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Abstract: Biological systems are increasingly being studied in a holistic manner, using omics approaches, to provide 

quantitative and qualitative descriptions of the diverse collection of cellular components. Among the omics approaches, 

metabolomics, which deals with the quantitative global profiling of small molecules or metabolites, is being used 

extensively to explore the dynamic response of living systems, such as organelles, cells, tissues, organs and whole 

organisms, under diverse physiological and pathological conditions. This technology is now used routinely in a number of 

applications, including basic and clinical research, agriculture, microbiology, food science, nutrition, pharmaceutical 

research, environmental science and the development of biofuels. Of the multiple analytical platforms available to 

perform such analyses, nuclear magnetic resonance and mass spectrometry have come to dominate, owing to the high 

resolution and large datasets that can be generated with these techniques. The large multidimensional datasets that result 

from such studies must be processed and analyzed to render this data meaningful. Thus, bioinformatics tools are essential 

for the efficient processing of huge datasets, the characterization of the detected signals, and to align multiple datasets and 

their features. This paper provides a state-of-the-art overview of the data processing tools available, and reviews a 

collection of recent reports on the topic. Data conversion, pre-processing, alignment, normalization and statistical analysis 

are introduced, with their advantages and disadvantages, and comparisons are made to guide the reader.  

Keywords: Bioinformatics, mass spectrometry, metabolome, metabolomics, software development, statistical analysis, systems 

biology.  

1. INTRODUCTION 

 Metabolomics or metabolome analysis aims to conduct 

the simultaneous determination and quantitative analysis of 

intracellular metabolites. Since metabolomics is concerned 

with small molecules that are the substrates and products, of 

cellular activity, it allows to explore in a direct and 

immediate way the biological system/environment interface. 

This can be appreciated by the great sensitivity of metabolite 

levels to subtle pharmacological and toxicological 

intervention [1-6]. As a consequence, metabolomics is 

playing an increasingly important role in systems biology, a 

field that aims to integrate information collected at multiple 

biological levels. It is now used widely in many applications 

including microbiology, diagnostic biomarker discovery, 

toxicological testing, food and beverage analysis, plant and 

animal phenotyping, and drug discovery and development 

[7-12]. 

 Nuclear magnetic resonance (NMR) is one of the most 

commonly used analytical techniques in metabolomics  

 
 

*Address correspondence to this author at the Institute for Advanced 

Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan;  

Tel: +81-235-25-0528; Fax: +81-235-25-0574;  

E-mail: msugi@sfc.keio.ac.jp 

studies [13]. To date, a number of large-scale, studies using 

NMR have been reported, including blood urine and serum 

metabolome profiling [14-15]. This technique has been 

popular in metabolomic studies because of its quantitative 

nature and high reproducibility. In addition, NMR spectra 

provide a wealth of biochemical information not available by 

other means [16-20]. It also has definitive advantage that it 

can be used in non-destructive ways to enable metabolomic 

profiling in vivo [21-22] and even allow metabolite imaging 

in biological samples [23-24]. However, the relatively low 

sensitivity of NMR, and the spectral overlap that often 

occurs, limits the number and variety of metabolites that can 

be simultaneously observed. Hyphenated mass spectrometry 

(MS) methods, such as GC-MS [25], LC-MS [26] and CE-

MS [27], currently provide higher sensitivity, and are the 

leading analytical platform for metabolite profiling [28-31]. 

Because of the diverse physical and chemical properties (for 

example, molecular weight, polarity and solubility) of the 

metabolites contained in typical samples, no single analytical 

methodology can profile datasets comprehensively. Thus, 

metabolomics, in the strictest sense, is very challenging, 

and the term is used broadly to cover approaches concerned 

with investigating subsets of the metabolome [32]. GC-MS, 

LC-MS and CE-MS are generally capable of profiling 

volatile, singly or multiply charged metabolites. Hyphenated 
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MS methods involve the use of a physico-chemical 

separation method in tandem with a mass spectrometer, 

which is used for detection. These systems thus produce data 

that is multidimensional with a time and mass/charge ratio 

component. The multidimensionality of the data increases 

the data processing challenges posed by metabolomics.  

 Because metabolomics deals with large datasets like 

other omics, sophisticated computational tools are vital for 

efficient and high-throughput analysis, to eliminate 

systematic bias and to explore biologically significant 

findings. In this paper, we review bioinformatics topics in 

the field of metabolomics, with an emphasis on hyphenated-

MS methods, especially LC-MS and CE-MS. As some of 

these topics have been well reviewed previously [33-51], we 

emphasize the most recent innovations and developments in 

the field. In the first part, we review the main data 

processing steps, including data formats/conversion, feature 

extraction/detection, comparison of multiple datasets 

including migration time and mass spectral alignment, signal 

normalization and identification of metabolites, and quality 

control (QC). The second part focuses on downstream data 

analysis of processed datasets, using univariate or 

multivariate statistical analyses, classification and clustering. 

We also discuss the standardization of data format, compare 

some of the leading software tools that implement different 

algorithms for data processing and discuss data interpretation 

for different research applications. 

2. DATA PROCESSING FOR METABOLOMICS 

ANALYSIS 

 Typical data processing flow for MS data has been 

previously reviewed by Katajamaa and Ore i  [34], and is 

now implemented in a variety of software packages [52-57]. 

The analytical usually flow starts from data conversion, 

detecting signal peaks, normalization and comparison of 

multiple datasets to generate a data matrix that includes the 

detected peaks of all given samples (alignment). The 

differentiation of signals from noise by interpretation of the 

mass spectrum and the identification of detected features 

using, for example, alignments with standard compound 

data, are also important. Finally, processed data are analyzed 

using statistical methods and data mining. A recent addition 

to this straightforward analytical process is the quality 

control (QC) of data processing. This process does not 

simply involve the use of QC methods after data processing 

[58], but rather is used as part of an iterative feedback loop 

between data processing and QC [59] (Fig. 1). 

 The following section introduces recent literature related 

to 1) data conversion, 2) feature detection, 3) alignment, 4) 

scaling/normalization, 5) identification, and 6) QC. See also 

the following references: [58, 60-61]. 

2.1. Data Conversion 

 Data processing starts with file format conversion from 

the MS-vendor dependent binary format to more common 

formats, to allow subsequent processing to be carried out on 

independent operation systems and software. A common and 

open framework and data description is important if data are 

to be shared among laboratories [62-64]. NetCDF and 

mzXML are the most commonly used file formats to store 

hyphenated-MS data [65]. Owing to recent rapid 

improvements in the throughput and resolution of MS, 

individual data files have become large, which compounds 

problems associated with the large numbers of datasets 

handled in metabolomics projects. Although these common 

file formats simplify data sharing between laboratories, the 

problem of handling a large number of large datasets 

remains. While removing small intensity peaks and data 

compression using irreversible filtering, as can be 

implemented in mzMine [56] and mzMine2 [52], is the 

simplest way to diminish data size, they risk distorting 

subsequent data analysis. Although Mass++ allows the direct 

import of various binary files provided by MS venders into 

standard software [66], it merely accesses the binary data 

through a vendor-provided application programmable 

interface (API). This dramatically reduces throughput and 

does not solve the problem of MS-vendor software 

dependency. Although it cannot be shown directly without 

access to the source code, most vendor-provided 

hyphenated-MS instrument binary formats (for example, 

wiff files and .D formats provided by Applied Biosystems 

and Agilent Technologies Inc.) can be estimated to contain a 

series of mass spectra data, since mass spectra are usually 

collected in this way. This data structure results in much 

longer data access times to output a chromatograph or an 

electropherogram if the data points included in the mass 

spectra are not unique over the chromatograph or 

electropherogram. To solve these size and structure 

problems, we developed a compact binary file format that 

facilitates rapid access to chromatographs or 

electropherograms and mass spectra [67]. Although there is 

currently a trade-off between facilitating quick data access 

and the availability of a generic file format, the development 

and standardization of file formats that fulfill the 

requirement for rapid access should be a priority. 

 

Fig. (1). Typical processing flow of MS data in the field of 

metabolomics. Raw data are sequentially processed in multiple 

phases, including file conversion, feature detection, alignment and 

normalization. Standard data and public databases that include 

metabolite information, such as mass spectrometric data, are used 

for subsequent feature identification. These processes are then 

assessed using quality control criteria and the previous phase is 

repeated if necessary. Once calibrated, the data matrix (aligned 

detected features across multiple datasets) can be transferred for 

subsequent data analysis phases. 
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2.2. Feature Detection 

 In the typical analytical flow, three-dimensional data 

incorporating retention or migration times, m/z and intensity 

data are first converted to piles of two-dimensional 

chromatography/electropherograms, by integrating data 

points within a specific range along the m/z axis (ion 

extraction or data binning). Second, background reduction 

(or baseline removal) and smoothing of the data are 

conducted to reduce false positive detection. Third, local 

maxima are found as peak top candidates, or a mathematical 

model is fitted to find peak-like shapes within the 

chromatographs or electropherograms. These are used to 

identify peaks over a user-specified threshold, which may be 

in the form of a peak height, peak area or signal-to-noise 

(S/N) ratio [52-54, 67-68]. Although wavelet transformation 

and Gaussian-curve fitting (or matched filter) is a commonly 

used means to distinguish signal from noise [53, 68], fully 

automatic processing remains difficult owing to the complex 

peak shapes often observed in LC-MS and, in particular, CE-

MS. Interactive tuning of the algorithms is therefore often 

required [52, 67]. Other options are to identify peaks at 

matched locations (m/z and time), even under the initially-

defined threshold after the alignment process [69]. Such 

feedback procedures and QC will be discussed further in 

section 2.7. 

2.3. Alignment of Multiple Data Sets 

 The alignment of multiple datasets, i.e. the elimination of 

retention or migration times shifts between datasets, is a 

central topic of data processing in the metabolomics field, 

and is associated with specific technical difficulties. 

Therefore, many alignment techniques have been developed 

[70]. The retention time variance of GC-MS and LC-MS 

datasets is non-linear [71], and thus multiple sophisticated 

time correction methods have been developed. The 

alignment of CE-MS data is especially difficult because of 

the low reproducibility of migration times [54], and robust 

and versatile alignment procedures are therefore required. 

Here, we review the three major alignment algorithms used 

for the temporal dimension. In addition, the normalization of 

mass/charge ratio (m/z) calculated by MS is also introduced. 

Time Correlation Optimized Warping 

 Time correlation optimized warping (COW) divides 

chromatograms into small segments and shifts individual 

segments to maximize the correlation coefficient between a 

reference and test chromatograph. The algorithm itself has 

inherent problems; a larger number of segments leads to 

greater accuracy, but raises the risk of dividing the targeted 

metabolite peaks. To optimize the degree of segmentation, 

the use of heuristic and global optimization processes, such 

as genetic algorithms, has been proposed [72]. To date, 

benchmark tests with only small numbers of peaks have been 

performed [72], and the method should be evaluated using 

data with a large number of peaks, observed by high 

resolution MS. 

Parametric Time Warping  

 The parametric time warping method aligns a given 

chromatogram with a reference chromatogram using second 

degree polynomial functions, called warping functions [73]. 

Coefficients in warping functions are optimized to minimize 

the time difference between selected matched peaks in 

reference and aligned chromatograms. Thus, the method 

relies on the presence of a number of known matched peaks 

among the samples to be aligned. Although the addition of 

internal standards (IS) is the most simple way to achieve 

this, it has several disadvantages: (i) suitable IS compounds 

must be carefully selected, for example the IS compounds 

must not normally be present in the samples; (ii) additional 

sample preparation is required; and most significantly (iii) 

the added IS may cause ion suppression effects and degrade 

the quantitative reliability of the observed profiles. Despite 

these problems, rapid computation time is an important 

advantage of this method. Lower flexibility and accuracy has 

been reported for this method in comparison with COW and 

dynamic time warping (DTW) [70].  

Dynamic Time Warping 

 DTW finds the matched peaks among multiple datasets 

automatically to produce warping functions. Dynamic 

programming (DP) has historically been used in homology 

searching of genes or genomes, and has been used for 

matching peaks [74]. The parameters that characterize DP 

results, such as gap penalty, make this method parametric. 

Thus, empirical reiterative multi-step optimization of these 

parameters has been used in CE-MS data processing 

software [54] and interactive graphical user interfacing [67]. 

In contrast, recent modifications to DTW using multiple 

chromatograms with different m/z, instead of one-

dimensional information available from total ion 

chromatography, reduced the impact of the parametric 

problems embedded in the original DTW algorithm [75]. 

Calibration of Mass Values (m/z Alignment) 

 Exact masses (mass-to-charge ratio (m/z) values), 

produced by detectors in time-of-flight (TOF)-MS 

instruments are usually calculated based on online 

calibration with one or more reference substances that are 

co-injected with the sample. This is known as the mass lock 

system [76]. The m/z values detected for individual peaks 

fluctuate depending on several factors, including 

temperature, the abundance of ions simultaneously entering 

the MS, and the processing ability, type and specifications of 

the MS detector [77]. Thus, the data acquired should be 

further calibrated. Typically a calibration curve generated 

using the peaks of known m/z is applied to correct m/z values 

of other peaks of interest (offline or software calibration) 

[78-80]. The m/z values are intricately calibrated for the 

whole chromatograph or electropherogram time axis, since 

the factors influencing m/z shifts can change even during the 

course of a single run [81]. In addition, m/z value correction 

can be carried out using peak intensities relative to the 

intensities of internal standards [82], using the location of 

background noise observed throughout the measurement 

[83], and using statistical approaches with multiple datasets 

[69]. Ideally, these methods should be integrated to optimize 

m/z normalization. 

2.4. Scaling and Normalization 

 The elimination of unwanted systematic bias, while 

maintaining genuine biological differences in the observed 

datasets, is essential for subsequent analyses to identify 

significant metabolites. The systematic bias derived from 
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variation in sample concentration, especially when handling 

biofluids such as urine, blood and saliva samples, must be 

removed. Deviation in signal intensities due to measurement 

errors, for example poor MS sensitivity, must also be 

removed. To address the former problem, metabolomic 

analyses typically use endogenous metabolites, for example 

creatinine, to normalize overall urine metabolite 

concentrations [84]. However, this method is not always 

sufficient to eliminate systematic bias, and a recent mouse 

metabolomic study revealed a correlation between overall 

urinary metabolites and several physical parameters, such as 

age and weight [85]. The latter bias is generally removed 

using two approaches. Despite the increased technical 

complexity of sample preparation, the use of internal 

standard compounds added to the sample before or after 

extraction is the most common approach. The use of multiple 

internal standards to normalize closely eluting peaks with 

similar m/z values has also been reported [86]. Otherwise, 

normalization methods based on several statistical models 

(unit norm [87] median [88] and quantile [58]), scaling 

methods (auto scaling, range scaling, Pareto scaling, vast 

scaling and level scaling) [61], and data transformation (log 

and power) have been widely used. These methods are, 

however, inferior to the internal standard-based methods 

[58]. 

2.5. Identification of Metabolites 

 Global metabolic profiles or fingerprints that do not 

necessarily assign observed features to particular metabolites 

can be very powerful means of classifying and directly 

comparing samples. They highlight metabolomics as 

providing a global molecular signature allowing us to 

discriminate groups of samples in contrast to more 

conventional comparisons based on single metabolite. 

However, metabolite identification from spectral data 

remains indispensable for providing mechanistic insight into 

specific cellular or disease processes and in quality 

control/assurance industry, for example. The accurate 

identification of a compound usually requires the ability to 

match candidate spectra with standard compounds run under 

the same conditions. Matching to either externally or 

internally applied standards has been commonly used, the 

latter making use of isotopically labeled standards or 

samples. However, the lack of readily available standard 

compounds remains a major obstacle to confirming the 

identity of observed compounds. The purification of 

compounds from complex samples allows access to 

standards; however, this can be an expensive and time-

consuming process. Several tools that estimate compound 

composition using isotope distribution or fragmentation 

patterns in the mass spectrum have been developed [89-92]. 

Databases that include a large number candidate compounds 

are also indispensable (see review [43]). A theoretical study 

estimated that the mass spectral information available from 

mass spectrometers with accuracy approaching 1 ppm, such 

as TOFMS, is not sufficient to identify peaks without a 

matched standard compound, as multiple candidate 

compounds are often retrieved from the large public 

databases [93]. The Human Metabolome Project has already 

identified more than 4,000 putative endogenous metabolites 

from human serum using GC-MS, LC-MS and NMR profiles 

with computer-aided literature mining [12]. Many studies 

thus use tandem MS, which generates more informative 

spectra including many fragment peaks, for compound 

identification [94-95]. Efforts have also been made to use 

retention time information to reduce the number of possible 

candidates. These efforts are based on reverse engineering 

techniques [96-99] or theoretical simulation [100], which 

predict the retention/migration times from the metabolite 

structure. The quantification of observed peaks in the 

absence of matched standard compounds is also difficult, but 

computational prediction techniques have been developed 

[101]. The combined use of such computational methods can 

greatly reduce the number of candidates and aid metabolite 

identification. 

2.6. Quality Control of Data Processing 

 A number of algorithms have been developed for data 

processing, especially for peak detection and alignment, and 

various parameters can be used to characterize the quality of 

data processing [59]. The selection of the best algorithm, and 

the best parameters, to analyze the datasets obtained is not an 

easy task. Thus, QC evaluation based on various benchmark 

tests is important to understand the features of each 

algorithm and their parameters [102]. 

 A comparison of peak detection algorithms of LC-MS 

data using centWave [68], matched filter implemented in 

XCMS [53] and MZmine [56] showed that there was only a 

partial overlap in the results obtained with these methods, 

and a number of peaks were only detected by one software 

(not overlapped) [68]. Even with the same algorithm, the use 

of different parameters strongly affected peak detection 

performance [58]. Evaluation of the alignment of LC-MS 

data using six freely available software packages, including 

XCMS [53], MZmine [56], msInspect [103] and OpenMS 

[55], concluded that no single software perfectly aligned the 

datasets [104]. The annotation of metabolite identities using 

fixed confidence thresholds has been recommended for data 

reporting, as has quantitative assessment of the annotation 

quality using the false discovery rate (FDR) [105]. Another 

approach is to provide a sophisticated graphical interface that 

enables specific steps of data processing to be rerun using 

different parameters [52]. Scripting tools may also be used to 

accelerate the optimization process and to minimize the need 

for user interactivity. Another possible means to improve 

performance entails the development of an iterative 

analytical framework with machine learning methods that 

allow the program to be trained to tune parameters using the 

difference between automated and manual data processing 

[59]. It is evident that subsequent statistical analysis will 

benefit if care is taken at the processing stage, and that 

automatic data processing for peak detection, alignment and 

annotation remain far from perfect. 

3. DATA ANALYSIS IN METABOLOMICS 

 Once a data matrix has been produced from raw data, 

subsequent steps usually involve different forms of statistical 

analysis and data mining to allow the identification of 

samples or variables (metabolites) that capture the bulk of 

variation between datasets and that may represent candidates 

for biologically meaningful variables. Typical analyses of 

metabolomic data consist of two phases; initially an 

overview of the given datasets is generated using 
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multivariate analysis and individual peaks are subsequently 

graded by univariable analysis. Here we briefly introduce 

several univariable and multivariate analyses, and 

classification and assessment methods that are widely used 

in analyzing MS-based metabolomics datasets (Fig. 2). 

Selected recent applications are then introduced. See also the 

recent reviews [37, 43]. 

3.1. Principal Component Analysis 

 Principal component analysis (PCA) is an unsupervised 

statistical analysis that is probably the most widely used 

statistical tool in metabolomics studies. PCA converts high-

dimensional data into fewer dimensions, by projecting the 

data into a reduced dimensional subspace, while maintaining 

as much variance from the original data as possible [106-

108]. The procedure is repeated until the datasets can be 

presented usually within two or three dimensions. This 

facilitates visual inspection of the distributed samples in 

principal component (PC) space, using score plots [33]. The 

Euclidian distance between individual samples in score plots 

reflects the degree of systematic variation in metabolite 

profiles among samples, and loading plots show the 

contribution of individual metabolites to each PC (Fig. 2A). 

Prior to the development of more effective data analyses, 

such as clustering, pattern recognition or classifications, the 

vast majority of metabolomic studies used PCA as a first 

exploratory step [37]. 

3.2. Cluster Analysis 

 Clustering analysis is a statistical method that involves 

dividing observed datasets into several subclasses or clusters 

based on a selected statistical distance function. There are 

two types of clustering algorithms: hierarchical and non-

hierarchical methods. Both algorithms partition the observed 

datasets into subgroups so that datasets with similar 

metabolomic profiles are placed in each subgroup [33]. 

Hierarchical clustering (HCL) (Fig. 2A) aligns datasets by 

generating dendrograms using the following procedure: 1) 

calculate the similarity of the two samples using a specific 

metric, such as Pearson correlation, Euclidean, mutual 

information and covariance values; 2) align the most similar 

samples as neighbors or pair them as a single cluster; and 3) 

reiterate step 1 and 2 until all samples are aligned [33]. Non-

hierarchical clustering (non-HCL) also divides data into 

clusters but without any hierarchical organization. The K-

means and fuzzy c-means methods are typical examples of 

non-HCL [33]. In the K-means method, k data points are 

initially randomly chosen to be close to the mean of each 

cluster, a new mean is then calculated for each cluster and 

the patterns are reassigned to the new means. This process is 

repeated until the cluster means are such that no pattern 

moves from one cluster to another [109]. The K-means 

method assigns each datapoint into only one cluster while 

the fuzzy c-means method allows data to be assigned to 

multiple clusters [110]. Fuzzy c-means also calculates the 

probability of a datapoint belonging to each cluster [111]. 

These analyses are widely used when the number of clusters 

for the samples is unknown, and can be used for one-time 

snapshot profiling as well as time-course data. 

3.3. Partial Least Squares Analysis 

 Partial least squares (PLS) (Fig. 2C), a regression-based 

method, builds a low-dimensional sub-space based on linear 

combinations of the original X variables. It makes use of 

additional Y information by adjusting the model to capture 

the (Y)-related variation into the original X variables [37]. 

PLS is particularly useful when fewer observations 

(samples) are available than measured variables 

(metabolites). In metabolomics, PLS-based classification and 

PLS-discriminant analysis (PLS-DA) have been widely used 

to sharpen the separation between groups or observations. 

This is achieved by rotating PCs to maximize the separation 

between known classes, and to elucidate the variables that 

carry the class separating information [33,112-113]. 

Similarly to loading plots in PCA, S-plots visualize both the 

covariance and the correlation between metabolites and the 

modeled class designation. The S-plot therefore helps to 

identify statistically significant and potentially biochemically 

significant metabolites, based both on contributions to the 

model and their reliability [114]. Despite its powerful ability 

to separate classes, care must be taken during fitting of PLS-

DA to the training detaining datasets, which exaggerate 

 

Fig. (2). Typical data analysis methods  used in the field of metabolomics. Score plots in PCA A), dendrograms of clustering B), score plots 

and S-plots of PLS-DA C), random forests model D), and ROC curve E). 
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generalization ability. Usually cross-validation or 

permutation tests are used to assess the ability of the trained 

PLS-DA model [115]. Orthogonal projections to latent 

structures (OPLS)-DA, an extension of PLS-DA featuring an 

integrated orthogonal signal correction filter to remove 

variability not relevant to class separation, has been used 

increasingly owing to its robustness against noise [21,116]. 

3.4. Random Forests 

 Random forests (RF) is a relatively new machine 

learning method typically used to discriminate two groups 

(Fig. 2D). The fundamental concept of RF is to allow data 

structures to be understood without dimensional reduction, 

and this method is therefore different from conventional 

methods such as PCA and PLS-DA. This classification 

algorithm was developed by Leo Breiman [117] and uses an 

ensemble of classification trees. Each of the classification 

trees is built using a bootstrap sample of the data, and at each 

split, the candidate set of variables is a random subset of the 

variables. Thus, RF uses both bagging (bootstrap 

aggregation), a successful approach for combining unstable 

learners, and random variable selection for tree building. 

Each tree is unpruned (grown fully) so as to obtain low-bias 

trees. At the same time, bagging and random variable 

selection result in low correlation of the individual trees 

[118]. The algorithm yields an ensemble that can achieve 

both low bias and low variance (by averaging over a large 

ensemble of low-bias, high-variance but low-correlation 

trees) [119]. 

3.5. Conventional Statistical Analysis 

 Because metabolomics generates data on multiple 

(dozens or hundreds) different metabolites, global overview 

methods that take into account the possible correlations 

between variables are the main tools used. However, when 

used appropriately, monovariate methods can also provide 

useful insight and remain widely used, especially for 

secondary biomarker analyses. 

 Although multivariate classification methods are often 

used to identify biomarkers, the discrimination of individual 

metabolites is usually assessed by conventional univariate 

statistical tests, such as Student’s t-test and the Mann-

Whitney test for two classes, or ANOVA and Kruskal-Wallis 

for multiple classes ( 3). Dependency or correlations 

between metabolites, inadequate sample size, and large FDR 

due to multiple hypothesis testing must be taken into account 

when applying these methods [120]. Corrections of the p-

value and/or calculation of false discovery rates must be 

carried out to limit the number of false positives that increase 

linearly with the number of variables [120]. Multivariate 

analysis has the advantage of considering the general 

patterns in the whole dataset, but it introduces additional 

challenges and sources of variability owing to the necessary 

data pre-treatment and scaling used to analyze all variables at 

once [61]. Thus, biomarkers should be rigorously evaluated 

by a combination of these statistical analyses and several 

validation methods, such as cross-validation and bootstrap 

analysis [121]. Recently, the FDR and receiver operating 

characteristics (ROC) methods have been frequently used to 

identify significantly different metabolites in the given 

classes. 

 The FDR method [122], is commonly used in gene 

expression analyses, and is now also used in metabolomic 

studies, [11], where a large number of variables are analyzed 

simultaneously, and thus multiple comparisons are 

conducted. In practice, FDR establishes a threshold for the 

significance level (q-value) that can be expected to represent 

false positives among all significant hypotheses to reject 

optimistic significance. To account for multiple 

comparisons, each FDR is estimated by the product of the 

significance level (Type I error rate) and the number of null 

hypotheses tested, divided by the number of null hypotheses 

rejected [123]. 

 A ROC [124] curve is a statistical representation that 

simultaneously expresses both sensitivity and specificity to 

separate binary class datasets, for example to discriminate 

healthy control and patient datasets. The curve is plotted by 

fractions of sensitivity as the Y-axis vs. fractions of false 

positive rate (1- specificity) as the X-axis (Fig. (2E)). The 

test is used to differentiate performance of one or a 

combination of biomarkers; an area under the curve (AUC) 

of 1.0 indicates perfect separation without any false 

negatives or false positives, while an AUC of 0.5 is 

equivalent to random separation only.  

 AUC evaluates only the rank of the metabolites 

associated with the given classes, and therefore it does not 

count fold-change or the concentration itself. Meanwhile, 

FDR evaluates the relative significance of the metabolites in 

a large group of metabolites. Thus, the use of a combination 

of different methods, along with multivariate analyses, can 

achieve more efficient screening than any single method. 

3.6. Data Mining Analysis 

 In addition to classification methods, other data mining 

methods have also been used in metabolomic data analyses 

to discriminate two classes, for example support vector 

machine (SVM) [125-126], artificial neural networks (ANN) 

[127] and decision tree [128]. ANN has been particularly 

widely used for various applications in MS-based studies, 

including in metabolite identification [97], classification 

[129], optimization of separation parameters [130] and QC 

of data processing [59] (see review [131]). In comparative 

study, a class of LC/MS peaks was predicted by four data 

mining techniques, k-NN, SVM, PLS-DA and Naïve Bayes, 

and revealed that the former two methods performed better 

than the latter two [132]. However, it is usually difficult to 

select the best method for the analysis of a given 

metabolomic dataset a priori, and the development of a 

pipeline with multiple analytical tools is therefore necessary. 

Visualization of metabolomic data in a pathway form also 

requires several data mining techniques. Small relevance and 

conditioned metabolic pathways have been predicted and 

then merged to generate pruned networks [133]. Small sub-

pathways were estimated with only relevant nodes, for 

example metabolite and enzymes, to reduce complexity and 

to enhance interpretability [134]. Both of these method 

attempts to find new relevant connections, rather than to 

assign the observed data to known maps. 

4. VISUALIZATION AND DATA SHARING 

 Here we discuss data visualization to facilitate the 

interpretation of large metabolomic profiles. Data 
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standardization is also discussed to realize open and shared 

access to metabolomics technologies. 

4.1. Visualization of Metabolomics Data 

 Data visualization using a heatmap or a pathway form 

facilitates comprehension of the metabolomic 

change/response to the experimental setting. MetaboAnalyst 

visualizes experimental metabolomic data using heatmap 

visualization and offers common statistical analyses, such as 

PCA, PLS-DA, and HCL [135-136]. Pathway Project [137] 

visualizes data in the form of several graph types, such as bar 

graphs, time-courses and simple circles corresponding to 

metabolite concentration at the metabolite node on the 

KEGG pathway [138]. Similar web-based network 

visualization tools for BioCyc [139] are also available [140]. 

Both tools take advantage of Google Map API zoom and 

search functions, which can be helpful when looking for 

interesting details in large metabolomic datasets. The 

editable pathway tool is also useful when new molecular 

interactions that are not available in public database are to be 

explored [141]. 

4.2. Standardization of Metabolomics Data Reporting 

 In addition to the standardization of raw file format and 

data processing tools, the standardization of the reporting of 

metabolomic data information has also received attention. 

This would facilitate experimental replication, interrogation 

and comparison over multiple investigators and laboratories. 

The Metabolomics Society has formed five working groups, 

biological context metadata, chemical analysis, data 

processing, ontology and data exchange, to establish 

guidelines for reporting standards [142]. The Chemical 

Analysis Working Group, part of the Metabolomics 

Standards Initiative, proposed a set of minimum information 

that should be provided when reporting chemical analyses, 

and these included metadata from MS and NMR data, 

sample processing protocol, data processing, metabolite 

identification, and even unknown metabolites in the obtained 

dataset [143]. Attempts to define standards for data reporting 

have been made but unfortunately are still not widely used 

[35, 142-143]. To maximize the value of metabolomic 

datasets, it is important that data is made publicly available 

in formats, and with metadata, that are widely accepted as 

standard. In this sense, the field of metabolomics lags behind 

genomics and proteomics. Some of the reasons for this slow 

adoption of standards include the heterogeneity of analytical 

platforms and vendors, and the complexity of sample 

processing, which remains the focus of ongoing 

investigation. A Metabolomics Standard Initiative was 

recently initiated by the Metabolomics Society, and aims to 

develop standards for data exchange, ontology and 

guidelines for data reporting to solve some of the current 

issues (http://msi-workgroups.sourceforge.net/). 

5. SOFTWARE TOOLS 

 A number of free software packages are already available 

for the processing and analysis of metabolomic data, and 

Table 1 gives a sample directory of these. Both web services 

and desktop applications are available. The table is not 

necessarily exhaustive, but should help to identify commonly 

used solutions. Several statistical tools listed were designed 

for NMR data analyses but might be also useful for MS data 

analyses. Here, we focused only on tools used specifically in 

metabolomics studies, and did not review free or commercial 

generic software for multivariate analysis or other standard 

statistical analysis. We emphasize mainly tools for pre-

processing and data visualization. Moreover, details of these 

packages are not reviewed here, and the reader is referred to 

the original publication or project web site for more 

information. 

6. APPLICATIONS 

 Here, the use of statistical methods in several 

applications is discussed. Note that several of the statistical 

analysis applications introduced here used NMR data. The 

same multivariable techniques can technically be used for 

MS data analyses, but it should be noted that MS-data 

includes a larger number of variables (metabolites) and 

therefore more redundant variables. However, appropriate 

statistical analyses and MS data may provide more powerful 

insight into biological context. 

 PCA and PLS-DA have been the most popular and 

widely used analyses in metabolomic studies. Although PCA 

can visualize the similarities and differences in the observed 

data with unknown classes, it is generally used as a weaker 

classification tool for class known problems. It is therefore 

generally used as a first screening method for classification 

problems, prior to PLS-DA. For example, while PCA was 

able to give adequate separation resolution of various 

conditions, for example smokers and non-smokers in a 

salivary metabolite profile, PLS-DA was subsequently used 

to maximize resolution [144]. A similar approach was 

adopted for the discrimination of lung cancer sufferers using 

urine metabolomic profiles [116] and pancreatic cancer using 

serum metabolomic profiles [145]. HCL has also been used 

to assess data structure by aligning datasets based on their 

profile’s similarities [146-148], and this method is often used 

to classify samples with known classes, similarly to PCA. It 

has been applied to biomarker discovery, to classify control 

and patient groups, with key branches in its dendrogram 

indicating biomarker candidates [149]. Although this 

example was not a metabolomics application, a particularly 

successful example of HCL involved the clustering of gene 

expression in breast cancer, which suggested the existence of 

a new subtype of breast cancer in addition to the known 

classes [150]. The assessment of the analytical results of 

these methods can only be performed with known classes, 

and new findings should be analyzed further once 

consistency between results and known classes has been 

confirmed. 

 The over-fitting of a developed model to a given dataset 

should be carefully avoided, especially when using MS data, 

since it usually involves a large number of variables and 

small sample numbers. RF is expected to be a useful 

classification method when we use such datasets. Because 

the algorithm itself does not limit the application, RF has 

been used for biomarker discovery in urine metabolomic 

profiles from breast cancer patients [125] and in plant 

applications to explore genotype-dependent variables in 

metabolomic profiles in Arabidopsis and potato [151-152]. 

When RF and margin-based classifiers, such as SVM and 

PLS-DA, were compared, RF and SVM were found to have 

similar accuracy and both were slightly better than PLS-DA  
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Table 1. Software List for Metabolomic Analysis 

Name Main Application Specific Features Ref. License User Interface 

OpenMS Raw data processing 
C++ libraries for MS data processing, including 

feature detection and protein/peptide identification 

[57] Lesser GNU 

Public License 

(LGPL)  

C++ library 

CDK-Taverna Workflow 
A workflow based data processing library for 

cheminformatics 

[156] 
LGPL Plug-in of Java 

Metabonomic 

Package 
Statistical analysis of NMR data 

Multivariate analysis, such as PCA, PLS, k-nearest 

neighbor classification, neural networks. 

[127] 
GPL R language

*)
 

metaXCMS Importing XCMS output 
Post processing of XCMS for comparison of multiple 

( 3) classes and visualizing statistical analyses. 

[157] 
Free 

R language
*)

 and 

GTK 

XCMS Processing LC-MS raw data 
R module for data processing, including feature 

detection and peak alignment 

[53] 
Free R language

*)
 

XCMS2 
Importing tandem mass 

spectrometry (MS/MS) raw data 

Processing of tandem mass spectrometry data for 

metabolite identification and structural 

characterization 

[158] 

Free 
Plug-in of R 

language
*)
 

MeDDL 
Data processing of LC-MS and 

GC/MS data 

A Matlab script for data processing and visualizing 

multiple datasets. 

[159] 
Free Matlab script 

MetaScape 
Pathway visualization / statistical 

analysis 

A Cytoscape plug-in for visualizing and interpreting 

metabolomic data in the context of human metabolic 

networks 

[160] 

Free 
Plug-in of 

Cytoscape 

MetaboliteDe

tector 

Importing NetCDF and FastFlight 

GC-MS data 

Comprehensive analysis, including chromatogram 

compression, feature detection, alignment and 

compound identification. 

[161] 
GNU public 

license (GPL) 

Local application 

(GUI) 

MetAlign 

Importing many common formats, 

including Masslynx, Xcalibur, 

netCDF, and the old-style 

HP/Agilent format of GC-MS / 

LC-MS data 

Interface-driven data processing program. Includes 

baseline correction, smoothing, feature detection and 

alignment 

[162] 

Free 
Local application 

(GUI) 

MAVEN 
Data processing of LC-MS and 

pathway visualization 

Tools for all aspects of data analysis, from feature 

extraction to pathway-based graphical data display 

[59] 
Free 

Local application 

(GUI) 

LIMSA 
Data processing / mass 

spectrometric lipidome data 

Tool finds and integrates peaks in a mass spectrum and 

matches the peaks with a user-supplied list of expected 

lipids. 

[163] 

Free 
Local application 

(GUI) 

centWave  Data processing of LC-MS data 
Detection of close and partially overlapping features; 

also has the highest overall recall 

[68] 
Free 

Local application 

(GUI) 

mzMine2  Data processing of MS data 

Modular framework for processing, visualizing and 

analyzing mass spectrometry-based molecular profile 

data 

[52] 

Free 
Local application 

(GUI) 

JDAMP Data processing of CE-MS data Data processing, alignment, differential display 
[67] Free for 

academic users 

Local application 

(GUI) 

CytoScape 
Pathway visualization / statistical 

analysis 

Software for the visualization and analysis of 

biological networks 

[164] 
Free 

Local application 

(GUI) 

metaP-server 
Statistical analysis, database 

searching, pathway visualization 
A web-based metabolomics data analysis tool 

[165] 
Free Web 

MetDAT 
Statistical analysis, database 

searching, pathway visualization 

A modular and workflow-based free online pipeline 

for mass spectrometry data processing, analysis and 

interpretation 

[166] 

Free Web 

ChromaA 
Alignment, chromatography-mass 

spectrometry 

Signal-based retention time alignment for 

chromatography-mass spectrometry data 

[167] 
Free Web 

MZedDB Data processing Interactive m/z annotation tool [92] Free Web 

Pathway 

projector 
Pathway visualization 

A Web-based zoomable pathway browser that uses 

KEGG atlas and Google Maps API 

[137] 
Free Web 

MetPA 
Pathway visualization / statistical 

analysis 

A web-based metabolomics tool for pathway analysis 

and visualization 

[168] 
Free Web 

MetExplore Pathway visualization 
A web server to link metabolomic experiments and 

genome-scale metabolic networks 

[169] 
Free Web 
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Table 1. cont… 

MSEA Pathway visualization 
A web-based tool to identify biologically meaningful 

patterns in quantitative metabolomic data 

[170] 
Free Web 

MetabolomeE

xpress 

Pipeline for data processing and 

statistical analysis of GC/MS data 

Data processing, statistical analysis (e.g. HCL), 

metabolite identification and heat map visualization 

[171] Free access for 

non-commercial 

and academic 

users 

Web 

Chromaligner Alignment of LC-MS data 
Alignment of LC-MS chromatographs using the COW 

algorithm 

[172] 
Free access Web 

*) R language (http://www.r-project.org/). 

 

[125]. However, the accuracy of the model trained on the 

given dataset is not the only important factor. Validation, 

which involves confirming the generalizability of the 

model’s accuracy and the significance of selected variables 

in similar experiments, is important when such discriminate 

models are used. SVM and PLS-DA can also be used to rank 

the significance of variables constitutive to the models, while 

RF does not explicitly maximize the margin, which makes 

the trained model unbiased to the given datasets and is 

directly related to the generalizability [151]. Although 

several techniques to evaluate generalizability are known, 

including the permutation test, bootstrap test and cross-

validation [115], rigorous assessment has indicated that 

normal cross-validation is insufficient and overfitting may 

remain a problem [153]. Thus, careful and multilateral 

evaluation of the developed model is necessary. 

 After multivariate analysis, individual metabolites or sets 

of metabolites are usually accessed using univariate 

analyses. As ROC is a conventional statistical method that 

has been widely used for medical diagnosis problems, it has 

become popular in biomarker discovery applications. 

Multiple logistical regression models, composed of multiple 

metabolite markers to discriminate liver diseases [154] and 

oral cancers [155], were assessed using AUC values 

calculated from ROC. This revealed the discrimination 

possible when only a few metabolite sets are used, rather 

than all available data, which is used in PCA and PLS-DA. 

Approaches using all available metabolites are appropriate 

when studying overall variation, but are not useful for 

clinical usage, for example in the development of diagnosis 

techniques using a single or a few markers. Thus, integrative 

analyses using multivariate analysis, feature selection, and 

assessment of individual or a few markers are standard 

techniques that are useful for general purposes. 

 As should be apparent, multiple solutions exist for data 

processing, some of which are capable of performing most or 

all steps from raw data to statistical analysis, while others are 

specialized for certain steps or visualization. The selection of 

a data analysis solution is not straightforward and will 

depend on the analytical platform, the experimental design 

and data type, and on computational infrastructure, among 

other things. This review gives an overview of the options 

that can be chosen from, and highlights recent efforts to 

integrate these solutions to generate simple, yet powerful 

methods for the user. The field of data analysis for 

metabolomics is still rapidly evolving, and ongoing efforts 

are likely to produce further progress. There is a need for 

greater interchangeability and interoperability between tools, 

and unfortunately the profusion of new and interesting tools 

originating from numerous small groups often tends to limit 

this goal. Developers should consider these factors when 

promoting particular solutions. This will stimulate data 

sharing and exchange, and therefore improve adoption by a 

community of users who are often overwhelmed by a range 

of possibilities, and who may therefore tend to stick to tools 

that emphasize usability rather than quality or performance. 

 In this review article, we reviewed multiple tools for 

processing and analysis of MS data. Multiple metabolomics 

platforms together with the appropriate data processing and 

analysis tools can allow us to identify discriminating features 

in a set of samples, with multiple applications in research, 

diagnosis, etc. However, beyond class discrimination, 

understanding the biological mechanisms responsible for the 

variance in observed profiles remains an important issue. For 

this, the constant development and improvement of 

computational techniques for metabolite identification, 

accurate quantification, data integration, and pathway 

visualization is important and will continue to be the focus of 

bioinformatics efforts in the coming years.  

CONCLUSION 

 Remarkable improvements in analytical instruments, 

including MS, have enabled the profiling of metabolites with 

increasingly high throughput and high precision. 

Bioinformatics, which facilitates the interpretation of the 

output of these instruments, is essential to the successful 

analysis of large dataset metabolomic applications. Tool 

development must keep up with the improvements in 

analytical instruments and thus represents an important 

challenge, but has great potential to add value to 

metabolomic datasets. 
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