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Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability

to spread or metastasize throughout the body. In recent years, remarkable progress has

been made toward the understanding of proposed hallmarks of cancer development, care,

and treatment modalities. Radiation therapy or radiotherapy is an important and integral

component of cancer management, mostly conferring a survival benefit. Radiation therapy

destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years,

radiation therapy has been driven by constant technological advances and approximately

50% of all patients with localized malignant tumors are treated with radiation at some point

in the course of their disease. In radiation oncology, research and development in the last

three decades has led to considerable improvement in our understanding of the differential

responses of normal and cancer cells. The biological effectiveness of radiation depends

on the linear energy transfer (LET), total dose, number of fractions and radiosensitivity of

the targeted cells or tissues. Radiation can either directly or indirectly (by producing free

radicals) damages the genome of the cell. This has been challenged in recent years by

a newly identified phenomenon known as radiation induced bystander effect (RIBE). In

RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues

demonstrate similar responses to that of the directly irradiated cells. Understanding the

cancer cell responses during the fractions or after the course of irradiation will lead to

improvements in therapeutic efficacy and potentially, benefitting a significant proportion

of cancer patients. In this review, the clinical implications of radiation induced direct and

bystander effects on the cancer cell are discussed.
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INTRODUCTION

Cancer is a complex disease, which grow locally and also pos-

sesses the capacity to metastasize to different organs in the body.

Cancer continues to be a major disease and the numbers of can-

cer cases are projected to be more than double worldwide in the

next 20–40 years and surpass heart disease as the leading cause

of death (Jemal et al., 2010; Thun et al., 2010). Moreover, man-

agement of cancer is a rising concern in an aging population

and is increasingly important in the developing countries (Siegel

et al., 2012). International Agency for Research on Cancer (IARC)

has predicted that by 2030, ∼26 million new cancer cases and

17 million cancer deaths will occur each year worldwide (IARC,

2010). That compares to 12.7 million new cancers and 7.6 mil-

lion cancer death reported by GLOBOCAN 2008. Despite initial

high response rates to the various treatment modalities and inter-

ventions, a large proportion of cancer patients suffered relapse in

years or decades later (Karrison et al., 1999; Weckermann et al.,

2001; Pfitzenmaier et al., 2006; Aguirre-Ghiso, 2007), resulting

a therapeutic challenge. Radiation therapy aims to deliver the

optimal isodose to the tumor volume while sparing the nor-

mal tissues. For years, radiation biologists have thought that the

biological effects induced by ionizing radiation are the direct

consequence of a radiation induced DNA damage and thereafter

death of cancer cell. In a recent seminal study Martin et al. (2014)

reported that the rapid breakdown of a tumor could cause a flood

of cancerous material, including intact cells to enter the lymphatic

flow and form tumors in the distanced organs, a possible mecha-

nism of the formation of therapy related metastasis. Therefore,

past 20 years have seen a major paradigm shift in radiation

biology and enormous progress has been made to understand

the biological and molecular determinants of cellular radiation

responses.

In recent years, many treatment and management options for

cancer exist with the primary ones including: surgery, chemother-

apy, radiation therapy and palliative care. Radiation therapy or

radiotherapy is a highly effective tool for the cancer treatment and

also an important component of cancer management, conferring

a survival and palliative benefits (Prise, 2006; Guadagnolo et al.,

2013; Liauw et al., 2013). In patients with inoperable tumors,

radiation therapy is the only option (Durante and Loeffler, 2010).

Furthermore, patients who are incompletely resected or recurrent

of tumors after surgery are mostly treated by radiation therapy

(Durante and Loeffler, 2010). Approximately 50% of all cancer

patients receive radiation therapy during their course of illness

(Delaney et al., 2005; Begg et al., 2011) either for cure or as a

palliative treatment to relieve the patients from symptoms such

as pain caused by the cancer (Delaney et al., 2005), majority of

patients are treated with the intent to cure (Barnett et al., 2009).

Although tremendous progress has been made toward under-

standing the hallmarks of cancer development and treatment
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response, a need remains to improve the curative rate by target-

ing multiple molecular pathways that mediate the DNA damage

response.

Radiation therapy destroys cancer by depositing high physi-

cal energy of radiations on the cancer cells. The first clinical use

of radiation for the cancer treatment was recorded in late 19th

century (Connell and Hellman, 2009), soon after Roentgen dis-

covered X-rays in 1895 and the effectiveness of radiation that has

been developed over the years showed a drastic beneficial effects

(Bernier et al., 2004; Giap and Giap, 2012). Over the years, radi-

ation therapy has been driven by constant technological advances

(Thariat et al., 2013) with the understanding of various molecular

mechanisms involved in the treatment sensitivity and resistance

(Jacinto and Hall, 2003; Camphausen and Tofilon, 2004; Sabatini,

2006; Kuwahara et al., 2014). In radiation oncology, research and

development in the last three decades has led to a considerable

improvement in our understanding of radiation dose and the

dose-volume responses. Ionizing radiation has been harnessed for

over a century to treat patients with cancer largely based on the

rationale that the rapidly proliferating cancer cells are more sen-

sitive than normal cells for the DNA damage response. Recently,

our understanding of radiation effects has been expanded widely

in terms of the consequences of radiation-induced tumor cell

death and various signaling pathways involved in sensitivity,

resistance and further molecular sensors that modify the tumor

response to radiation. Though high-energy photons (X-rays and

gamma rays) are the most common radiation modalities used in

the external beam treatment, protons provide dosimetric advan-

tages compared with photons. In this review, we discuss about

the biological response of rapidly proliferating cancer cells to the

radiation treatment.

RADIATION AND BIOLOGICAL IMPLICATIONS

Radiation remains as most widely utilized treatment modalities in

the clinical management of cancer (Burnette and Weichselbaum,

2013; McGale et al., 2014). Patients with localized malignant

tumors are treated with radiation at some point in the course of

their disease (Bentzen, 2006; Durante and Loeffler, 2010; Baskar

et al., 2012; Moding et al., 2013). Radiation therapy is applied in a

course of multiple fractions over several weeks to reduce the nor-

mal cell toxicity (Bentzen, 2006), with an estimation of about 40%

toward the curative treatment (Barnett et al., 2009). Furthermore,

radiation therapy is a highly cost effective with a single modality

treatment accounting about only 5% of the total cost of cancer

care (Ringborg et al., 2003). Therefore, any improvement in the

efficacy of radiation therapy will therefore benefit a large number

of patients. Recent advances in radiation therapy have enabled

the use of different types of radiation sources like photons and

protons for a better cancer treatment efficacy. Radiation ther-

apy uses low and high linear energy transfer (LET) radiations

to efficiently kill the tumor cells while minimizing dose (bio-

logical effective) to normal tissues to prevent toxicity (Lawrence

et al., 2008; Niemantsverdriet et al., 2012). LET is defined as mea-

surement of the number of ionizations which radiation causes

per unit distance as it traverses the living cells or tissue. X-rays,

gamma rays and charged particles are the most types of radia-

tion used for cancer treatment. In radiation oncology, radiations

can be delivered by a machine outside the body (external beam

radiation therapy) or irradiated through the radioactive material

placed in the body near to cancer cells/tissue (internal radiation

therapy, also called brachytherapy). On the other hand, systemic

radiation therapy uses radioactive substances, such as radioactive

iodine, that travel in the blood to kill the cancer cells.

A better understanding of biological effects of radiation will

lead to efficient use and better protection. Biological effective-

ness of radiation depends on the linear energy transfer (LET),

total dose, fractionation rate and radiosensitivity of the targeted

cells or tissues (Hall, 2007). Low LET radiations (X-rays, gamma

rays and beta particles) deposit a relatively small quantity of

energy. On the other hand, radiation particles either negatively

charged (electrons), positively charged (protons, alpha rays, and

other heavy ions) deposits more energy on the targeted areas

called the Bragg peak and causes more biological effects than the

low LET radiations. However, tumors have developed multiple

strategies to resist radiation damage. The following (1) Tumor

burden (2) Tumor microenvironment/hypoxia (3) Inherent or

acquired treatment resistance and (4) Repopulations during the

treatment are the major mechanisms involved in the treatment

resistance (Seiwert et al., 2007). Ionizing radiation effectively kills

human cells; over a period sufficiently high doses of radiation

can sterilize any tumor and achieve nearly 100% of tumor con-

trol probability (TCP) (Thariat et al., 2013), either alone or in

combination with surgery and chemotherapy. However, when

using external-beam radiation healthy tissues are unavoidably

exposed to radiation, which increases the normal tissue compli-

cation probability. Over the years, technological improvements in

radiation therapy delivery have aimed to widen the therapeutic

window while reducing the normal tissue impact and increase in

target tissue (tumor) control (Durante and Loeffler, 2010; Loeffler

and Durante, 2013), and the benefits will be three-fold: patient

cure, organ preservation and cost-efficiency.

The overall outcome of radiation treatment is cell or tissue

damage; if it is not repairable eventually kill the cells. Effectiveness

of radiation therapy that have been developed over years showed

an increase in the number of cancer survivors, but prevent-

ing or reducing late effects are a significant public health issue.

Furthermore, increase in the number of cancer survivors has

stimulated interest in the quality of life of cancer survivors. The

situation is important among non-elderly adults. In particu-

lar, children are inherently more radiosensitive and have more

remaining years of life during which radiation induced late effect

in normal cells could manifest in their hyperproliferation (Allan

and Travis, 2005). However, understanding the tumor biology

and considerable technical advancement (e.g., proton therapy)

over the last three decades provides the opportunity for better

cancer treatment.

DIRECT EFFECTS

Ionizing radiation has been used for more than a century to

treat the cancer based on the rationale that the rapidly prolif-

erating cancer cells are sensitive to the radiation treatment than

normal cells (Bernier et al., 2004). Under the target-cell dam-

age, the major effect of ionizing radiation on tissues are the

direct cell killing mostly by damaging the DNA, resulting in the
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depopulation of cell populations and subsequent functional defi-

ciency. Radiation induced ionizations can act directly on the

cellular molecules and cause damage (Figure 1). Also can act

indirectly, producing free radicals which are derived from the ion-

ization or excitation of the water component (80% of a cell is

composed of water) of the cells (Figure 1). For ionizing radia-

tions such as low LET X-rays and gamma-rays, 60% of cellular

damage is caused by the indirect effects (Barcellos-Hoff et al.,

2005). Radiation induced double strand breaks (DSBs) represent

the most lethal types of DNA damage, leading to cell death, if

unrepaired. However, DNA damage response mechanisms rep-

resent a vital line of defense against exogenous and endogenous

damage caused by radiation and promote two distinct outcomes:

survival and the maintenance of genomic stability.

Multiple pathways are involved in the genome maintenance of

a cell after its exposure to ionizing radiation. Radiation therapy

like the most anticancer treatments achieves its therapeutic effect

by inducing DNA damage and thereafter cell death (Baskar et al.,

2008). Several experiments were performed indicating that the

DNA of cancer cells repair more slowly and also produce more

DNA breaks (single strand break and double strand breaks) than

the normal cells (Parshad et al., 1993; Shahidi et al., 2007, 2010;

Mohseni-Meybodi et al., 2009). Furthermore, various proteins

involved in cell death and DNA damage mechanisms (Jorgensen,

2009) decrease the radioresistance of the fast doubling cancer

cells, while increase in radioresistance of slow doubling normal

cells (Figure 2). Therefore, ionizing radiation as applied in the

cancer treatment induces a complex response in the cells. Some

processes aim to repair the radiation induced damage of the

normal cells, whereas others counteract the damage or induce

cancer cell death. Growing evidence suggests that various signal-

ing pathways including the DNA repair response pathways shows

redundancy in normal cells (Moding et al., 2013). Since cancer

cells have various mutations that cause the loss of this redundancy

and therefore targeting the DNA damage response pathways in the

FIGURE 1 | Radiation mainly acts in two ways. (1) Induces ionizations

directly on the cellular molecules and cause damage. (2) Also acts

indirectly, producing free radicals which are derived from the ionization or

excitation of the water component of the cells.

cancer cells can induce cell death. Hence DNA is the main target

for radiation-induced cell killing (Jorgensen, 2009) and there is

considerable redundancy in the ability of normal cells to repair

DNA damage (Núñez et al., 1996), therefore targeting DNA dam-

age response pathways is a promising approach for the selective

radiosensitization of cancer cells (Helleday et al., 2008).

p53 is a transcription factor and also one of the most

commonly mutated genes in cancer (Brosh and Rotter, 2009)

responds to ionizing radiation by initiating cell cycle arrest,

senescence, apoptosis and DNA damage repair (Stiewe, 2007).

However, whether p53 induces apoptosis or cell cycle arrest

for the DNA damage repair is a complex process and partly

depends on the abundance of the p53 protein (low protein levels

lead to cell cycle arrest and high protein levels lead to apop-

tosis) (Lai et al., 2007). However, various DNA repair mecha-

nisms within the tumor cells interfere with the radiation induced

damage and further increase the radioresistance of cancer cells

(Jorgensen, 2009). Furthermore, inhibition of DNA repair pro-

teins such as ATM or DNA-dependent protein kinase (DNA-PK)

have been shown to sensitize the cancer cells to radiation treat-

ment (Veuger et al., 2003; Hickson et al., 2004; Rainey et al.,

2008).

Besides the DNA repair pathways, ionizing radiation also trig-

gers cancer cells adaptive cellular responses. Various treatment

resistant signal transduction pathways are activated and the resis-

tance can be either intrinsic or an acquired resistance during the

fractionated radiation treatment (Toulany and Rodemann, 2013).

Signaling pathways that provide cancer cells with a proliferative

advantage or allow them to evade the cell death remains a major

clinical problem. One of the molecular events by which tumors

can become radioresistant is through the ligand-independent

activation of signal transduction pathways such as those reg-

ulated by membrane-bound receptor tyrosine kinases (RTKs).

In this context, epidermal growth factor receptor (EGFR) plays

a major role in regulating various downstream signaling path-

ways, such as the phosphatidylinositol 3-kinase (PI3K) and its

downstream kinases such as AKT and mammalian target of

rapamycin (mTOR), signal transducer and activator of transcrip-

tion (STAT) pathway and Ras-mitogen-activated protein kinase

(MAPK) pathway (Rodemann et al., 2007; Rodemann and Blaese,

2007). These pathways control the most hallmarks of cancer,

including cell cycle, survival, metabolism, invasion, angiogenesis,

and genomic instability (Datta et al., 1997; Huang and Harari,

2000; Nyati et al., 2006). Among the prosurvival pathways acti-

vated by RTKs, PI3K-AKT-mTOR signaling pathway is frequently

upregulated in human tumors and regarded as one of the most

challenging prosurvival pathways involved in the resistance to

cancer treatment (Engelman, 2009; Liu et al., 2010; Castellano

and Downward, 2011).

Recent advances in cancer biology have demonstrated that

PI3K-AKT-mTOR signaling pathway controls Fanconi anemia

group D2 protein (FANCD2) and ribonucleotide reductase

(RNR) and further prolongation of radiation-induced gamma

H2AX foci formation (Choi et al., 2010; Shen et al., 2013;

Wang et al., 2014). Regulation of DNA repair genes (FANCD2

and RNR) suggests that the PI3K-AKT-mTOR signaling pro-

motes cancer cell survival and resistance to radiation treatment
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FIGURE 2 | Radiation damages the genetic material (DNA) causing

single strand breaks (SSB) or double strand breaks (DSB) in the cells,

thus blocking their ability to divide and proliferate further. Mechanisms

involved in the decrease of radiosensitivity of the fast doubling cancer cells,

while increasing radioresistant of the slow doubling normal cells benefits the

cancer patients.

by enhancing the DNA damage repair of the cancer cells. In

addition, PI3K-AKT-mTOR signaling pathway also may play a

role in the integral functions for non-cancerous (normal) cells

repopulation along with the proteins involved in DNA repair

mechanisms (Wullschleger et al., 2006). Ionizing radiation also

activates NF-κB transcriptional pathway, through the activation

of IκB kinase-α as a protective response to damage and inhibition

of this kinase can lead to increased radiosensitvity for the cancer

treatment (Brach et al., 1991; Criswell et al., 2003). However, how

these pathways inhibition may improve the radiation therapy effi-

cacy in patients remains elusive and the mechanisms underlying

the initiation/manifestation of radiation-induced genomic insta-

bility in normal and cancer cells are far understood (Bensimon

et al., 2013). Furthermore, improvement in preclinical methods

for the biological mechanisms involved in signaling pathway(s)

for the treatment resistance, cell cycle checkpoints, DNA dam-

age and repair, anti-angiogenesis could increase the therapeutic

response of tumor microenvironment, while sparing the sur-

rounding normal tissues. As a result, inhibition of the cancer cells

prosurvival pathways has the potential to increase the radiosensi-

tivity of cancer cells through activating/inhibiting multiple mech-

anisms. Furthermore, inhibition of the cancer cell survival could

also affect the radiosensitivity of normal tissues as well, thus

decreasing the overall therapeutic index of radiation. Therefore,

strategies to improve radiation therapy to increase the effect on

tumor while less toxicity on the normal tissues should be achieved

without sensitizing the normal tissues and also without protecting

the tumors to the radiation treatment.

BYSTANDER EFFECTS

Cancer therapy usually involves exposing the body to agents that

kill cancer cells more efficiently than the normal cells. Recent

advances in radiation biology and oncology have demonstrated

that the radiation is an effective tool to control the localized

tumors. However, in recent years mounting evidence indicates

that the radiation also can damage not only the cells adja-

cent to the tumor, but also far from the radiation track by the

generation of gap-junction or cytokine-mediated cellular toxic-

ity and also various cellular and microenvironmental signaling

cascades are involved (Figure 3) (Shao et al., 2004; Barcellos-

Hoff et al., 2005; Baskar, 2010; Butterworth et al., 2013; Suzuki

and Yamashita, 2014). In the past two decades, evidence has

been mounted for a novel biological phenomenon termed as

“bystander effect” (BE). Ionizing radiation induces DNA dam-

age in the form chromosomal aberrations were first reported

not only in the directly exposed cells but also in their neighbor-

ing non-irradiated cells, termed as radiation-induced bystander

effect (RIBE) (Nagasawa and Little, 1992). Therefore, the discov-

ery of non-targeted responses to radiation, such as the bystander

response, has called the direct radiation effect paradigm into

question. Various biological effects of ionizing radiation are not

restricted to only the directly irradiated cells (targeted effects),

but are also observed in the progeny of non-irradiated cells

(non-targeted effects) (Bensimon et al., 2013). RIBE has been

demonstrated in numerous in vitro and in vivo studies using

a variety of biological endpoints. These effects include various

molecular and genomic instabilities as seen in the targeted cells.
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FIGURE 3 | Schematic representation of bystander effects induced by radiation to the adjacent cells and distanced organs.

Bystander effects has been extensively studied in the past two

decades and reported cell death (Seymour and Mothersill, 1997),

induction of sister chromatid exchanges (Nagasawa and Little,

1992; Deshpande et al., 1996), formation of micronuclei (Shao

et al., 2003; Balajee et al., 2004; Ponnaiya et al., 2004), muta-

tions (Zhou et al., 2000), delay in cell cycle (Ponnaiya et al., 2004)

and transformation (Sawant et al., 2001) of non-irradiated cells

along with the proteins involved in the cell cycle and DNA damage

response (Hickman et al., 1994; Azzam et al., 1998, 2001; Sokolov

et al., 2007; Baskar et al., 2008).

Radiation can cause chromosomal aberrations arising de novo

in the cell progeny, several generations after irradiation. Delayed

genomic instability has been observed in many types of mam-

malian cells (Ponnaiya et al., 1997; Suzuki et al., 2003; Mothersill

et al., 2006; Sudo et al., 2008). Therefore, communication

between cells and their microenvironment is critical for both nor-

mal tissue homeostasis and tumor growth. RIBE has important

implication in tumor control and in radiation therapy, wherein

the targeted (directly irradiated) cells transmit the damaging

signals to the non-irradiated normal cells, thereby inducing a

response similar to that of directly irradiated cells (Mothersill

and Seymour, 1998; Shao et al., 2002; Baskar et al., 2007; Baskar,

2010; He et al., 2012). Two major mechanisms mediate RIBE.

In the normal and certain cancer cells, mechanisms between

cell to cell communications are through the direct gap junction-

mediated intercellular communication (adjacent cells/confluent

cells) (Azzam et al., 1998; Zhou et al., 2000). Secondly, a range

of soluble signaling molecules such as cytokines are involved

in the communications between the targeted to distanced non-

targeted organs/sub-confluent cells were reported (Ivanov et al.,

2010; Hei et al., 2011; Klammer et al., 2013). Among cytokines,

tumor growth factor-beta-1 (TGF-β1) has been found to be

an important mediator in the bystander effects (Gow et al.,

2010; Temme and Bauer, 2013). Recently, Jiang et al. (2014)

showed in the lung cancer cells, that the RIBE is mediated by

the TGF-β1–miR-21–ROS pathway. In recent years, number of

candidate mediators in bystander effects were identified, among

them transforming growth factor-b (TGF-β) (Iyer et al., 2000),

tumor necrosis factor-alpha (a) (TNF-α) (Shareef et al., 2007),

interleukin-6 (IL-6) (Chou et al., 2007), interleukin-8 (IL-8)

(Facoetti et al., 2006) and increase in reactive oxygen species

(ROS) (Lyng et al., 2002). RIBE has an important implication in

radiation therapy and its impact in radiation oncology is grad-

ually beginning (Munro, 2009). In cancer cells multiple RIBEs,

including cell growth stimulation, DNA damage, and cell death

have been observed (Sokolov and Neumann, 2010; Veldwijk et al.,

2014). However, RIBE is not seen in the human embryonic stem

cells (hESC) (Sokolov and Neumann, 2010), indicating stem cells

are less susceptible to RIBE than the somatic differentiated cells.

RIBE is also reported using mouse model, the bystander

responses of internal tumor cells or tissues were also con-

firmed in vivo, further cancer-associated events such as p53 alter-

ation, MMPs (Matrix metalloproteinases) activity and epigenetic

changes were reported in the RIBE (Camphausen et al., 2003;

Koturbash et al., 2007). BE can be mediated through an increase

in genomic instability, cell cycle delay, cell death (apoptosis), for-

mation of micronucleus, mutations, changes in proteins (gene)

expression, and further by malignant transformation (Nagasawa

and Little, 1992; Hickman et al., 1994; Shao et al., 2003; Ponnaiya

et al., 2004; Baskar et al., 2008). However, the components

released from the irradiated cells and further the communica-

tion signals involved between the irradiated and non-irradiated
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cells are still not well known. Recently, Bensimon et al. (2013)

showed for the first time in breast cancer cells, a cancer stem

cell (CSC) marker CD24 is associated with the transmission of

genomic instability of the bystander cells. Recently Aravindan

et al. (2014) reported that the clinical doses of abdominal irra-

diation (2Gy) in mice showed an increase in the onset of NF-kB

signal transduction and subsequent NF-kB activation in the non-

targeted distant organ (heart). However, little is known about the

type of DNA damage of the bystander cells, its radiation resistance

and further damage of non-targeted normal cells contributing to

tumorigenesis and how this damage can be repaired by designing

novel therapeutic approaches to cancer treatment paves a way for

an effective strategy to compact the disease.

FUTURE PERSPECTIVE

Though tremendous progress has been made toward understand-

ing the hallmarks of cancer, cancer is responsible for one in

eight deaths worldwide (Garcia et al., 2007; Center et al., 2011).

Despite the use of chemotherapy, radiation therapy and surgery,

the overall outcome for cancer cure continues to be disappoint-

ing. Radiation therapy offers an effective treatment for advanced

cancer and the prime goal of radiation treatment is to inhibit the

cancer cells multiplication potential and eventually kill the cells.

However, radioresistance and repopulation (relapse or recur-

rence) at the primary site and/or at the malignant areas remain

a significant clinical challenge in cancer control. Certain tumors

are intrinsically radioresistant, while others acquire radioresis-

tance during the treatment (Seiwert et al., 2007). To overcome the

tumor cell radioresistance, it will be a challenging one to iden-

tify tumor specific pathways and inhibitors. In the past few years,

enormous progress has been made in radiation therapy leading to

the possibility of depositing more radiation energy (proton beam

radiation therapy, e.g., Bragg Peak) on the tumors while spar-

ing the surrounding normal tissues (Bhide and Nutting, 2010).

We do not have a comprehensive answer about the molecular

mechanisms involved in the initiation of cancer, developing resis-

tance to treatment and further individual variations in treatment

susceptibility, especially of therapy-related beneficial or detrimen-

tal effects. In a microenvironment, cancer cells are influenced by

various growth signaling pathways to resist the radiation effects

and further modify the adjacent normal tissues to impede tumor

recurrence or metastasis. Overall, small increase in radioresis-

tance will lead to a large number of cancer cell survivals and

further the proliferation forms cancer mass and with a loga-

rithmic decrease in cancer cell death after radiation treatment.

Therefore, in the coming years more thrust should be given on

the cancer cells radioresistance, e.g., cancer stem cell’s radiosen-

sitivity will focus on several different areas along with molecular

targeted drugs to control this rapidly growing disease worldwide.

Furthermore, with a greater understanding of the tumor biology,

evolution of radiation therapy will continue with the improve-

ments in imaging, computing and engineering advancements,

and potentially decimate the cancer cells with fewer side effects.
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