all of the MSCs in the similarity

graph is quite challenging and computationally inefficient.

Moreover, the simplicial complexes are the multi-di-

mensional algebraic representations of large datasets [18].

The simplicial complex approach is applied over persistent

homology, which is a method to compute topological fea-

tures of large spaces at different levels of spatial resolutions.

The persistent homology algorithm, as an alternate of hier-

archical clustering, takes nested sequences of simplicial

complexes and returns the summary of topological features

at all levels. The concept of strong collapse that is keeping

relevance information about all of the nodes in the simplicial

complex is used to reduce the big data. The strong collapse is

also useful for parallel and distributed computations, but the

increasing computational complexities of maintaining rele-

vance information of all of the nodes in complex prove to be

the bottleneck. The concept of selective collapse algorithm is

introduced to reduce the computational complexity of pro-

cessing persistent homology. The proposed framework

keeps computation traces of collapsing the complex using

persistence algorithm proposed in [42]. In addition, the

strong collapses are represented by forest that facilitates in

easy processing of persistence across all nodes of the com-

plex. Although the selective collapse algorithm is useful for

the big data reduction, the empirical evidences are still

lacking in the literature.

3.2 Compression

The reduced-size datasets are easy to handle in terms of

processing and in-network data movement inside the big

data storage systems. Compression-based methods are

suitable candidates for data reduction in terms of size by

preserving the whole data streams. Although computa-

tionally inefficient and involving decompression overhead,

the methods allow to preserve the entire datasets in the

original form. Numerous techniques for big data com-

pression are proposed in the literature, including spa-

tiotemporal compression, gzip, anamorphic stretch

transform (AST), compressed sensing, parallel compres-

sion, sketching, and adaptive compression, to name a few

[43–45]. Table 1 presents the summary of these methods.

Big data reduction in cloud environments is quite

challenging due to multiple levels of virtualization and

heterogeneity in the underlying cloud infrastructure. A

spatiotemporal technique for data compression on big

graph data in the cloud generates reduced datasets [45].

The technique performs online clustering of streaming data

by correlating similarities in their time series to share

workload in the clusters. In addition, it performs temporal

compression on each network node to reduce the overall

data. The proposed technique effectively meets the data

processing quality and acceptable fidelity loss of the most

of the application requirements. On the other hand, wire-

less sensor networks (WSNs) are generating large data

streams at massive scales. The spatiotemporal data com-

pression algorithm proposed in [46] ensures efficient

communication, transmission, and storage of data in

WSNs-based big data environment. The proposed approach

not only reduces the size of transmitted data but also

ensures prolonged network lifetime. The algorithm mea-

sures the correlation degree of sensed data, which deter-

mines the content of the data to be transmitted.

The authors in [44] proposed an efficient big data reduc-

tion scheme for the IP-activity dataset in social science. The

techniques are based on compression method to utilize the

standalone computer machines instead of large-scale dis-

tributed systems, such as Hadoop and big table. The authors

used eight core processors from a 32 core AMD Opteron

Processor 5356 machine of 2.3 GHZ speed and 20 GB

RAM. The 9 TB of loose text files was converted into a

binary format for readability in social science settings. The

methodology is based on three steps for: (1) information

representation, (2) parallel processing, and (3) compression

and storage. Big data reduction is performed in second and

third steps. First, each of the data files is processed and

converted into a corresponding HDFS file; then, map-reduce

approach is used to link each individual HDFS file with the

corresponding geographical locations and aggregate in lat-

eral stages. In map-phase, the files are linked, whereas in the

reduce stage, all of the resultant HDFS files are converted

into a single HDFS file. Finally, the gzip algorithm was used

with the compression level of five over the optimal data

chunk size of 100,000 9 1. The results exhibited a signifi-

cant amount of data reduction from 9.08 TB (raw data) to

3.07 TB (HDFS converted data) and 0.50 TB (compressed

data). Although the proposed approach contributed signifi-

cantly, it is only useful for the given dataset. Therefore,

online data analysis for big data reduction remains chal-

lenging in streaming big data environments.

The anamorphic stretch transform (AST) stretches the

sharp features more strongly as compared to the coarse

features of the [47]. The AST could be applied to both the

analogue (for digitization) and digital signals (for com-

pression). The technique is primarily based on self-adap-

tive stretch where more samples are associated with sharp

features and fewer samples are associated with redundant

coarse features. The strength of the AST is its ability to

enhance the utility of limited samples as well as reducing

the overall size of the data. The results demonstrated that
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56-fold data could be compressed using the AST equations

(see Eq. 8 and Eq. 9).

I xð Þ ¼ AST ~E xð Þ
� �

¼
Zþ1

�1

~E xð Þ~E � xþ xmð Þej u xð Þ�u xþxmð Þ½ �dx ð8Þ

where xþ xmð Þ and xm represent carrier and modulation

frequencies, respectively. The u xð Þ is an auto-correlation

function of the AST with embedded kernel that represents a

frequency-dependent phase operation. The compression or

expansion of time, bandwidth product is dependent on the

correct selection of u xð Þ. The structured modulation dis-

tribution function, SM, is used to select u xð Þ.

SM xm; tð Þ ¼
Zþ1

�1

~E xð Þ~E � xþ xmð Þej u xð Þ�u xþxmð Þ½ �ejxtdx

ð9Þ

where t represents the time variable.

The storage of big data and its complete processing for

anomaly detection raises the issues of privacy due to

Table 1 Big data compression methods

References Methods Description Strengths Weaknesses

Yang et al.

[45]

Spatiotemporal The proposed method performs

online clustering of streaming

data by correlating similarities in

their time series to share

workload in the clusters. In

addition, it performs temporal

compression on each network

node to reduce overall data

Performance enhancement in terms

of data quality, information

fidelity loss, and big data

reduction

At least one time processing of

whole data is performed in cloud

environment which increases the

operational cost

Ackermann

and Angus

[44]

gZip gZip is a compression tool

developed that is being used for

big data reduction to improve the

resource efficiency for the IP-

activity dataset in social science

It provides a light weight and

simple file format; therefore, it

has low computational

complexity

gZip compresses one file at a time;

therefore, massively parallel

programming models like map-

reduce must be used for

performance gain in terms of

computation time

Jalali and

Asghari

[47]

AST The AST is a novel method that is

used to compress digital signal by

performing selective stretching

and wrapping methods. The

technique is primarily based on

self-adaptive stretch where more

samples are associated with sharp

features and less samples are

associated with redundant coarse

features

AST performs data compression of

the signal extracted on frequency

domain. The method also

performs inverse transformation

of the constructed signal

The method specifically works with

big data involving signal

processing. The generalization to

other domain is a bottleneck in

this research

Wang et al.

[48]

Compressed

sensing

Compressed sensing is a

compressible and/or sparse signal

that projects a high-dimensional

data in low-dimensional space

using random measurement

matrix

The proposed scheme performs

data acquisition and compression

in parallel for improved

performance as compared with

Nyquist sampling theory-based

compression methods

The probability of poor data quality

and information fidelity loss

increases when the analyses are

performed on reduced and

compressed data

Brinkmann

et al. [50]

RED encoding RED encoding used to manage

massively generated voluminous

electrophysiology data

RED performs best when encoding

invariant signals, and it provides

high compression rate with

improved computational speed in

lossless compression of time

series signals

The performance of the RED

encoding methods degrades with

high variance in signals

Bi et al.

[55]

Parallel

compression

Parallel compression methods uses

proper orthogonal decomposition

method to compress data in order

to effectively trace and extract

useful features from the data

Balances between feature retention

error and compression ratio

Performs fast decompression for

interactive data visualization

Due to noise, the standard deviation

of error remains high in the

dataset

Monreale

et al. [46]

Sketching Sketching uses count-min sketch

algorithm to compress vehicular

movement data and achieve

compact communication

Guarantees data reduction and

preserves some important

characteristics of the original

data

The probability of information

fidelity loss is more when

sketching applied with

inconsistent and noisy data stream
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exposure of each data point. The authors proposed com-

pressed sensing also known as compressed sampling

technique for compressible and/or sparse signals that pro-

ject a high-dimensional data in low-dimensional space

using random measurement matrix [48]. The method is

selected because compressive sensing theory enables to

address the limitations of Nyquist sampling [49] theory and

can perform data acquisition and compression simultane-

ously. This strength of the compressed sensing theory

enables to detect anomalies in big data streams. Mathe-

matically, for a signal, x 2 RN compressed sensing can be

represented using Eq. 10.

x ¼
XN

i�1

;ihi or x ¼ ;h ð10Þ

where ; shows the N � N orthonormal transform basis and

h is used as the expansion coefficient vector under the

orthonormal basis. If x 2 RK sparse signal where K 6¼ 0 in

vector h and K\N, the signal x can be collected with a

small set of non-adaptive and linear measurements (see

Eq. 11).

y ¼ Wx ¼ W;h ð11Þ

where W is a M � N random measurement matrix and

M\N. Here, (;, W) represents a pair of orthobases that

follow the incoherence restriction.

Compressive sensing theory is useful because low-di-

mensional space fully represents high-dimensional data.

The results showed that the proposed algorithm produced

satisfactory results with and without compressed sensing.

The compression was applied by the ratio of 1:3 and 1:5,

and the experiments for human detection were performed

from behind the brick and gypsum walls.

The authors in [50] proposed a novel file format called

multi-scale electrophysiology format (MEF) to manage

massively generated electrophysiology data. The block-

wise lossy compression algorithm (RED encoding) is used

in addition to the cyclic redundancy check (CRC),

encryption, and block index structure of the MEF. The

RED encoding ensures high lossless compression rate and

higher computational speed and is also able to adopt with

statistical variation in the raw data, which is very important

for non-stationary ECG signals. The experimental results

showed that for 32 KHZ recordings with each block of

32,556 samples acquired in one second, the MEF obtained

reasonably better compression rate. The authors recom-

mend recording at least 2000 samples in each block for the

maximum performance gain.

The amount of data generated in vehicular ad hoc net-

works is massive due to on-board monitoring of vehicles

and relevant spatiotemporal data acquisition. The authors

in [46] utilized sketching algorithm called count-min

sketch algorithm to compress vehicular movement data and

achieved compact communication. The algorithm maps

frequency counters to compressed vectors using hash

tables. Although the main focus of the proposed study is on

privacy preservation, data reduction is also performed

significantly.

The large-scale scientific simulations generate a huge

amount of data that widens the gap between the I/O

capacity and computation abilities of high-end computing

(HEC) machines [51]. This bottleneck for data analysis

raises the need for in situ analytics where simulation data

are processed prior to the I/O. Although feasible, the in situ

analysis of peta-scale data incurs computation overhead in

the HEC machines. The authors proposed adaptive com-

pression service for in situ analytics middle-ware to

effectively utilize available bandwidth and to optimize the

performance of the HEC during end-to-end data transfer.

Experimental results with gyro-kinetic simulation (GKW)

on 80-node 1280 core cluster machine show that the

compression ratio and available computational power are

two main factors to achieve the maximum compression.

The authors in [43] further proposed a framework called

FlexAnalytics and profiled three compression algorithms

called lossy [52], bzip2 [53], and gzip [54]. The experi-

mental results show that all three compressions are not

useful for optimized data transfer with bandwidth more

than 264.19 Mb/s. This bottleneck imposes the challenge

of compression/decompression time reduction to cope with

the I/O needs of HEC.

Although compression-based data reduction methods are

feasible for big data reduction, the processing overhead of

de-compression introduces latency which lowers the per-

formance of analytics algorithms in real-time environ-

ments. Moreover, the additional computations consume

more cloud resources and increase the overall operational

costs of big data systems. However, the techniques enable

to store big data efficiently without significantly losing the

original data in both the lossy and the lossless compres-

sion-based methods.

3.3 Data Deduplication (Redundancy Elimination)

Data redundancy is the key issue for data analysis in big

data environments. Three main reasons for data redun-

dancy are: (1) addition of nodes, (2) expansion of datasets,

and (3) data replication. The addition of a single virtual

machine (VM) brings around 97% more redundancy, and

the growth in large datasets comes with 47% redundant

data points [13]. In addition, the storage mechanism for

maximum data availability (also called data replication)

brings 100% redundancy at the cluster level. Therefore,

effective data deduplication and redundancy elimination

methods can cope with the challenge of redundancy. The
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workload analysis shows that the 39 higher throughput

improves performance about 45% but in some extreme

cases the performance degrades up to 161%. The energy

overhead of deduplication is 7%; however, the overall

energy saved by processing deduplicated data is 43%. The

performance is degraded to 5%, whereas energy overhead

is 6% for pure solid state drive (SSD) environments.

However, in hybrid environment the system’s performance

is improved up to 17%.

Cluster deduplication is a generalized big data reduction

scheme for disk-based cluster backup systems. The

redundant data stored on multiple disks and partitions are a

serious challenge for big data processing systems. The

deduplication techniques allow to handle different data

chunks (partitions) using hash functions to lower intra-node

and inter-node communication overheads. In addition,

these methods improve the storage efficiency by eliminat-

ing redundant data from multiple nodes. Large-scale cluster

deduplication schemes face challenge of information-is-

land (only server-level deduplication is possible due to the

communication overhead) where data routing is the key

issue. Another major challenge is disk-chunk-index-lookup

(keeping duplicated chunk indexes of large datasets creates

memory overheads), which degrades the performance of

backup clients due to frequently random I/O for lookup and

indexing.

Data deduplication schemes are based on either locality

or similarity of data in the cluster. Locality-based approa-

ches (stateful or stateless routing schemes) work on the

location of duplicated data and perform optimization [14].

The major issue with the locality-based approach is the

communication overhead of transferring similar data to

same nodes. On the other hand, similarity-based schemes

distribute the similar data to the same nodes across the

cluster and reduce communication burden [56]. Although

the schemes solve the problem of communication over-

head, they prove ineffective for inter-node data dedupli-

cation system. To cope with challenges of communication

overhead and ineffectiveness in inter-node deduplication

systems, some hybrid techniques are also proposed in the

recent literature. For example, SiLo [15] and R-Dedupe

[12] used both the similarity- and locality-based techniques

where SiLo addressed only the challenge of inter-node

deduplication while R-Dedupe creates the balance between

high deduplication and scalability across all of the nodes in

the cluster. Although the cluster-level deduplication is

effective for big data reduction, new deduplication methods

are required to improve energy efficiency and resource

awareness in large-scale data centers. The evaluation of R-

Dedupe is performed in terms of efficiency analysis and

normalized deduplication ratio using Eqs. 12 and 13. The

duplication efficiency (DE) is measured using Eq. 12 as

follows:

DE ¼ L� P

T
¼ 1 � 1

DR

� �

� DT ð12Þ

where physical and logical size of datasets are denoted by

P and L, respectively, and T represents the processing time

for deduplication. In addition, DT represents deduplication

throughput and DR represents the deduplication ratio in the

overall data. Similarly, the normalized effective dedupli-

cation ratio (NEDR) is used to measure the cluster-wide

deduplication and storage imbalances collectively (see

Eq. 13)

NEDR ¼ CDR

SDR
� a
aþ r

ð13Þ

In Eq. 13, the CDR represents the cluster-level dedu-

plication ratio and the SDR denotes single-node-level

deduplication ratio. In addition, a represents the average

usage of storage while r shows the standard deviation of

cluster-wide storage usage.

The massive amount of data movement in data centers

increases the computational and communicational burdens.

The exploitation of in-network data processing techniques

can reduce the aforementioned complexities. The authors

of [57] proposed an in-network data processing technique

for bandwidth reduction by customizing routing algo-

rithms, eliminating network redundancy (by caching fre-

quent packets), and reducing on-path data. The proposed

technique performs partial data reduction and significantly

improved throughput for in-network query processing.

In contrast, mobile users in the same locality or with the

same habits generate similar data points causing a huge

amount of redundant data in participatory big data environ-

ments. In addition, the absence of spatiotemporal correlation

among sensory data in mobile opportunistic networks is also

a great challenge. The authors in [58] proposed a cooperative

sensing and data forwarding framework for mobile oppor-

tunistic networks where sampling redundancy is eliminated

to save energy consumption. The authors proposed two data

forwarding protocols [epidemic routing with fusion and

binary spray and wait with fusion (BSWF)] by leveraging

data fusion. The essence of the research is the intelligent

fusion of sensory data to eliminate redundancy. The simu-

lation results revealed that proposed method can remove

93% of redundancy in the data as compared to non-cooper-

ative methods.

The issue of data duplication or redundancy has been

addressed by researchers in different environments at dif-

ferent levels (mobile, cluster, cloud, and data center).

Therefore, the selection of best method depends upon the

application models. For example, in mobile opportunistic

networks and mobile crowd sensing environments, the data

redundancy elimination methods are best suited when they

are deployed in mobile devices. Similarly, for scientific and
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highly correlated data deduplication is best suitable when it

is performed at cluster, data center, and cloud level.

3.4 Data Preprocessing

Data preprocessing is the second important phase of big

data processing, and it must be preprocessed before storage

at large-scale infrastructures [19]. This approach helps in

big data reduction and also extracts the meta-data for fur-

ther processing. The authors argue that primary approaches

for data preprocessing are based on semantic analysis

(using ontologies) or linked data structures (such as Google

knowledge graph). However, this literature review uncov-

ers few other techniques, such as low memory pre-filters

for streaming data, URL filtration method, and map-reduce

implementation of 2D peak detection methods in the big

genomic data.

Low memory pre-filters are used for preprocessing

genomic sequencing streaming data. The algorithm runs in

a single pass and gives improved performance for error

correction and lossy compression in data streams. In

addition, the algorithm extracts the subsets of data streams

using sketch-based techniques and applies pre-filtering

algorithm for lossy compression and error correction. The

algorithm first constructs the Bruijn graph, and the subsets

are extracted using locus-specific graph analysis technique

[59]. The massive data redundancy is handled using the k-

mers median, and subsequently, digital normalization is

employed as the data reduction technique. The authors

argued that 95% of the data can be removed in the normal

sequencing sample and the percentage reaches 98% of

high-coverage single sequencing data. The results show

that memory requirement for proposed algorithm is

reduced from 3 TB to 300 GB of RAM.

Wearable sensors generate multi-dimensional, nonlin-

ear, dynamic data streams with weak correlation between

data points. The authors in [60] used locality-sensitive

bloom filter to enhance the efficiency of instance-based

learning for front-end data preprocessing near the sensing

elements. The technique enables the filtration and com-

munication of only the relevant and meaningful informa-

tion to reduce computational and communication burden.

The authors discussed the big healthcare data system for

elderly patients and developed a prototype of the proposed

solution. The architecture of the system is based upon a

wearable sensor with bluetooth low energy (BLE) interface

and can communicate with mobile application and/or PC to

establish a personal area network (PAN). The mobile

application processes the data and recognizes the state of

the user. The sensor data and user states are further trans-

mitted to a remote big data server through TCP/UDP ports.

The compression algorithms are applied to incoming data

streams, and resultant compressed files remain 10% of the

actual data streams.

An application of big data reduction is the filtration of

malicious URLs in Internet security applications. The

authors in [21] proposed two feature reduction techniques

that extract the lexical features and the descriptive features

and then combine their results. The lexical features extract

the structure of the URLs. However, the issue with lexical

features is that malicious URL addresses have constantly

changing behavior to abstain from malware detection

software. The descriptive features are extracted to track

and preserve different states of the same URL to label it as

malicious. The authors selected passive-aggressive (for

dense feature extraction) and confidence weighted algo-

rithms (for sparse feature extraction) as the online learning

algorithms and trained their models with extracted features

[61, 62]. The prediction results of the filtration technique

demonstrate around 75% data reduction with approxi-

mately 90% retention rate (inverse of data loss).

The analysis of large-scale proteomics data, which is the

protein-level representation of big genomic data, requires

massive computational resources to study different protein

properties, such as expressions, changes in protein struc-

tures, and the interaction with other proteins. The protein

molecules are too large to be identified by spectrometer and

therefore are broken into smaller fragments called peptides.

The mass spectrometer outputs the graphical output where

each spectrum of data points is shown using Gaussian

curves for peptide identification. The preprocessing step of

proteomics data analysis is the identification of curves also

called the 2D peaks. Each of the samples submitted to the

spectrometer takes around 100 min to 4 h for complete

analysis. During the passage of peptides, the spectrometer

takes snapshots of spectrum every second where each

peptide remains visible for several spectrums. The authors

proposed a map-reduce implementations for proteomics

data analysis where 2D peaks are picked at map level and

further analyzed at reduce level [63]. The data reduction

takes place at map level by applying preprocessing tech-

niques for decoding the arrays, noise removal, and man-

agement of the overlapping peaks in the spectrum.

Experimental results show that the given map-reduce

implementation completes the data analysis in 22 min.

Recently light detection and ranging (LiDAR) technol-

ogy enabled the generation of big 3D spatial data [64]. A

cloud computing-based LiDAR processing system (CLiPS)

processes big 3D spatial data effectively. The CLiPS uses

several preprocessing techniques for data reduction to deal

with large size of data. The data reduction is performed

using a vertex decimation approach to provide a user’s

preferred parameters to reduce the big data. The results

show the advantage of cloud computing technologies over
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the conventional systems comparing performance and time

consumption.

The literature review of these techniques reveals that

data preprocessing techniques are highly dependent on the

nature of big data and also encourage further investigation

of the underlying problem. Therefore, these techniques

could not be generalized for all types of big data streams.

3.5 Dimension Reduction

Big data reduction is mainly considered to be the dimen-

sion reduction problem because the massive collection of

big data streams introduces the ‘curse of dimensionality’

with millions of features (variables and dimensions) that

increases the storage and computational complexity of big

data systems [5]. A wide range of dimension reduction

methods are proposed in the existing literature. The

methods are based on clustering, map-reduce implemen-

tations of existing dimension reduction methods, feature

selection techniques, and fuzzy logic implementations.

Table 2 presents the summary of the above-mentioned

methods.

The dynamic quantum clustering (DQC) enables

powerful visualization of high-dimensional big data [8]. It

outlines subsets of the data on the basis of density among

all of the correlated variables in high-dimensional feature

space. The DQC is scalable to very large systems due to

its support for highly distributed data in parallel envi-

ronments. The DQC is based on quantum mechanics

techniques from physics. It works by constructing a

potential proxy function to estimate the density of data

points. The function named as parzen estimator, ; x~ð Þ, is

applied over n-dimensional feature space, and it is the

sum of Gaussian functions centered at each data point, x~

(see Eq. 14). The DQC next defines a vector function that

satisfies the Schrodinger equation (see Eq. 15). After-

ward, the DQC computes Gaussians functions from sub-

sets using Hamiltonian operator defined in the potential

function and multiplies the results by quantum-time

evolution operator e�idtH (where dt is set as small, i is the

ith iteration, and H is the Hamiltonian distance). The

DQC then computes the new center of each Gaussian and

iterates the whole procedure. The results show that large

and complex datasets could be analyzed using the DQC

without any prior assumption about the number of clusters

or using any expert information. In addition, the DQC

could be applied to noisy data to identify and eliminate

unimportant features to produce better results. This data

reduction strategy makes DQC useful for big data

analysis.

u x~ð Þ ¼
Xm

l¼1

e
�1

2r2 x~� xl
!� �2

ð14Þ

The potential function V x~ð Þ can be defined over the

same n-dimensional feature space and defined as the

function for which u x~ð Þ satisfies the time-independent

Schrodinger equation.

�1

2r2
r2uþ V x~ð Þu ¼ Eu ¼ 0 ð15Þ

Conventional dimensionality reduction algorithms that

use Gaussian maximum likelihood estimator could not

handle the datasets with over 20,000 variables. The BIG-

Quic addresses the issue by applying a parallel divide-and-

conquer strategy that can be applied up to 1-million vari-

ables in the feature space for dimensionality reduction [9].

The results show that the proposed algorithm is highly

scalable and faster than the existing algorithms, such as

Glasso and ALM [65, 66].

Knowledge discovery from high-dimensional big social

image datasets is quite challenging. The authors proposed a

new framework called twister which is a map-reduce

implementation of k-means algorithm for dimensionality

reduction [67]. The authors proposed a topology-aware

pipeline-based method to accelerate broadcasting and to

overcome the limitations of existing massively parallel

infrastructure (MPI) implementations. In addition, the

performance of the system was improved using local

reduction techniques. This technique reduces local data

before shuffling. The amount of data reduced is estimated

using Eq. 16.

Amount of data ¼ No: of nodes

No: of maps
� 100% ð16Þ

Normally, online learning techniques take the full fea-

ture set as the input, which is quite challenging when

dealing with high-dimensional features space. The authors

proposed an online feature selection (OFS) approach where

the online learners only work on small and fixed-length

feature sets. However, the selection of active features for

accurate prediction is a key issue in the approaches pre-

sented in [68]. The authors investigated sparsity regular-

ization and truncation techniques and proposed a new

algorithm called the OFS. The results showed that the OFS

outperformed RAND and PEtrun algorithms for UCI data-

sets and it works best in online learning mode as compared

to batch-mode learning.

The corsets are the small set of points that represent the

larger population of data and maintain the actual properties

of overall population. These properties vary by nature of

knowledge discovery algorithms. For example, the corsets

representing first k-components maps with first k-compo-

nents in the big data. Similarly, the corsets containing k-

clusters with radius r approximate the big data and obtain

the k-clusters with same r. In this way, the authors [11]

applied corsets to reduce the big data into small and
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manageable size, which reduces the overall data com-

plexity. The authors mapped corsets with k-means, prin-

cipal component analysis (PCA) and projective clustering

algorithms deployed with massively parallel streaming data

[69, 70]. The big data is reduced in such a way that high

dimensions of input space do not affect the cardinalities of

corsets. In addition, the corsets are merged by maintaining

the property that union of two corsets represents the

reduced set of union of two big datasets. The experimental

results showed that corsets are suitable to address NP-hard

problems in massively parallel and streaming data envi-

ronments where big data complexity is reduced by appli-

cation of data processing algorithms on small datasets that

are approximated from big data. In addition, the corsets are

paradigm shift in big data analysis where the focus of

research remains on big data reduction instead of improv-

ing the computational efficiency of existing algorithms.

Medical big data comes across several issues regarding

extraction of structures, storage of massive data streams,

and uncovering the useful knowledge patterns. Research

shows that fuzzy classification methods are good choice to

cope with the above-mentioned issues. Recently, the

authors of [71] presented linguistic hedges fuzzy classifier

with selected features (LHNFCSFs) to reduce dimensions,

select features, and perform classification operations. The

integration of linguistic hedges in adaptive neural-fuzzy

classifier enhances the accuracy. The LHNFCSF reduces

the feature space effectively and enhances the performance

of the classifier by removing unimportant, noisy, or

redundant features. The results depict that the LHNFCSF

addresses the medical big data issues by reducing the

dimensions of large datasets and speeding up the learning

process and improves the classification performance.

Tensors are multi-dimensional representations of data

elements with at least one extra dimension as compared to

matrices. The increasing numbers of elements demand

more computational power to process the tensors. Tensor

processing works fine with small tensors. However, pro-

cessing large tensors is a challenging task [10]. Tensor

decomposition (TD) schemes are used to extract small but

representative tensors from large tensors [72]. Three

widely used TD strategies include canonical polyadic

decomposition (CPD), tucker decomposition, and tensor

trains (TT). The TD schemes represent the large tensors

linked with their small representations. These decomposi-

tion schemes reduce the high dimensionality in big datasets

and establish the interconnection among tensors to form

tensor networks (TNs). These TNs enable to further reduce

the data size by using optimization-based algorithms to find

factor matrices and optimize using linear and nonlinear

least square methods. The case studies show that tensor

decomposition strategies could be used to alleviate/

Table 2 Dimension reduction methods

References Methods Description Strengths Weaknesses

Weinstein

et al. [8]

DQC Visual data mining method Ability to expose hidden structures and

determine their significance in high-

dimensional big data

Lacks efficiency

Requires a combination of

statistical tools

Hsieh et al.

[9]

BIGQuic Applying a parallel divide-and-

conquer strategy

Supports parallelization

Allowing for inexact computation of

specific components

Lacks accuracy and reliability

Hoi et al.

[68]

OFS Selection of active features for

accurate prediction

Works best in online learning mode as

compared with batch-mode learning

Lacks efficiency

Feldman

et al. [11]

Corsets Applying corsets to reduce big

data

High significance when used for data

complexity

Works well on small datasets only

Azar and

Hassanien

[71]

LHNFCSF Linguistic hedges fuzzy

classifier

Data reduction Lack of efficiency

Cichocki

[72]

TNs Tensor decomposition and

approximation

Reduction in feature spaces High computational complexity

Dalessandro

[73]

FH Maps features from high-

dimensional space to low-

dimensional spaces

Reduces feature space randomly Compromise on data quality

Liu et al.

[77]

CF Classifier training with minimal

feature spaces

Outlines critical feature dimensions and

adequate sampling size

Assumptions need to be more

accurate to outline critical

feature dimension

Zeng and Li

[74]

IPLS Performs incremental analysis

of streaming data

Computationally efficient

Highly accurate

Needs to handle change detection

in streaming data
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eliminate dimensionality in large scientific computing

datasets and have many potential applications for feature

extraction, cluster analysis, classification, data fusion,

anomaly detection, pattern recognition, integration, time-

series analysis, predictive modeling, multi-way component

analysis, and regression.

The feature hashing (FH) method reduces feature

dimensionality by randomly assigning each feature in the

actual space to a new dimension in a lower-dimensional

space [73]. This is done by simply hashing the ID of the

original features. Usually, all dimensional reduction tech-

niques degrade the data quality. However, most of them

preserve the geometric qualities of the data. Alternately,

the FH does not preserve the data quality. Research shows

that the degradation of data quality is so minimal that its

benefits are outweighed by the cost. The FH scales linearly

with simple preprocessing and preservation of data spar-

sity, if exists. The scalability property of the FH makes it a

natural choice for million (or even billion) feature datasets.

For example, the FH method applied to email spam fil-

tering shows its power when applied upon sparse and

streaming data with real-time requirements of mass cus-

tomization. The results show that the feature set is reduced

from one billion to one million features.

Big data streams enter with episodic information and

create high-dimensional feature spaces. Normally, the

feature extraction methods need whole data in the memory

that increases the computational complexity of big data

systems and degrades the performance of classifiers. The

incremental feature extraction methods are the best choice

to handle such issues [74]. Incremental partial least squares

(IPLSs) is a variant of the partial least squares method that

effectively reduces dimensions from large-scale streaming

data and improves the classification accuracy. The pro-

posed algorithm works in two-stage feature extraction

process. First, the IPLS adopts the target function to update

the historical means and to extract the leading projection

direction. Second, the IPLS calculates the rest of projection

directions that are based on the equivalence between the

Krylov sequence and the partial least square vectors [75].

The comparison of the IPLS was performed with incre-

mental PCA algorithm, incremental inter-class scatter

method, and incremental maximum margin criterion tech-

nique. The results revealed that the IPLS showed improved

performance in terms of accuracy and computational

efficiency.

Systems of systems (SoS)—case study The integration of

heterogeneous and independent operating computing sys-

tems to collectively maximize the performance as com-

pared to the individual settings leads toward the SoS [76].

Nowadays, SoS is contributing to generate big data and

raises the need for data reduction. Few examples of sta-

tistical and computational intelligence tools for data

reduction in SoS include the PCA, clustering, fuzzy-logic,

neuro-computing, and evolutionary computing, such as

genetic algorithms, and Bayesian networks. The authors

applied data reduction methods at different stages of ana-

lyzing photovoltaic data that were collected from different

sources. The original dataset contained 250 variables,

which is highly dimensional and is not practical due to

limitations of execution time and memory constraints on a

desktop computer. Two approaches for data reduction at

this stage were considered: (1) labeling the interesting

attributes by domain expert and (2) development of an

adaptive learning algorithm for automatic attribute selec-

tion. The authors employed the first approach for data

reduction. The authors further cleaned-up the data and

removed all invalid data points from the dataset. For

example, solar irradiance in night hours generates data

points with negative values, therefore not feasible for

contribution in the study. After removing the invalid data,

the data points containing very low values for global hor-

izontal irradiance (GHI), direct normal irradiance (DNI),

and direct horizontal irradiance (DHI) are removed to

create more crispy data for further analysis.

The cleaned data are further fed into two nonparametric

model generation tools, namely the fuzzy inference system

generator and back-propagation neural network training

tools using MATLAB fuzzy logic toolbox and the neural

network toolbox. The initial evaluation of both of the tools

revealed that the input variables should be further reduced

for performance maximization in terms of execution time

and memory consumption. The authors expanded the non-

linear data by using additional variables that in turn increased

the performance of the training model but also increased time

and space complexity. Therefore, the PCA is applied for

dimension reduction to compress the data without significant

information loss. After application of the PCA, further

dimension reduction was performed using genetic algorithm

(GA). First, the data were reduced using the GA on the full set

of initial data and remaining data were expanded nonlin-

early. Finally, the expanded dataset is used to train a neural

network to assess the overall effectiveness of the GA. In

practice, the time- and computation-related constraints were

limited to the selection of training data to first 1000 samples.

The first iteration of GA took initially 244 samples and

reduced it to 74. The results showed that the GA reduced the

number of attributes up to 70%.

3.6 Data Mining and Machine Learning (DM

and ML)

Recently, several DM and ML methods have also been

proposed for big data reduction. The methods are either

applied to reduce data immediately after its acquisition or

customized to address some specific problems. For
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example, the authors [78] proposed a context-aware big

data forwarding scheme using distributed wearable sensors.

The scheme is based on hidden markov model (HMM) to

enable context-aware features in the distributed sensor

model and forwards only relevant information when there

is some significant change in the data [78]. The proposed

scheme reduces the communication and storage overhead

in big data environment. The authors compared the result

of proposed locality-sensitive hash (LSH)-based method

with linear perception (LP)-based dimensionality reduction

algorithm and argued on the effectiveness of the proposed

scheme as compared to the LP-based dimensionality

reduction methods.

The problem of mining uncertain big data due to exis-

tential probabilities becomes worse and requires huge

efforts and computational power to explore the incremen-

tally growing uncertain search space. Therefore, the search

space is needed to be reduced for uncovering the maximum

certain and useful patterns. The authors of [79] proposed a

map-reduce algorithm to reduce the search space and mine

frequent patterns from uncertain big data. The algorithm

facilitates the users to confine their search space by setting

some succinct anti-monotone (SAM) constraints for data

analysis and subsequently mines the uncertain big data to

uncover frequent patterns that satisfy the user-specified

SAM constraints. The input of the algorithm is uncertain

big data, user-specified minimum support (minsup)

threshold, and the SAM constraints. Two sets of map-re-

duce implementations are used to uncover singleton and

non-singleton frequent patterns. Experimental results show

that the user-specified SAM (termed as selectivity) is

directly proportional to multiple parameters which are

derived from algorithm’s runtime, the pairs returned by

map function, the pairs sorted and shuffled by reduce

function, and the required constraints checks.

Artificial intelligence methods, for example, artificial

neural networks (ANNs) have also potential for big data

reduction and compression. The authors in [80] proposed a

self-organized Kohonen network-based method to reduce

big hydrographic data acquired from the deep seas. The

proposed system first converts the raw data into ‘swath’

files using a combination of four filters: (1) limit filter, (2)

amplitude filter, (3) along track filter, and (4) across track

filter. The appropriate combinations of the filters ensure the

optimal dataset size. Despite filtering, the sample size is

still large to be considered as big data. The self-organized

Kohonen networks are trained and optimized using filtered

hydrographic data to cluster the incoming data streams.

The experimental results exhibited the feasibility of self-

organized Kohonen networks for big hydrographic data for

further analysis.

In addition to conventional machine learning algorithms,

based on shallow learning models, deep learning is creating

space as an option for big data reduction methods [81]. Deep

learning models are hierarchical representations of super-

vised and unsupervised classification methods that are best

suitable for large-scale, high-dimensional big data streams

[22]. Deep learning models become computationally ineffi-

cient with the increase in big data complexity. However, the

availability of MPIs (clusters/clouds) can address the

aforementioned issue. Conventionally, deep learning models

work at multiple layers with different granularities of

information and predictive abilities. Two well-established

deep learning architectures are deep belief networks (DBNs)

and convolutional neural networks (CNNs). The DBN

learning models are developed in two stages: (1) the initial

models are developed using unsupervised learning methods

with unlabeled data streams and (2) the models are fine-tuned

using supervised learning methods and labeled data streams.

The typical architecture of the DBN in Fig. 2 shows the

multilayer representation of the deep learning model. The

architecture is based on an input and output layer with

multiple intermediate hidden layers. The output of each

n� 1ð Þth layer becomes the input of the nth layer in the

architecture. In addition, the learning models are fine-tuned

using back-propagation methods to support generative per-

formance and judicial power of the DBNs. Although the

CNNs are based on learning models, they differ from the

DBNs. The CNNs layers are either the convolutional layers

to support the convolution of several input filters or sub-

sampling layers to reduce the size of output variable from

previous layers. Effective utilization of these deep learning

models in conjunction with MPIs can significantly reduce

big data streams.

Deep learning models are inherently computationally

complex and require many-core CPUs and large-scale

computational infrastructures. Some recent learning

approaches for such large-volume, complex data include

locally connected networks [82, 83], improved optimizers,

and deep stacking networks (DSNs). The authors of [84]

proposed the hybrid deep learning model, called DisBelief,

to address the issue of high dimensionality in big data

streams. Disbelief utilizes a large-scale cluster to parallelize

both the data and the learning models using synchroniza-

tion, message passing, and multi-threading techniques. The

DisBelief model first achieves parallelism by partitioning

large-scale networks into small blocks that are mapped to a

single node and then achieves data parallelism using two

separate distribution optimization procedures called

stochastic gradient descent (SGD) for online optimization

and sandblaster for batch optimization. Although feasible

for big data reduction, the deep learning models are resource

hungry and require MPIs based on clusters of CPUs or

GPUs. Therefore, there is a need to develop optimized deep

learning strategies to achieve resource efficiency and reduce

communication burdens inside the MPIs.
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The wide spectrum view of the proposed methods for

big data reduction uncovers the fact that the research on big

data reduction methods is being carried out at several levels

of big data architecture and in different forms.

4 Open Research Issues

The discussion on the open research issues, limitations, and

possible future research directions is presented in this

section.

Network theory The extraction of topological network

and ranking of network nodes from big data is a complex

process due to inherent big data complexity. In addition,

the complex interactions among different nodes of the

extracted networks increase the computational complexity

of existing network theory-based methods. The scale-free

networks and random networks can effectively reduce

complex big datasets. However, the full network extrac-

tion from inconsistent and missing data is the key chal-

lenge [16, 40]. Big data systems contain many small and

manageable datasets, but finding the connections among

these datasets is a crucial task. The similarity graph is

generated from big data where vertices represent datasets

and the weighted edges are defined on the basis of simi-

larity measure. The graph is further reduced by merging

similar datasets to reduce the number of nodes. The sim-

ilarity-based big data reduction methods are good choice

for network extraction and reduction. However, a range of

new similarity measures are required to deal with the

evolving complexity and to fully comply with 6Vs of big

data [17].

Persistent homology is a good solution for topological

data analysis, but it involves high computational com-

plexity. The solutions like selective collapse algorithms

represent datasets in the form of forests, and the nodes are

collapsed in a way to improve the speed of persistent

homology and maintain strong collapse. The persistent

homology tools for reducing and analyzing big data still

need to be further explored in the future research [18, 42].

Similarly, the automated extraction of events and their

representation in network structures is an emerging

research area. The assessment of events co-occurrence and

their mutual influences is the key challenge for big data

reduction. The authors in [41] performed the influence

assessment among different concepts (events or datasets)

based on the co-occurrence of two events. The co-occur-

rence is assessed based on the preferential attachment

property which determines that new nodes are most likely

connected with highly connected nodes as compared to less

connected nodes. In addition, the influence relationship

among network nodes can be effectively derived from

conditional dependencies among variables. However, the

mathematical and probabilistic constraints increase the

computational complexity in network extraction methods.

Therefore, efforts are required to optimize the influence

assessment methods for computationally efficient and bet-

ter approximated network structures [41].

Compression Big data processing in cloud computing

environments involves challenges relevant to inefficiency,

parallel memory bottlenecks, and deadlocks. The spa-

tiotemporal compression is a key solution for processing

big graph data in the cloud environment. In spatiotemporal

compression-based methods, the graph is partitioned and
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edges are mapped into different clusters where compres-

sion operations are performed for data reduction. The

spatiotemporal compression is an effective approach for

big data reduction. However, the research is required to

find new parameters that are helpful in finding additional

spatiotemporal correlations for maximum big data reduc-

tion [45].

The gap between computations and I/O capacity in the

HEC systems degrades the system performance signifi-

cantly. Although in situ analytics are useful for decreasing

the aforementioned gap, the cost of computation increases

abruptly. The compression methods can significantly

reduce the transferred data and narrow the gap between

computations and I/O capacity. The authors in [43] sug-

gested that the number of available processors and the data

reduction ratio (compression ratio) are two key factors that

need attention in future research in this area. Alternately,

the AST is a new way of compressing digitized data by

selectively stretching and warping the signal. The tech-

nique is primarily based on self-adaptive stretch where

more samples are associated with sharp features and fewer

samples are associated with redundant coarse features. The

AST performs data compression of the signal extracted on

frequency domain. The method also performs inverse

transformation of the constructed signal. The method

specifically works with big data involving signal process-

ing. However, the generalization to other domains is a

bottleneck in this research [47].

Compressed sensing is a compressible and/or sparse

signal that projects a high-dimensional data in low-di-

mensional space using random measurement matrix. The

proposed scheme performs data acquisition and compres-

sion in parallel for improved performance as compared

with Nyquist sampling theory-based compression methods.

The probability of poor data quality and information fide-

lity loss increases when the analysis is performed on

reduced and compressed data [48]. The RED encoding

scheme proposed by authors in [48] is used to manage

massively generated voluminous electrophysiology data.

The scheme performs best when encoding of invariant

signals is performed. However, while encoding time-series

signals, the performance varies but the scheme achieves

high compression rate with improved computational speed

in lossless compression. The performance of the RED

encoding methods degrades with high variance in signals

[50].

Parallel compression methods can be used to reduce the

data size with low computational cost. It uses proper

orthogonal decomposition to compress data because it can

effectively extract important features from the data and

resulting compressed data can also be linearly decom-

pressed. The parallel compression methods balance

between feature retention error and compression ratio and

perform fast decompression for interactive data visualiza-

tion. However, the standard deviation of error is significant

due to noise in the dataset [55]. The sketching method uses

count-min sketch algorithm to compress vehicular move-

ment data and achieve compact communication. Although

it ensures data reduction by preserving some important

characteristics of the original data, the probability of

information fidelity loss is more when sketching is applied

with inconsistent and noisy data stream [46].

Data deduplication (redundancy elimination) Cluster-

level data deduplication is a key requirement to comply

with service-level agreements (SLAs) for privacy pre-

serving in cloud environments. The main challenge is the

establishment of trade-off between high deduplication ratio

and scalable deduplication throughput. The similarity-

based deduplication scheme optimizes the elimination

process by considering the locality and similarity of data

points in both the intra-node and inter-node scenarios. The

approach is effective for data reduction, but it requires to

be implemented with very large-scale cluster data dedu-

plication systems [12]. The I/O latency and extra compu-

tational overhead of cluster-level data deduplication are

among the key challenges. The authors in [13] character-

ized the deduplication schemes in terms of energy impact

and performance overhead. The authors outlined three

sources of redundancy in cluster environment including:

(1) the deployment of additional nodes in the cluster, (2)

the expansion of big datasets, and (3) the usage of repli-

cation mechanisms. The outcomes of the analysis reveal

that the local deduplication, at cluster level, can reduce the

hashing overhead. However, local deduplication cannot

achieve the maximum redundancy. In contrast, global

deduplication can achieve maximum redundancy but

compromises on the hashing overheads. In addition, fine-

grained deduplication is not suitable for big datasets

especially in streaming data environments [13].

Data routing is a key issue in multi-node data dedupli-

cation systems. The availability of sufficient throughput is

the main bottleneck for data movement among backup and

recovery systems. The stateful data routing schemes, as

compared to stateless approaches, have higher overhead

with low imbalance in the data which minimizes the utility

of data deduplication systems. The open issues for data

routing include the characterization of parameters which

causes the data skew. In addition, the scalability of routing

methods to large-scale cluster systems and the impact of

feature selection and super-chunk size are needed to be

explored in future research. Moreover, the addition of new

nodes is needed to be considered for effective bin migra-

tion strategies [14].

The in-network data processing methods facilitate in

data reduction and reduce the bandwidth consumption, and

the efforts are required for on-the-path data reduction and
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redundancy elimination. The reduced bandwidth con-

sumption by in-network data processing methods enable

enhanced query processing throughput. The future imple-

mentation of in-network data processing is envisioned as

the provision of network-as-a-service (NaaS) in the cloud

environment which is fully orchestrated for redundancy

elimination and query optimization [57]. In addition, there

is a need to devise new network-aware query processing

and optimization models, and integration of these models

in distributed data processing systems. Research shows that

co-operative sensing methods can aid in significant data

reduction in large-scale sensing infrastructures [58]. Cur-

rent co-operative sensing methods lack in low-level con-

textual features and adaptive global learning models to

handle the change detection in streaming data environ-

ments. Future research work to integrate current low-level

contextual models and adaptive machine learning methods

can aid in maximum data reduction as well as collection of

a high-quality data.

Data preprocessing The investigations of research

problems relevant to preprocessing techniques of big data

are still at the initial level. Most of the works are based on

the adoption of existing preprocessing methods that were

earlier proposed for historical large datasets and data

streams. The forefront deployment of data preprocessing

methods in the big data knowledge discovery process

requires new, efficient, robust, scalable, and optimized

preprocessing techniques for both historical and streaming

big data. The application of appropriate and highly relevant

preprocessing methods not only increases data quality but

also improves the analytics on reduced datasets. The

research on new methods for sketching, anomaly detection,

noise removal, feature extraction, outliers detection, and

pre-filtering of streaming data is required to reduce big data

effectively. In addition, the deployment of adaptive learn-

ing models in conjunction with said methods can aid in

dynamic preprocessing of big streaming data [21].

Dimension reduction Big data reduction is traditionally

considered to be a dimension reduction problem where

multi-million features spaces are reduced to manageable

feature spaces for effective data management and analytics.

Unsupervised learning methods are the key consideration

for dimensionality reduction problem. However, this liter-

ature review revealed several other statistical and machine

learning methods to address this issue. The techniques to

combine conventional dimension reduction methods with

statistical analysis methods can increase the efficiency of

big data systems [8]. This approach may aid in targeting

highly dense and information oriented structures (feature

sets) to achieve maximum and efficient big data reduction.

Alternately, tensor decomposition and approximation

methods are useful to cope with the curse of dimensionality

that arises due to high-dimensional complex and sparse

feature spaces [10]. The main application of TD-based

methods is witnessed in the scientific computing and

quantum information theory domain. This literature review

revealed that the issue of dimensionality reduction in big

data could be handled by adopting front-end data pro-

cessing, online feature selection from big data streams,

constant-size corsets for clustering, statistical methods, and

fuzzy classification-based soft computing approaches.

These adoptions open new research avenues for interdis-

ciplinary research and develop novel big data reduction

methods. The strengths and weaknesses of these methods

are already presented in detail in Table 2.

DM and ML The DM and the ML methods for big data

reduction could be used at various levels of big data

architectures. These methods enable to find interesting

knowledge patterns from big data streams to produce

highly relevant and reduced data for further analysis. For

example, HMM as applied in [78] enables the context-

aware features to filter the raw data streams to transmit

only highly relevant and required information. In addition,

the scheme enables to project high-dimensional data

streams in manageable low-dimensional feature spaces.

Although the application of these methods is convenient

for data reduction, the trade-off between energy con-

sumptions in local processing with raw data transmission is

a key challenge that is needed to be considered. The DM

and ML methods also have potential to be deployed in

map-reduce implementations of Hadoop architecture. The

authors in [79] parallelized the frequent pattern mining

algorithms using the map-reduce programming model to

reduce the massively high-dimensional feature space pro-

duced by uncertain big data. However, there exists a huge

research gap for the implementation of other DM and ML

methods for big data reduction that include supervised,

unsupervised, semi-supervised, and hierarchical deep

learning models [85]. In addition, the implementation of

statistical methods, both descriptive and inferential, for big

data reduction using approximation and estimation prop-

erties in uncertain big data environments is also useful for

data reduction in map-reduce programming models.

Moreover, the DM and ML methods are equally useful for

big data reduction when coupled with artificial intelli-

gence-based optimization methods. However, supervised,

unsupervised, and semi-supervised learning methods need

more attention for future research [80].

Deep learning models have recently gained attention by

the researchers. The deployment of deep learning models for

big data reduction is potential research direction that can be

pursued in future. The deep learning models are initially

developed from certain data and gradually evolve with

uncertain data to effectively reduce big data streams. How-

ever, the increasing computational complexities of operating

in uncertain big data environments and optimization of
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learning models to discover patterns from maximum data are

the issues that can be further investigated [84].

In this section, we thoroughly discussed the open issues,

research challenges, the limitations of proposed methods

for big data reduction and presented some future research

directions. The survey reveals that big data reduction is

performed at many levels during the data processing life-

cycle that include data capturing, data preprocessing, data

indexing and storage, data analysis, and visualization.

Therefore, the relevant reduction methods and systems

should be designed to handle the big data complexity at all

stages of big data processing. In addition, the future

research work should focus on considering all 6Vs to

process big data in computing systems with different form

factors from fine-grained mobile computing systems to

large-scale massively parallel computing infrastructures.

5 Conclusions

Big data complexity is a key issue that is needed to be

mitigated. The methods discussed in this article are an

effort to address the issue. The presented literature review

reveals that there is no existing method that can handle the

issue of big data complexity single-handedly by consider-

ing the all 6Vs of big data. The studies discussed in this

article mainly focused on data reduction in terms of volume

(by reducing size) and variety (by reducing number of

features or dimensions). However, further efforts are

required to reduce the big data streams in terms of velocity

and veracity. In addition, the new methods are required to

reduce big data streams at the earliest immediately after

data production and its entrance into the big data systems.

In general, compression-based data reduction methods are

convenient for reducing volume. However, the decom-

pression overhead needs to be considered to improve effi-

ciency. Similarly, network theory-based methods are

effective for extracting structures from unstructured data

and to efficiently handle the variety in big data. The data

deduplication methods are useful to improve the data

consistency. Therefore, the aforementioned methods are a

suitable alternative to manage the variability issues in big

data. Likewise, data preprocessing, dimension reduction,

data mining, and machine learning methods are useful for

data reduction at different levels in big data systems.

Keeping in view the outcomes of this survey, we conclude

that big data reduction methods are emerging research area

that needs attention by the researchers.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Wu X et al (2014) Data mining with big data. IEEE Trans Knowl

Data Eng 26(1):97–107

2. Che D, Safran M, Peng Z (2013) From big data to big data

mining: challenges, issues, and opportunities. In: Database sys-

tems for advanced applications

3. Battams K (2014) Stream processing for solar physics: applica-

tions and implications for big solar data. arXiv preprint arXiv:

1409.8166

4. Zhai Y, Ong Y-S, Tsang IW (2014) The emerging ‘‘big dimen-

sionality’’. Comput Intell Mag IEEE 9(3):14–26

5. Fan J, Han F, Liu H (2014) Challenges of big data analysis. Nat

Sci Rev 1(2):293–314

6. Chandramouli B, Goldstein J, Duan S (2012) Temporal analytics

on big data for web advertising. In: 2012 IEEE 28th international

conference on data engineering (ICDE)

7. Ward RM et al (2013) Big data challenges and opportunities in

high-throughput sequencing. Syst Biomed 1(1):29–34

8. Weinstein M et al (2013) Analyzing big data with dynamic

quantum clustering. arXiv preprint arXiv:1310.2700

9. Hsieh C-J et al (2013) BIG & QUIC: sparse inverse covariance

estimation for a million variables. In: Advances in neural infor-

mation processing systems

10. Vervliet N et al (2014) Breaking the curse of dimensionality

using decompositions of incomplete tensors: tensor-based scien-

tific computing in big data analysis. IEEE Signal Process Mag

31(5):71–79

11. Feldman D, Schmidt M, Sohler C (2013) Turning big data into

tiny data: constant-size coresets for k-means, pca and projective

clustering. In: Proceedings of the twenty-fourth annual ACM-

SIAM symposium on discrete algorithms

12. Fu Y, Jiang H, Xiao N (2012) A scalable inline cluster dedupli-

cation framework for big data protection. In: Middleware 2012.

Springer, pp 354–373

13. Zhou R, Liu M, Li T (2013) Characterizing the efficiency of data

deduplication for big data storage management. In: 2013 IEEE

international symposium on workload characterization (IISWC)

14. Dong W et al (2011) Tradeoffs in scalable data routing for

deduplication clusters. In: FAST

15. Xia W et al (2011) SiLo: a similarity-locality based near-exact

deduplication scheme with low RAM overhead and high

throughput. In: USENIX annual technical conference

16. Trovati M, Asimakopoulou E, Bessis N (2014) An analytical tool

to map big data to networks with reduced topologies. In: 2014

international conference on intelligent networking and collabo-

rative systems (INCoS)

17. Fang X, Zhan J, Koceja N (2013) Towards network reduction on

big data. In: 2013 international conference on social computing

(SocialCom)

18. Wilkerson AC, Chintakunta H, Krim H (2014) Computing per-

sistent features in big data: a distributed dimension reduction

approach. In: 2014 IEEE international conference on acoustics,

speech and signal processing (ICASSP)

19. Di Martino B et al (2014) Big data (lost) in the cloud. Int J Big

Data Intell 1(1–2):3–17

20. Brown CT (2012) BIGDATA: small: DA: DCM: low-memory

streaming prefilters for biological sequencing data

21. Lin M-S et al (2013) Malicious URL filtering—a big data

application. In 2013 IEEE international conference on big data

22. Chen J et al (2013) Big data challenge: a data management

perspective. Front Comput Sci 7(2):157–164

282 M. H. ur Rehman et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1409.8166
http://arxiv.org/abs/1409.8166
http://arxiv.org/abs/1310.2700


23. Chen X-W, Lin X (2014) Big data deep learning: challenges and

perspectives. IEEE Access 2:514–525

24. Chen Z et al (2015) A survey of bitmap index compression

algorithms for big data. Tsinghua Sci Technol 20(1):100–115

25. Hashem IAT et al (2015) The rise of ‘‘big data’’ on cloud com-

puting: review and open research issues. Inf Syst 47:98–115

26. Gani A et al (2015) A survey on indexing techniques for big data:

taxonomy and performance evaluation. In: Knowledge and

information systems, pp 1–44

27. Kambatla K et al (2014) Trends in big data analytics. J Parallel

Distrib Comput 74(7):2561–2573

28. Jin X et al (2015) Significance and challenges of big data

research. Big Data Res 2(2):59–64

29. Li F, Nath S (2014) Scalable data summarization on big data.

Distrib Parallel Databases 32(3):313–314

30. Lohr S (2014) For big-data scientists, ‘janitor work’ is key hurdle

to insights. http://www.nytimes.com/2014/08/18/technology/for-

big-data-scientists-hurdle-to-insights-is-janitor-work.html

31. Ma C, Zhang HH, Wang X (2014) Machine learning for big data

analytics in plants. Trends Plant Sci 19(12):798–808

32. Ordonez C (2013) Can we analyze big data inside a DBMS? In:

Proceedings of the sixteenth international workshop on data

warehousing and OLAP

33. Oliveira J, Osvaldo N et al (2014) Where chemical sensors may

assist in clinical diagnosis exploring ‘‘big data’’. Chem Lett

43(11):1672–1679

34. Shilton K (2012) Participatory personal data: an emerging

research challenge for the information sciences. J Am Soc Inform

Sci Technol 63(10):1905–1915

35. Shuja J et al (2012) Energy-efficient data centers. Computing

94(12):973–994

36. Ahmad RW et al (2015) A survey on virtual machine migration

and server consolidation frameworks for cloud data centers.

J Netw Comput Appl 52:11–25

37. Bonomi F et al (2014) Fog computing: a platform for internet of

things and analytics. In: Big data and internet of things: a road-

map for smart environments. Springer, pp 169–186

38. Rehman MH, Liew CS, Wah TY (2014) UniMiner: towards a

unified framework for data mining. In: 2014 fourth world con-

gress on information and communication technologies (WICT)

39. Patty JW, Penn EM (2015) Analyzing big data: social choice and

measurement. Polit Sci Polit 48(01):95–101

40. Trovati M (2015) Reduced topologically real-world networks: a

big-data approach. Int J Distrib Syst Technol (IJDST) 6(2):13–27

41. Trovati M, Bessis N (2015) An influence assessment method

based on co-occurrence for topologically reduced big data sets.

In: Soft computing, pp 1–10

42. Dey TK, Fan F, Wang Y (2014) Computing topological persis-

tence for simplicial maps. In: Proceedings of the thirtieth annual

symposium on computational geometry

43. Zou H et al (2014) Flexanalytics: a flexible data analytics

framework for big data applications with I/O performance

improvement. Big Data Res 1:4–13

44. Ackermann K, Angus SD (2014) A resource efficient big data

analysis method for the social sciences: the case of global IP

activity. Procedia Comput Sci 29:2360–2369

45. Yang C et al (2014) A spatiotemporal compression based

approach for efficient big data processing on Cloud. J Comput

Syst Sci 80(8):1563–1583

46. Monreale A et al (2013) Privacy-preserving distributed move-

ment data aggregation. In: Geographic information science at the

heart of Europe. Springer, pp 225–245

47. Jalali B, Asghari MH (2014) The anamorphic stretch transform:

putting the squeeze on ‘‘big data’’. Opt Photonics News

25(2):24–31

48. Wang W et al (2013) Statistical wavelet-based anomaly detection

in big data with compressive sensing. EURASIP J Wirel Com-

mun Netw 2013(1):1–6

49. He B, Li Y (2014) Big data reduction and optimization in sensor

monitoring network. J Appl Math. doi:10.1155/2014/294591

50. Brinkmann BH et al (2009) Large-scale electrophysiology:

acquisition, compression, encryption, and storage of big data.

J Neurosci Methods 180(1):185–192

51. Zou H et al (2014) Improving I/O performance with adaptive data

compression for big data applications. In: 2014 IEEE interna-

tional parallel & distributed processing symposium workshops

(IPDPSW)

52. Lakshminarasimhan S et al (2011) Compressing the incom-

pressible with ISABELA: in situ reduction of spatio-temporal

data. In: Euro-Par 2011 parallel processing. Springer, pp 366–379

53. Ahrens JP et al (2009) Interactive remote large-scale data visu-

alization via prioritized multi-resolution streaming. In: Proceed-

ings of the 2009 workshop on ultrascale visualization

54. Compression utility, gzip. http://www.gzip.org

55. Bi C et al (2013) Proper orthogonal decomposition based parallel

compression for visualizing big data on the K computer. In: 2013

IEEE symposium on large-scale data analysis and visualization

(LDAV)

56. Bhagwat D, Eshghi K, Mehra P (2007) Content-based document

routing and index partitioning for scalable similarity-based

searches in a large corpus. In: Proceedings of the 13th ACM

SIGKDD international conference on knowledge discovery and

data mining

57. Rupprecht L (2013) Exploiting in-network processing for big data

management. In: Proceedings of the 2013 SIGMOD/PODS Ph.D.

symposium

58. Zhao D et al (2015) COUPON: a cooperative framework for

building sensing maps in mobile opportunistic networks. IEEE

Trans Parallel Distrib Syst 26(2):392–402

59. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short

read assembly using de Bruijn graphs. Genome Res 18(5):821–829

60. Cheng Y, Jiang P, Peng Y (2014) Increasing big data front end

processing efficiency via locality sensitive Bloom filter for

elderly healthcare. In: 2014 IEEE symposium on computational

intelligence in big data (CIBD)

61. Dredze M, Crammer K, Pereira F (2008) Confidence-weighted

linear classification. In: Proceedings of the 25th international

conference on machine learning

62. Crammer K et al (2006) Online passive-aggressive algorithms.

J Mach Learn Res 7:551–585

63. Hillman C et al (2014) Near real-time processing of proteomics

data using Hadoop. Big Data 2(1):44–49

64. Sugumaran R, Burnett J, Blinkmann A (2012) Big 3d spatial data

processing using cloud computing environment. In: Proceedings
of the 1st ACM SIGSPATIAL international workshop on ana-

lytics for big geospatial data

65. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse

covariance estimation with the graphical lasso. Biostatistics

9(3):432–441

66. Scheinberg K, Ma S, Goldfarb D (2010) Sparse inverse covari-

ance selection via alternating linearization methods. In: Advances

in neural information processing systems

67. Qiu J, Zhang B (2013) Mammoth data in the cloud: clustering

social images. Clouds Grids Big Data 23:231

68. Hoi SC et al (2012) Online feature selection for mining big data.

In: Proceedings of the 1st international workshop on big data,

streams and heterogeneous source mining: algorithms, systems,

programming models and applications

69. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means

clustering algorithm. In: Applied statistics, pp 100–108

Big Data Reduction Methods: A Survey 283

123

http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
http://dx.doi.org/10.1155/2014/294591
http://www.gzip.org


70. Wold S, Esbensen K, Geladi P (1987) Principal component

analysis. Chemometr Intell Lab Syst 2(1):37–52

71. Azar AT, Hassanien AE (2014) Dimensionality reduction of

medical big data using neural-fuzzy classifier. Soft Comput

19(4):1115–1127

72. Cichocki A (2014) Era of big data processing: a new approach via

tensor networks and tensor decompositions. arXiv preprint arXiv:

1403.2048

73. Dalessandro B (2013) Bring the noise: embracing randomness is

the key to scaling up machine learning algorithms. Big Data

1(2):110–112

74. Zeng X-Q, Li G-Z (2014) Incremental partial least squares

analysis of big streaming data. Pattern Recogn 47(11):3726–3735

75. Ruhe A (1984) Rational Krylov sequence methods for eigenvalue

computation. Linear Algebra Appl 58:391–405

76. Tannahill BK, Jamshidi M (2014) System of systems and big data

analytics–Bridging the gap. Comput Electr Eng 40(1):2–15

77. Liu Q et al (2014) Mining the big data: the critical feature

dimension problem. In: 2014 IIAI 3rd international conference on

advanced applied informatics (IIAIAAI)

78. Jiang P et al (2014) An intelligent information forwarder for

healthcare big data systems with distributed wearable sensors.

IEEE Syst J PP(99):1–9

79. Leung CK-S, MacKinnon RK, Jiang F (2014) Reducing the

search space for big data mining for interesting patterns from

uncertain data. In: 2014 IEEE international congress on big data

(BigData congress)

80. Stateczny A, Wlodarczyk-Sielicka M (2014) Self-organizing

artificial neural networks into hydrographic big data reduction

process. In: Rough sets and intelligent systems paradigms.

Springer, pp 335–342

81. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algo-

rithm for deep belief nets. Neural Comput 18(7):1527–1554

82. LeCun Y et al (1998) Gradient-based learning applied to docu-

ment recognition. Proc IEEE 86(11):2278–2324

83. Kavukcuoglu K et al (2009) Learning invariant features through

topographic filter maps. In: 2009 IEEE conference on computer

vision and pattern recognition, CVPR 2009

84. Dean J et al (2012) Large scale distributed deep networks. In:

Advances in neural information processing systems

85. Martens J (2010) Deep learning via Hessian-free optimization. In:

Proceedings of the 27th international conference on machine

learning (ICML-10), June 21–24, Haifa, Israel

284 M. H. ur Rehman et al.

123

http://arxiv.org/abs/1403.2048
http://arxiv.org/abs/1403.2048

	Big Data Reduction Methods: A Survey
	Abstract
	Introduction
	Big Data Complexity and the Need for Data Reduction
	Big Data Reduction Methods
	Network Theory
	Compression
	Data Deduplication (Redundancy Elimination)
	Data Preprocessing
	Dimension Reduction
	Data Mining and Machine Learning (DM and ML)

	Open Research Issues
	Conclusions
	Open Access
	References


