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Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective
conversion of biomass to energy will require the careful pairing of advanced conversion

technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass

can be converted to useful energy products via two distinct pathways: enzymatic or
thermochemical conversion. The thermochemical pathways are reviewed and potential

biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification,
and combustion are identified. Biomass traits influencing the effectiveness of the

thermochemical process (cell wall composition, mineral and moisture content) differ

from those important for enzymatic conversion and so properties are discussed in the
language of biologists (biochemical analysis) as well as that of engineers (proximate and

ultimate analysis). We discuss the genetic control, potential environmental influence, and

consequences of modification of these traits. Improving feedstocks for thermochemical
conversion can be accomplished by the optimization of lignin levels, and the reduction of

ash and moisture content. We suggest that ultimate analysis and associated properties
such as H:C, O:C, and heating value might be more amenable than traditional biochemical

analysis to the high-throughput necessary for the phenotyping of large plant populations.

Expanding our knowledge of these biomass traits will play a critical role in the utilization of
biomass for energy production globally, and add to our understanding of how plants tailor

their composition with their environment.

Keywords: biomass composition, thermochemical conversion, high-throughput phenotyping, silica, moisture

content, proximate/ultimate analysis, heating value

INTRODUCTION

MULTIPLE PATHWAYS FROM FEEDSTOCK TO ENERGY

Our society and economy rely heavily on energy from fossil fuels.

Most (84%) of the world’s energy comes from fossil fuels and
demand will increase as world energy consumption is expected
to increase 53% by 2035 (EIA, 2011). As prices rise, unconven-

tional fossil resources (tar sand oil, shale gas, arctic and deepwater
oil) may become economically viable to extract, but they are

ultimately a limited resource and carry risks to our health and
environment (Kelly et al., 2010; Osborn et al., 2011; Frohlich,

2012).
Bioenergy, derived from plants that use sunlight and CO2 to

assimilate carbon into biomass, has emerged as a potentially sus-
tainable energy source with low climate impact. The Renewable

Fuel Standard, enacted in 2005 and expanded in 2007, mandates
liquid biofuel production in the US (EISA, 2007). The majority of

the fuel produced today to support this mandate is derived from
either ethanol fermented from corn grain, or biodiesel from soy-

bean oil, but by the year 2022, 58% of the legislated 36 billion
gallons is required to be produced from cellulosic or advanced

cellulosic biomass. Technological advances and commercializa-
tion have not occurred as quickly as expected, and several barriers

must be overcome to achieve these targets (National Research

Council, 2011).
One of these barriers is the production of high quality biomass

that can be economically converted into useful energy products.
Biomass quality depends on the plant composition—cellulosic

biomass is primarily comprised of cellulose, hemicellulose, lignin,
and lesser amounts of other extractable components such as

pectins, proteins, etc. that make up the plant cell wall. Cellulose
is a polymer of D-glucose. Hemicellulose is a general term for

heterogeneous branched five and six carbon sugars. Lignin is
a complex branched polymer of phenolics, and is classified as
three major types, based on the monomers present: sinapyl (S)

coumaryl (H) and coniferyl (G) (Albersheim et al., 2010). The
proportions and specific chemical composition of these compo-

nents varies greatly among species (Pauly and Keegstra, 2008;
Carroll and Somerville, 2009; Allison et al., 2010; Tao et al., 2012b;

Zhao et al., 2012a). Furthermore, significant compositional vari-
ation has been observed within a species (Jin and Chen, 2006;

Tao et al., 2012b), within tissue type (Summers et al., 2003;
Monti et al., 2008; Rancour et al., 2012; Sabatier et al., 2012), as

well as between developmental stages (Rancour et al., 2012), cell
types, and even regions of the cell wall (Albersheim et al., 2010).
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Additional variability is observed throughout the growing season
and as plants senesce (Landström et al., 1996; Adler et al., 2006;

Hodgson et al., 2010; Nassi o Di Nasso et al., 2010; Singh et al.,
2012; Zhao et al., 2012b), as well as across different environments

(Adler et al., 2006; Mann et al., 2009; Allison et al., 2011; Monono
et al., 2013; Serapiglia et al., 2013).

Variation, either naturally existing variation or driven with
biotechnology, is the ultimate source of improved crop varieties.
Most feedstock improvement efforts have focused on the enzy-

matic conversion pathway, and how to increase the availability
of components of plant biomass that can readily be converted

into simple sugars and fermented into alcohols; i.e., maximizing
cellulose and minimizing lignin. Other articles in this research

topic address challenges and advances in enzymatic conver-
sion, as have multiple recent reviews (Vermerris, 2011; Feltus

and Vandenbrink, 2012; Jordan et al., 2012; Nookaraju et al.,
2013).

A promising alternative form of bioenergy production is via
thermochemical conversion—the controlled heating or oxidation

of biomass (Demirbas, 2004; Goyal et al., 2008). The term cov-
ers a range of technologies including pyrolysis, gasification, and

combustion which can be configured to produce outputs of heat,
electricity, or gaseous or liquid precursors for upgrading to liq-

uid fuels or chemical feedstocks (Figure 1 and Butler et al., 2011;
Wang et al., 2011; Brar et al., 2012; Bridgwater, 2012; Solantausta

et al., 2012). Thermochemical technologies show great promise
for the production of renewable electricity, both in the context of

biomass co-firing in existing coal powerplants (Demirbaş, 2003b;
Baxter, 2005), and for decentralized electrification projects in
developing countries (Yin et al., 2002; Hiloidhari and Baruah,

2011; Shackley et al., 2012). Thermochemical produced electricity
could help fulfill standards enacted in many US states that require

a certain percentage of electricity be produced from renewable
sources (Carley, 2009; DOE DSIRE, 2012; EIA, 2012). In some

cases, thermochemical production of renewable electricity or liq-
uid fuels and associated co-products is the most effective use of

biomass for fossil energy displacement (Botha and von Blottnitz,
2006; Campbell et al., 2009; Cherubini et al., 2009; Searcy and

Flynn, 2010; Giuntoli et al., 2012).
A well-functioning system requires the pairing of appro-

priate feedstocks and conversion technologies (Robbins et al.,
2012), but optimization of biomass for thermochemical conver-

sion has received little attention. The paradigm within which
plant biologists discuss and analyze biomass is different than that

of engineers analyzing feedstocks for thermochemical systems.
While there is overlap between the paradigms, thermochemical

feedstock development could focus on traits or approaches that
provide the most direct path to optimized feedstock composition.

In this review, we discuss how, through collaboration of biolo-
gists and engineers, optimized biomass composition and process
engineering might result in reduced transport and pre-processing

costs and maximized energy yields via thermochemical utilization
of biomass.

We begin with a review of thermochemical conversion tech-
nologies with an emphasis on the feedstock properties that are

important for each technology and relate these properties back
to biomass traits that are commonly measured by biologists.
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FIGURE 1 | Overview of the steps involved in growing, transporting,

processing, and converting biomass into thermochemical energy

products. Pyrolysis, gasification, and combustion take place under

conditions of increasing oxygen availability during the reactions. Particle

residence time and temperature may be optimized to yield different

proportions and types of products. Boxes represent the properties

important for each step (growing, transport and processing, conversion,

upgrading). The primary products of each process and the potential end

uses are highlighted. Note that intermediate products such as syngas and

pyrolysis oil can be upgraded to chemicals or liquid transportation fuels or

converted to obtain electricity and heat. Agronomic traits include those

traits that allow the plant to survive and produce acceptable yields.

This is followed by a discussion of the natural variation in plant

traits that can be exploited for optimization of these proper-
ties, including what is known of the genetics governing those

traits, and the potential impacts of modifying these traits at a
systems level. We end with a discussion of how best to mea-

sure these properties and traits, and offer a perspective on which
approaches might be useful for high-throughput phenotyping.

To help relate the different biomass traits that biologists and
engineers measure, we provide a brief list of terms and defini-

tions (Table 1). Areas where there are large gaps in knowledge
are highlighted as future research needs. Our focus is on cel-
lulosic biomass from herbaceous crops because (1) herbaceous

agricultural residues comprise a large potential resource (DOE,
2011), (2) a large fraction of the US biofuel mandate is expected

to be dedicated herbaceous bioenergy crops (DOE, 2009; USDA,
2010), and (3) herbaceous crops can be grown in more regions

than woody crops, and allow more flexibility in year to year land
allocation.
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Table 1 | Common terms used in this review in the context of

biomass for bioenergy.

Biochemical

analysis

Characterization of biomass in terms of structural

and non-structural carbohydrates, lignin, protein, and

extractives (pectins, lipids, etc.)

Enzymatic

conversion

Use of microorganisms or pure enzymes to transform

feedstocks into energy products and co-products, e.g.,

fermentation, anaerobic digestion

Fixed carbon (FC) Mass remaining as a solid after proximate analysis,

excluding ash

Higher heating

value (HHV)

Energy released as biomass undergoes complete com-

bustion to CO2, H2O (condensed), and other minor

products at standardized conditions

Intensive

properties

Non-separable traits that are independent of the mass

of a sample

Property Trait or parameter in the context of a certain bioenergy

conversion pathway or engineering systems

Phenotype Observable or measurable characteristic specific to a

given environment

Proximate

analysis

Characterization in terms of the mass volatilized (as

moisture and volatile matter) and mass remaining (fixed

carbon and ash) during a standardized heating regime

Summative

properties

Traits that describe specific separable components of

the biomass and sum to 100% in the context of a mass

balance

Thermochemical

conversion

Controlled heating or oxidation of feedstocks to pro-

duce energy products and/or heat, e.g., pyrolysis,

gasification, combustion

Trait Genetic or physical characteristics (physical character-

istics are also referred to as phenotypes)

Ultimate analysis Characterization of biomass in terms of its individual

constituent elements (C, H, O, N, S, etc.)

Volatile matter

(VM)

Mass loss as gaseous products (excluding moisture)

during proximate analysis

FEEDSTOCK PROPERTIES FOR THERMOCHEMICAL

CONVERSION

THERMOCHEMICAL CONVERSION TECHNOLOGIES

Thermochemical conversion is the controlled heating and/or
oxidation of biomass as part of several pathways to produce

intermediate energy carriers or heat (Figure 1). Included is every-
thing from biomass combustion, one of the simplest and earliest

examples of human energy use, to experimental technologies
for the production of liquid transportation fuels and chemical

feedstocks. Thermochemical conversion technologies are clas-
sified by their associated oxidation environment, particle size

and heating rate, ranging from heating biomass in an oxygen-
free environment (endothermic) to full exothermic oxidation of

biomass.
Pyrolysis is the thermal decomposition of biomass into highly

heterogeneous gaseous, liquid, and solid intermediates in the
absence of oxygen; the process is endothermic. The liquid product

(pyrolysis oil) is a heterogeneous mixture characterized by high
oxygen content and alkalinity, which can be upgraded to fuels or

chemicals. The solid product (char) can be used as a fuel or soil
amendment (Field et al., 2013). Pyrolysis is differentiated between

slow pyrolysis, with residence times ranging from minutes to days
and optimized for the production of char whereas fast pyroly-

sis, with residence times on the order of seconds to minutes, is
optimized for the production of pyrolysis oil (Babu, 2008). On

the engineering front, research is focused on optimizing process
variables (temperature, heating rate, oxidation environment) and
product upgrading via catalytic and thermal processes to produce

infrastructure-compatible liquid transportation fuels (Demirbas,
2007).

Gasification is the exothermic partial oxidation of biomass
with process conditions optimized for high yields of gaseous

products (syngas or producer gas) rich in CO, H2, CH4, and CO2.
The gas can be cleaned and used directly as an engine fuel or

upgraded to liquid fuels or chemical feedstocks through biolog-
ical fermentation (Datar et al., 2004) or catalytic upgrading via

the Fischer-Tropsch process (Boerrigter and Rauch, 2005; Huber
et al., 2006; Wang et al., 2008). One of the challenges of gasifica-

tion is the management of higher molecular weight volatiles that
condense into tars; these tars are both a fouling challenge and a

potential source of persistent environmental pollutants such as
polycyclic aromatic hydrocarbons (Milne et al., 1998).

The direct combustion of biomass is still the dominant bioen-
ergy pathway worldwide (Gaul, 2012). Complete combustion

involves the production of heat as a result of the oxidation of
carbon- and hydrogen-rich biomass to CO2 and H2O. However,

the detailed chemical kinetics of the reactions that take place dur-
ing biomass combustion are complex (Jenkins et al., 1998; Babu,
2008) and imperfect combustion results in the release of interme-

diates including environmental air pollutants such as CH4, CO,
and particulate matter (PM). Additionally, fuel impurities, such

as sulfur and nitrogen, are associated with emission of SOX and
NOX (Robbins et al., 2012).

Other thermochemical technologies include carbonization,
the production of charcoal via the partial oxidation of woody

feedstocks with long residence time (Bailis, 2009), and hydrother-
mal approaches, which utilize an aqueous environment at mod-

erate temperatures (200–600◦C) and high pressures (5–40 MPa)
to decompose biomass into solid, liquid, and gaseous interme-

diates (Peterson et al., 2008; Brown, 2011). Another technology,
torrefaction, is the low temperature (200–300◦C) pyrolysis of

biomass in order to remove water and volatiles, increasing its
energy density and susceptibility to mechanical pretreatment

(Van der Stelt et al., 2011). The remainder of this review will focus
on pyrolysis, gasification, and combustion, as these are the most

fully developed modern bioenergy pathways with the most clearly
defined feedstock requirements.

RELATIONSHIPS BETWEEN FEEDSTOCK PROPERTIES

The performance of these thermochemical conversion pathways

relies on the use of appropriate biomass feedstocks. The mass
balance of a kilogram of biomass is commonly conceptualized

in three different ways, via either biochemical, proximate, or
ultimate analysis (Figure 2A). Biochemical analysis refers to the

relative abundance of various biopolymers (e.g., cellulose, lignin,
etc) in the biomass, whereas ultimate analysis refers to the relative
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abundance of individual elements (e.g., C, H, O, N, and S).
Proximate analysis involves the heating of biomass to quantify its

thermal recalcitrance via the relative proportions of fixed carbon
(FC) and volatile matter (VM), a method originally designed for

the characterization of coal (e.g., American Society for Testing
and Materials, ASTM standard D3172). These different concep-

tualizations are alternate ways to describe the same biomass; for
example, a higher lignin:cellulose ratio (biochemical) also implies
lower H:C and O:C ratios (ultimate) (Couhert et al., 2009).

Moisture and elemental ash complete the mass balance of a unit of
freshly-harvested biomass, and are universal across these different

conceptualizations. Different combinations of these mass-based
properties (summative properties) result in different bulk prop-

erties (intensive properties) such as grindability (comminution),
density and heating value.

Feedstock properties that affect thermochemical conversion
effectiveness include heating value, ash content, moisture level,

and others discussed next. While thermochemical conversion
engineers typically describe biomass in terms of proximate or ulti-

mate analysis, biologists and breeders are more accustomed to
the terminology of biochemical analysis. Thus, important proper-

ties are introduced in the context of proximate/ultimate analysis,
and then related back to their biochemical equivalents. Current

knowledge of the genetic and environmental control of these bio-
chemical properties are then described in detail in the section

titled “Genetic Control of Traits Related to Feedstock Properties.”

HEATING VALUE AND RATIOS OF C, H, AND O

Heating value, also known as calorific value, is the energy avail-
able in the feedstock as estimated from the heat released during

complete combustion to CO2, H2O (gaseous H2O for lower heat-
ing value, LHV, or liquid H2O for higher heating value, HHV),

and other minor products (N2, ash, etc.), and is a primary mea-
sure of quality of a feedstock. Moisture content impacts the useful

energy of freshly harvested biomass as heat liberated during com-
bustion is wasted evaporating this moisture (Bridgwater et al.,

2002). Since HHV is a mass based measurement, high mineral
content leads to a decrease in HHV, because minerals contribute

little energy during biomass oxidation (Jenkins et al., 1996; Sheng
and Azevedo, 2005). This is particularly important for grasses and
other herbaceous feedstocks that can consist of up to 27% ash by

mass (Table 2).
Biomass feedstocks are also described in terms of ultimate

analysis based on the relative content of individual elements such
as C, H, and O. The overall ratios of these elements are directly

related to the biochemical components of the cell wall. Cellulose
has a higher H:C and O:C ratio than lignin (Couhert et al., 2009).

Lignin has a higher HHV than cellulose or starch (Helsel and
Wedin, 1981; Demirbaş, 2001), consistent with the idea that oxy-

genated fuels release less heat on combustion (Vermerris and
Saballos, 2013). This is an example of divergent feedstock require-

ments for enzymatic vs. thermochemical conversion pathways:
while minimizing lignin improves hydrolysis and fermentation

yields, high lignin is beneficial for the energy balance of thermo-
chemical systems.

Upgrading gaseous pyrolysis and gasification products to liq-
uid fuels also requires a specific H:C stoichiometry (Datar et al.,

2004; Wright and Brown, 2007). Biomass has a low H:C ratio
(ranging from 0.7 to 2.8 in Table 2) relative to that of the desired

liquid products (2–4 for alcohols and alkanes), so full conversion
requires adding supplemental hydrogen in the form of steam or

H2, or removing carbon as CO2 (Borgwardt, 1999; Pereira et al.,
2012). High lignin levels may be advantageous for thermochemi-

cal conversion pathways targeting liquid fuels, as it may move the
process closer to overall stoichiometric balance.

PROXIMATE ANALYSIS AND CONVERSION PRODUCT YIELDS

Proximate analysis separates the biomass into four categories

of importance to thermal conversion: moisture, VM (gases and
vapors driven off during pyrolysis), FC (non-volatile carbon), and

ash (inorganic residue remaining after combustion) (Miles et al.,
1996; Jenkins et al., 1998; Riley, 2007). The measurement is a

proxy for thermochemical conversion performance, and the rel-
ative proportions of FC vs. VM are related to the relative yields

and composition of solid, liquid, and gaseous products gener-
ated during pyrolysis and gasification (Brar et al., 2012). Even for
combustion, the FC:VM ratio may significantly change the emis-

sions profile of products of incomplete combustion (Cummer
and Brown, 2002). Biomass generally contains high levels of

VM (ranging from 64 to 98%, Table 2) compared to fossil coal
[typically below 40% (Vassilev et al., 2010)].

In addition to impact on heating value, the relative concentra-
tions of cellulose and lignin also affect the yields of thermochem-

ical conversion products. The different biochemical constituents
of biomass have different levels of thermal stability, and as pyrol-

ysis temperatures increase hemicellulose reacts first, followed by
cellulose and then lignin (Fahmi et al., 2007; Gani and Naruse,

2007). This is consistent with studies that show isolated lignin
extracts having a higher FC content than pure cellulose (Couhert

et al., 2009), a strong positive correlation between FC and lignin
across multiple biomass samples (Demirbaş, 2003a), and increas-

ing lignin levels associated with low gas yields and high char yields
during fast pyrolysis (Lv et al., 2010). However, several studies

suggest the opposite, showing cases where increasing lignin is
associated with lower FC (Fahmi et al., 2007, 2008), or increasing

yields of pyrolysis oils (Tröger et al., 2013).
Clear relationships between FC:VM and lignin:cellulose con-

tent in biomass samples are likely confounded by the presence of

minerals, some of which exert a strong influence on the yields
and qualities of thermochemical conversion products due to cat-

alytic activity (Couhert et al., 2009; Lv et al., 2010). For pyrolysis,
high mineral content reduces oil yield and increases char and gas

products (Fahmi et al., 2007; Couhert et al., 2009; Tröger et al.,
2013). Relationships between VM and lignin are confounded by

ash content (Raveendran et al., 1995). In addition, ash exerts a cat-
alytic effect on the liquid fraction, encouraging cracking of high

molecular weight species into lighter ones (Fahmi et al., 2008).
The catalytic activity of ash changes the dynamics of combustion

and gasification; reducing the ash content of biomass by washing
has been shown to increase the temperature of peak combus-

tion rate (Fahmi et al., 2007) but decrease the temperature of
peak gasification mass loss rate (Lv et al., 2010). Many studies

show a negative correlation between mineral content and lignin
across many types of biomass (Fahmi et al., 2007, 2008; Lv et al.,
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FIGURE 2 | Overview of the relationships between biomass traits and

properties, and common methods of quantification. Colors for each

property are maintained throughout Figure 2. (A) Biomass

characterization in terms of summative properties (shown in green, blue,

orange, and red) and intensive properties (shown in gray). Three common

paradigms for describing biomass are inter-related: biochemical,

proximate, and ultimate. While enzymatic conversion has focused on

characterizing biomass in a biochemical paradigm, two alternatives more

appropriate for thermochemical conversion are proximate and ultimate

analysis. Moisture and minerals (ash) are common across all paradigms.

(B) Examples of common primary (direct) methods of quantifying each

component identified in (A). Note that this list is not complete, and note

that proximate analysis necessitates moisture and total ash quantification.

Elements that remain in the ash when biomass is combusted are

referred to as minerals before combustion and ash afterwards. Examples

of relevant ASTM standards for biomass, wood, refuse, or coal are listed.

These direct methods are contrasted with indirect methods described in

the text but not shown here.
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Table 2 | Ranges of key thermochemical properties in several biomass feedstocks as summarized from literature∗

Corn Corn Wheat Rice Sugarcane Reed Switchgrassg Miscanthush Poplari

stovera cobb strawc strawd bagassee canarygrassf

BIOCHEMICAL

Cellulose (%) 28–51 26–36 25–51 28–41 32–43 26–39 30–50 41–58 39–49

Lignin (%) 11–21 6–17 8–30 10–23 19–28 4–14 5–23 8–22 18–32

PROXIMATE

Fixed carbon (%) 15–20 17–19 15–22 15–25 12–20 16–24 13–27 5–26 12–28

Volatile matter (%) 72–85 80–83 71–85 64–98 74–88 73–83 73–87 74–94 72–86

Moisture (%) 11–33 12–55 8–15 3–74 16–50 15–25 40–70 20–52 8–59

Total ash (%) 4–10 1–9 1–23 8–26 1–13 3–13 2–10 1–9 0.4–4

ULTIMATE

C (%) 40–51 41–50 42–53 35–60 38–55 44–50 42–53 40–52 47–52

H (%) 4.7–6.3 5–7.4 3.2–9.8 3.9–7 5.3–6.7 5.2–6.5 4.9–6.5 4.4–6.5 5.6–6.3

O (%) 34–50 44–51 29–52 31–50 33–50 39–49 36–49 39–49 40–46

O:C molar ratio 0.50–0.94 0.66–0.93 0.43–0.93 0.38–1.07 0.58–0.99 0.59–0.84 0.51–0.88 0.56–0.92 0.58–0.74

H:C molar ratio 1.10–1.91 1.21–1.95 0.73–2.83 0.79–2.42 1.23–2.13 1.26–1.79 1.12–1.87 1.02–1.97 1.30–1.62

MINERAL (ASH) COMPOSITION

Al2O3 (% ash) 0.1–5 0.8–5 0.1–12 0.1–3.39 5–21 0.2–2 0.12–7 0.1–3 0.2–3

CaO (% ash) 5–15 0.5–15 3–17 0.7–10 2–19 0.5–10 5–14 3–14 29–61

Cl (% ash) 0.3–1.9 – 0–7.2 0.6** 0.03** 0.06** 0.1–0.6 0.03–7 0.01–0.03

Fe2O3 (% ash) 0.4–2.5 0.2–7 0.7–2.2 0.1–3 2–16 0.2–1.7 0.35–3.6 0.08–2.6 0.3–1.4

K2O (% ash) 15–21 2–20 6–37 6–25 0.15–20 2–23 5–28 2–34 10–34

MgO (% ash) 1.9–10 2.5–6 0.8–4 0.8–5.8 1.9–12 0.01–5 2.6–6.5 0.9–12 0.1–18

Na2O (% ash) 0.2–1.5 0.2–1.8 0.1–17 0.2–4 0.4–1.6 0.03–2.3 0.1–1.9 0.1–2.3 0.1–0.4

P2O5 (% ash) 1.9–9 0.7–10 1.2–8 0.7–9 0.9–3.2 0.4–14 2.6–15 1.5–29 0.9–8

SiO2 (% ash) 50–69 40–75 27–73 50–82 46–58 37–95 46–70 26–86 3–9

SO3 (% ash) 0.8–13 1.4–13 1.2–8 0.7–6 0.4–3.8 0.02–2.1 0.4–9 0.6–5 2–3.8

TiO2 (% ash) 0.2–0.3 – 0.01–.22 0.01–0.09 2.6–3.8 0.05–5 0.09–.37 0.02–0.05 0.3**

Alkali index (kg alkali

oxide/GJ)j
– – 1.1–1.7 1.4–1.6 0.06** – 0.6** – 0.14**

OTHER PROPERTIES

Higher heating

value (MJ/kg)

18–20 16–19 12–22 15–20 19–20 18–21 17–20 17–22 17–21

Bulk density (kg/m3) 66–131 195** 51–97 63–75 50–75 – 65–105 70–100 –

*Ranges are combinations of species and/or hybrids, and include different environments, soils, treatment conditions, contamination, experimental error, etc. Values

<4 were rounded to 1 decimal place, values >4 were rounded to whole numbers (except for ratios, and values used to calculate ratios). O:C and H:C were calculated

by taking the % C, H, and O, and dividing by the atomic masses for each element to give % molar mass, then dividing the min by the max to get the global min, and

the max by the min to get the global max. Where possible, values reported are on a dry matter basis, and using similar methods. Comparing values across methods

is especially problematic for bulk density, moisture, cellulose, and lignin as standardized methods are not always practiced or described, and some methods are

more accurate than others.

**Only individual values were found in the literature review.

aMani et al., 2004; Oak Ridge National Laboratory, 2008; Petrolia, 2008; Carpenter et al., 2010; Chevanan et al., 2010; Vassilev et al., 2010; Energy Research Centre

of the Netherlands, 2012; Tao et al., 2012a,b; Zhao et al., 2012a.

bSmith et al., 1985; Coovattanachai, 1989; Spokas, 2010; Energy Research Centre of the Netherlands, 2012; Tao et al., 2012a,b; Zhao et al., 2012a.

cJenkins et al., 1998; McKendry, 2002a; Mani et al., 2004; Lam et al., 2008; Carroll and Somerville, 2009; Wu et al., 2009; Carpenter et al., 2010; Chevanan et al.,

2010; Spokas, 2010; Energy Research Centre of the Netherlands, 2012; Tao et al., 2012a,b.

d Jenkins et al., 1998; Wu et al., 2009; Allison et al., 2010; Kargbo et al., 2010; Vassilev et al., 2010; Jahn et al., 2011; Liu et al., 2011; Energy Research Centre of the

Netherlands, 2012; Tao et al., 2012a,b; Zhang et al., 2012; Zhao et al., 2012a.

eJenkins et al., 1998; Kaar et al., 1998; Tsai et al., 2006; Spokas, 2010; Vassilev et al., 2010; Energy Research Centre of the Netherlands, 2012; Tao et al., 2012a,b.

f Fahmi et al., 2008; Lindh et al., 2009; Allison et al., 2010; Vassilev et al., 2010; Energy Research Centre of the Netherlands, 2012; Tao et al., 2012a,b.

gJenkins et al., 1998; McKendry, 2002a; Mani et al., 2004; Lam et al., 2008; Sokhansanj et al., 2009; Carpenter et al., 2010; Chevanan et al., 2010; Tao et al., 2012a.

hClifton-Brown and Lewandowski, 2002; Allison et al., 2010; Arabhosseini et al., 2010; Energy Research Centre of the Netherlands, 2012; Tao et al., 2012a,b.

i Jenkins et al., 1998; Klasnja et al., 2002; Carroll and Somerville, 2009; Spinelli et al., 2009; Vassilev et al., 2010; Tao et al., 2012a; Energy Research Centre of the

Netherlands, 2012; Tao et al., 2012b; Zhao et al., 2012a.

j Alkali index is a ratio calculated from the relative amounts of K2O and Na2O. See text or Jenkins et al. (1998) for detailed explanation.
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2010). Thus, the relationship between ash, lignin, and pyrolysis
product yield is complex and careful experimental manipula-

tion will be necessary to determine the causality underlying the
observed correlations of low ash, high lignin, and high yields

of heavy liquid products (Fahmi et al., 2008; Couhert et al.,
2009).

OTHER EFFECTS OF MINERAL CONTENT

Besides lowering the heating value of biomass and changing
the distribution of conversion products, mineral and elemental

ions that plants accumulate can interfere with the operation of
thermochemical conversion equipment. The elements in plant

biomass volatilize during combustion and form a liquid slag or
solid deposits as they cool (Miles et al., 1996). The elements

Na, K, Mg, Ca as well as Cl, S and Si are the most problem-
atic for thermochemical processes (Miles et al., 1996), and the

combination of alkali metals with silica can form alkali silicates
(McKendry, 2002b)—see Box 1 for more information regard-

ing silica. The Cl in biomass can also be a significant problem
because it interacts with vaporized metals, shuttling them to

boiler surfaces where they form sulfates (Allison et al., 2010). Cl
can also lead to elevated HCl and dioxin emissions (Lewandowski

and Kicherer, 1997). As volatile gases combine, they form cor-
rosive deposits that degrade components of the boiler. Other
interactions can occur between the elements in biomass and

coal when co-fired (Dayton et al., 1999). Since gasification can
occur at lower temperatures, the severity of these issues might

be reduced with that process; however, other issues can become
more severe [Mansaray et al., 1999 and see Lv et al. (2010) for

discussion]. Although difficult to generalize due to the com-
plex and unique interactions that occur in each feedstock, ash

content above 5% is probably unacceptable (McKendry, 2002c)
and element specific recommendations are listed elsewhere (Van

Loo and Koppejan, 2008). The alkali index (kg K2O and Na2O
per GJ energy) can be used to predict performance in a ther-

mochemical setting (Jenkins et al., 1998). With an alkali index
above 0.17 kg/GJ, fouling is probable, and above 0.34 kg/GJ, it

is almost certain. Several other indices exist, but were created
for coal, so may not be good predictors for biomass (Yin et al.,

2008). High feedstock mineral content can be mitigated to a cer-
tain extent by using newer alloys to construct components that

can minimize and withstand some corrosion, and controlling the
temperature of the reaction (Jenkins et al., 1998; Fahmi et al.,

2008).

MOISTURE CONTENT

Moisture content is a measure of the amount of water in biomass

and is usually expressed as percent mass (wet basis). In addition
to reducing the net heating value as discussed previously, high

moisture content can reduce the effectiveness of individual ther-
mochemical conversion processes. For combustion or co-firing,

low moisture content, preferably around 5%, is desired because
incomplete combustion can occur when the moisture content

is too high. Some systems such as fluidized bed combustors are
more flexible, and allow up to 35% moisture (Bridgwater et al.,

2002). For gasification, acceptable moisture content can be as high
as 20% or 30% (Cummer and Brown, 2002), but more commonly

is around 15% moisture. For pyrolysis, initial moisture content
contributes to the water content in the pyrolysis oil and above

around 10% moisture, the oil produced will separate into two
phases (Brar et al., 2012; Solantausta et al., 2012). For hydrother-

mal conversion, wet biomass can be used without drying, but
these technologies are still in the development stages (Yoshida

et al., 2004; Waldner and Vogel, 2005; Peterson et al., 2008; Pereira
et al., 2012).

OTHER CONSIDERATIONS

In general, biomass has low amounts of S relative to fossil fuels,

which minimizes SOX pollution from gasification or combustion
systems and avoids catalyst poisoning in fast pyrolysis systems

(Brown, 2011). It can have similar or higher N, which contributes
to NOX emissions, but this can be mitigated to some extent

through engineering in the process, e.g., by the use of exhaust
scrubbers (Yin et al., 2008). High levels of nitrogen can also be

problematic for the quality of liquid fuel products from fast pyrol-
ysis (Wilson et al., 2013). For combustion processes, lignin is

associated with PM emissions (Williams et al., 2012), a factor
that must be balanced against the associated increase in feedstock

HHV from a systems perspective.
In addition to direct effects on thermochemical conversion

performance, biomass properties are also relevant to the upstream

logistics associated with biomass transport and mechanical pre-
treatment. Minimizing moisture reduces weight during transport

from the field, and maximizing dry bulk density allows more cost
effective transport of biomass. It has been estimated that reduc-

ing moisture content from 45 to 35% in biomass can lead to a
25% increase in the net present value of a thermochemical project

producing ethanol from cellulosic biomass—mostly by reducing
the energy and cost of drying the biomass (Gonzalez et al., 2012).

Grindability relates to many other properties including mois-
ture content and composition (Ghorbani et al., 2010). Beyond

impacts on biomass transport costs, bulk density can influence
how easily biomass can be ground for processing (Cabiles et al.,

2008).

GENETIC CONTROL OF TRAITS RELATED TO FEEDSTOCK

PROPERTIES

As highlighted in Figure 2A and introduced in the previous

section, feedstock properties are related to biochemical traits
that have been the focus of research by the forage, pulp and

paper industry, as well as enzymatic bioenergy research for many
years. These biochemical traits are more easily explained in the

context of genes that encode the proteins that synthesize and
deliver the components of the cell wall as well as the enzymes

responsible for assembly of the wall components into complex
structures.

For breeding or biotechnology approaches to improve cell wall
composition, a major constraint is understanding which genes

or gene pathways are important. Relating genotype to pheno-
type, i.e., to assign a gene responsible for a particular phenotype,

allows identification, functional analysis, and modification of the
gene (or its regulation) to improve the phenotype. For example,

experiments that modify genes individually and in combina-
tion show the effect of a given gene on the composition of the
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Box 1 | Silica in Grasses: Example and Opportunity.

We present silica here as a practical matter—in grasses it can rep-
resent a large proportion of ash content—and as an example of
how existing genetic knowledge might be leveraged to optimize a
thermochemical trait in feedstocks. Silica does not provide energy
during thermochemical conversion, hence it lowers the energy
density. Furthermore, silica reacts with other alkali metals such
as potassium and forms alkali silicates that have a lower melting
point, thereby increasing the slagging and deposition rates at lower
temperatures (Wang et al., 2008). Manageable silica levels are dif-
ficult to estimate, since it depends on the levels of other alkali
metals in the biomass. However, for many grasses, lowering sil-
ica levels at least below the 5% ash threshold would improve the
thermochemical potential of these grasses.

Some have argued to include silicon as an “essential” ele-
ment (Epstein, 1999) due to its important and diverse roles. Silica
serves as a structural element, keeping leaves erect and stems
from lodging. Its physiological roles include detoxifying Al, Mn,
and Fe by binding with them and regulating P uptake (Richmond
and Sussman, 2003), decreasing transpiration and reducing water
stress (Ahmad et al., 1992; Epstein, 1999) and in its protective
role, it may provide a mechanical barrier that hinders diseases
and pests (Winslow et al., 1997; Richmond and Sussman, 2003;
Cotterill et al., 2007; Keeping et al., 2009). These roles of silica
have been validated in many diverse species such as rice, sugar-
cane, barley, jute, tomato, cucumber and strawberry (Datnoff et al.,
2001).

Although the second most abundant element in the world’s
soils, silicon is not always in a form available to plants (Sommer
et al., 2006). Soil water concentrations of monosilicic acid
(H4SiO4), the plant available form of silica, vary from 0.1 to 0.6 mM
in most soils (Datnoff et al., 2001). Silica deficiency is rare, but in
sandy and highly weathered soils, and intensely cultivated soils,
silica application can improve yields (Datnoff et al., 2001; Ma and
Takahashi, 2002). In most plants, silica, an uncharged molecule
in biological conditions, is taken up with the water stream and
diffuses through membranes, following the transpiration stream
up the xylem (Mitani et al., 2005). It is deposited as “opal”
or “phytoliths,” more accurately called amorphous silica (SiO2·

nH2O), usually where transpiration has caused the solution to
become saturated—in the intercellular spaces and the bulliform
cells. Deposition also occurs frequently in silica bodies, xylem

cells, root endodermis cells, and in the cuticle silica double layer
along the epidermis of leaf blades (Yoshida et al., 1962; Prychid
et al., 2003). It is becoming clear that silica deposition can be a
carefully engineered process directed by the plant, as temporal
control of silica deposition in silica bodies demonstrates (Zhang
et al., 2013).

Silica content of plants ranges from trace (less than 0.5%)
to small (0.5–1%, roughly corresponding to the amounts in the
soil water), to high (1–15%) amounts (Raven, 1983; Datnoff et al.,
2001; Ma and Takahashi, 2002). Accumulation of high levels seems

to require an active system of transporters. For example, rice
accumulates high levels of silica via characterized transporters,
including an aquaporin in root cells, an antiporter that uses the
proton gradient to load silica into the xylem, and a passive trans-
porter that moves silica from the xylem to the leaf (Ma et al., 2011).
Several bioenergy feedstocks accumulate high silica levels (see
Table 2) but the specific transporters are yet to be identified and
the effects of modifying their production or activity are unknown.
It is important to note for practical purposes additional silica may
be introduced into the feedstock with soil contamination of the
biomass.

While there is usually a correlation between soil-available silica
and amounts of silica taken up by plants, there is large variation
for the amount accumulated, even within a species. When grown
the same soil, some varieties of rice always accumulate more
silica than other varieties (Deren et al., 1992). In general, japon-
ica rice varieties take up more silica than indica varieties, maybe
because the japonica types were domesticated on silica deficient
soils (Datnoff et al., 2001). Plants that are non-accumulators (cor-
responding to the trace levels discussed above) do not take up
silica—even under high soil silica conditions. It is unclear why
plants have adapted to maintain such different levels of silica.
Cell specific deposition indicates that silica is under genetic con-
trol (Yoshida et al., 1962; Duan et al., 2005; Monti et al., 2008).
Quantitative trait loci (QTL) have been mapped for silica concentra-
tion in various tissues (Wu et al., 2006; Dai et al., 2008) and there
are hints that some disease resistance genes may actively modify
silica levels (Li et al., 2012) and different types of silica deposition
may have different roles (Isa et al., 2010).

Silica content is estimated in plant tissue by hydrofluoric acid
extraction and a molybdenum blue assay (Saito et al., 2005) or
by gravimetric techniques (Datnoff et al., 2001). Measurement
is also possible with ICP-OES (El-Nashaar et al., 2009) and dis-
tribution within a tissue can be assessed by X-ray fluorescence
spectroscopy (Datnoff et al., 2001). In all cases, care must be
taken to avoid glassware that could introduce additional Si into
the sample. Since the large majority of ash in many grasses is
silica, crude measures of ash analysis can correlate with silica con-
tent. Additionally, ash can be predicted via NIR spectroscopy and
these indirect methods (crude ash and NIR) might be optimized for
high-throughput measurement of silica.

In conclusion, the observations of natural variation in silica
content and the discovery of specific targets, the silica trans-
porters, indicate the potential of silica levels as a target for biomass
crop improvement. Indeed, in a study of ash levels across 144
species, Tao et al. identified silica content as a good target
for optimized biomass (Tao et al., 2012a). A targeted approach
might be to simultaneously decrease silica content: possibly by
downregulating silica transporters, while upregulating lignin pro-
duction to compensate for the loss of silica. However, it will be
important to monitor plant performance as silica levels are manip-
ulated because silica can be critically important for plant growth
and yield.

biomass (Jung et al., 2012; Wang and Dixon, 2012; Yang et al.,

2012). This information can be the basis for development of
molecular markers to improve the phenotype by breeding or

to design gene constructs for improvement through biotechnol-
ogy. This knowledge, frequently gained from model plants can

be applied even to distantly related species by using compar-
ative genomics approaches (Ficklin and Feltus, 2011). This is

important because for some species, notably several emerging

energy grasses, genetic tools are just being developed. As with all
breeding efforts, agronomic considerations must be considered;

that is, the plants must still be able to survive and produce an
acceptable yield. In the following sections, we discuss the genetic

and environmental control of traits related to thermochemical
conversion properties.
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CELLULOSE AND LIGNIN

Often comprising more than 50% of the cell wall, cellulose

and lignin have been well-studied and the enzymes involved in
their synthesis are well understood (Boerjan et al., 2003; Endler

and Persson, 2011). However, how these components are linked
within the cell wall, and how the synthesis and modification are

regulated are not well understood (Zhao and Dixon, 2011). There
is a complex balance between cellulose and lignin levels, and the

manipulation of genes involved in their biosynthesis sometimes
leads to unexpected results (Gallego-Giraldo et al., 2011). Plants

are surprisingly flexible, and can utilize a diverse set of precursors
to build their cell walls. For example, Jensen and coworkers modi-

fied the native form of xyloglucan (a hemicellulose) in Arabidopsis

without any apparent phenotypic consequences (Jensen et al.,
2012). Yang and colleagues engineered plants to have thicker cell

walls with more polysaccharides, but less lignin without negative
consequences (Yang et al., 2012).

Research has focused on genes controlling the wall composi-
tion of the model dicot, Arabidopsis, or woody crops like poplar.

However, to apply knowledge of these genes to more feedstocks,
the findings will need to be validated in new crops. For example,

lignin monomer composition differs between woody and herba-
ceous crops (Grabber et al., 2004; Buranov and Mazza, 2008).

Gymnosperms have mostly G lignin while dicots have G and S and
monocots generally have all three types. These monomers have

different properties, including different estimated HHV (Amthor,
2003), and may influence the thermochemical properties of the

biomass (Shen et al., 2010). It has been found that conifer-
ous (mostly G) lignin is more thermally-stable than deciduous

(mostly S) lignin (Müller-Hagedorn et al., 2003), and this is likely
because G lignins contain more resistant linkages than S lignins

(Boerjan et al., 2003). Approaches to fine-tune lignin composi-
tion have been suggested (Weng et al., 2008). The ratio of these

monomers, as well as the soluble phenolics, may have conse-
quences as important as cellulose and lignin ratios (Gani and
Naruse, 2007; Shen et al., 2009; Studer et al., 2011; Elumalai et al.,

2012). Because lignin biosynthesis genes vary across plant fami-
lies, and between dicots and monocots, (Xu et al., 2009), it is likely

that other unexamined differences in lignin composition in crop
species might exist (Xu et al., 2009). In addition to the three major

lignin monomers, monocots contain relatively large amounts of
soluble phenolics and the genes controlling these might be useful

targets to modify cell wall composition (Ishii, 1997; Bartley et al.,
2013; Molinari et al., 2013).

Beyond genetically controlled variation of wall composition
within and between species, growth environment plays a large

role. Adler and colleagues observed that lignin content increased
from 10 to 33% between a fall and spring harvest of the same

crop of switchgrass (Adler et al., 2006). Monono and colleagues
observed differences in total yield, composition, and ethanol

yield in switchgrass between locations and seasons (Monono
et al., 2013). Miscanthus also displays variation in composi-

tion across environments (Allison et al., 2011). Switchgrass S,
G, and H monomer ratios show major differences when grown

in the growth chamber, greenhouse or field (Mann et al., 2009),
which is consistent with strong genotype by environment inter-
actions (Hopkins et al., 1995; Lemus et al., 2002). Sugarcane

internode composition changes over the growing season (Lingle
and Thomson, 2011). Thus, although a viable focus, optimiza-

tion of biomass through manipulation of wall lignin and cellulose
composition and content will require not only an understanding

of the genetic controls for these components, but also significant
knowledge of the environmental component.

MINERAL CONTENT AND ELEMENTAL ASH

Elements commonly found in biomass ash are profiled in Table 2.
There are major differences in the concentrations of these ele-

ments between woody and herbaceous crops, and herbaceous
crops generally have more N, Cl, and K, but less Ca than woody

crops (Vassilev et al., 2010; Tao et al., 2012a). Though not essential
for survival, Si is accumulated to high levels in many grasses, up
to 10% dry weight (Epstein, 1999). Vassilev and colleagues find

that levels of elements seem to exist in five associated groups in
biomass, and these associations may have underlying biological

significance: C–H; N–S–Cl; Si–Al–Fe–Na–Ti; Ca–Mg–Mn; and
K–P–S–Cl (Vassilev et al., 2010). Therefore, attempting to mod-

ulate Ca levels for example, might also impact Mg and Mn levels
and it might be difficult to breed away from these associations.

In addition to individual elemental associations, there is also
evidence of a relationship between total ash content and biochem-

ical constituents, with total ash content inversely proportional
to lignin (Fahmi et al., 2007, 2008), and total ash proportional

to cellulose (Lv et al., 2010). It has been hypothesized that this
relationship is due to overlap in the roles of lignin and min-

eral fraction with regard to mechanical stability and resistance to
attack (Fahmi et al., 2007).

While the uptake, transport and roles of several of these min-
eral elements in plants are well understood (Taiz and Zeiger,

2006), little is known about the genes controlling variation for
these traits (Mäser et al., 2001; Raboy, 2003; Ghandilyan et al.,

2006). Uptake and distribution of these elements through the
plant occurs via many different pathways, including uptake from
the rhizosphere, transfers from roots to shoots, and remobiliza-

tion among organs. These transport pathways can be both shared
and opposing between elements, as indicated by positive and

negative correlation of mineral and micronutrient phenotypes
[reviewed by Ghandilyan et al. (2009)]. For example, Si is nega-

tively correlated with Ca in some species (Nishimura et al., 1989),
and reducing Si may simply increase Ca in plant tissues (and the

Ca associated thermochemical issues). Cl content varies between
stems and leaves of miscanthus (Lewandowski and Kicherer,

1997), and Cl and Ca variation has been observed in the bark,
needles, and wood of various tree species (Werkelin et al., 2005).

Tissue specific differences in other elements probably exist—
indicating genetic control. Heritability for mineral content ranges

from 10 to 90%, so breeding for some elements will be more
difficult than others (Ghandilyan et al., 2009). Understanding

variation for these traits among cultivars of switchgrass is com-
plicated by strong environmental interactions (Lemus et al., 2002;

El-Nashaar et al., 2009), as is probably the case for other feed-
stocks.

Elemental concentrations also vary widely between and within
species, by tissue type, and across harvest time and environments
(Landström et al., 1996; Adler et al., 2006; Boateng et al., 2006;
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Christian et al., 2006; Nassi o Di Nasso et al., 2010; Baxter et al.,
2012; Singh et al., 2012; Zhao et al., 2012b). Of considerable

importance when focusing on crop improvement in elemental
composition is that any attempt at improvement will be com-

plicated by the interaction of these gene pathways with other
traits essential for crop productivity, i.e., agronomic traits such as

drought and salt tolerance, disease or pest resistance (Egilla et al.,
2001; Dordas, 2008; Baxter et al., 2009, 2010). Because the genet-
ics is complex and the potential implications on agronomic traits

are serious, focus has been on reducing the impacts of these ele-
ments by other solutions, such as adjusting harvest time (Monti

et al., 2008), allowing the minerals to leach out in the field before
collection (Jenkins et al., 1996), and adding compounds to mini-

mize reactions during thermochemical conversion (Van Loo and
Koppejan, 2008).

MOISTURE CONTENT

Wet biomass from the field can contain greater than 50% mois-

ture on a wet basis, but this can vary greatly (Table 2), and intrin-
sic moisture (water tightly bound to biomass) is much lower.

Although moisture content is an important component of the
energy content, the literature on genetic variation and alteration

of traits governing moisture content are sparse. In several species
of willow, differences in moisture content of up to 16% exist and
almost 40% of this variation is due to genotype (Mosseler et al.,

1988). In rice, moisture content between 20 diverse varieties var-
ied from 43 to 74% and broad sense heritability was found to be

0.6 (Jahn et al., 2011).
It is well known that species and varieties of plants vary in

their ability to cope with drought stress (Zhu, 2002; Golldack
et al., 2011). One strategy that plants employ is to manipulate the

osmotic potential of their cells, and thus allow water to be main-
tained under drought conditions (McCann and Huang, 2008).

It is through this mechanism that genetic control of the mois-
ture content of the cells exists, and thus possibly the plant as a

whole at harvest time. Many of the genes involved in these pro-
cesses have been characterized (Bartels and Sunkar, 2005). There

may also be significant correlations between moisture content
and mineral content, since minerals ions are utilized to modulate

the osmotic potential of the cells (Patakas et al., 2002; Arjenaki
et al., 2012). In rice varieties studied by Jahn et al. (2011), a cor-

relation between leaf ash but not stem ash and moisture content
was observed, although these relationships have yet to be directly

examined.
Clearly there is evidence that selection for moisture content

is feasible but application of genetic approaches to improving

biomass crops for moisture content has remained largely unex-
plored. As for mineral content, agronomic solutions to min-

imizing moisture content have been employed. For example,
post-senescence drying reduced moisture content by 30% in

miscanthus stems (Hodgson et al., 2010).

OTHER IMPORTANT TRAITS

Other traits highlighted in Figure 2A but not discussed thus
far in this section include HHV, grindability, bulk density, as

well as components of proximate and ultimate analysis. While
some information exists about their relationship with biomass

composition, little information exists about the genetic con-
trol of these traits. Bulk density may be influenced by cell wall

changes (Wang et al., 2010) and variation in grindability has
been observed among corn stover, straw, and hardwood (Cadoche

and López, 1989). The first steps toward studying these might
be to measure their variation across a species (a genome wide

association mapping study, GWAS), or study their segregation
in a genetic mapping population (a QTL study) (Mackay, 2001;
Collard et al., 2005; Takeda and Matsuoka, 2008; Zhu et al.,

2008). A critical component of both of these approaches is the
ability to measure these traits in large numbers of plants in a

high-throughput manner.

POTENTIAL FOR HIGH-THROUGHPUT PHENOTYPING

We have identified many of the feedstock traits important
for thermochemical conversion and discussed the relationships

between traits. In this section, we review how these traits are
measured, and in cases where several methods exist, we highlight

those methods which might be amenable to high-throughput
phenotyping of many individual plants.

BIOCHEMICAL ANALYSIS

The most complete approach to quantifying the cell wall con-
tent is quantitative saccharification (also referred to as dietary

fiber, Uppsala method, or NREL method). Water and ethanol
soluble fractions are isolated, followed by hydrolysis and quan-

tification of the component sugars, sugar degradation products,
and organic acids by high performance liquid chromatography

(HPLC) or gas chromatography mass spectroscopy (GC/MS) and
acid soluble lignin with UV-vis spectroscopy. Starch is quan-

tified and subtracted from cellulose, since it would contribute
glucose monomers and inflate the cellulose component. Protein,

ash and acid insoluble lignin (Klason lignin) are quantified from
the remaining residue (Theander et al., 1995; Sluiter et al., 2010).

Another common method originally developed to determine for-
age quality is called detergent fiber or the Van Soest method, and

involves treating biomass with various concentrations of acids
and bases to sequentially hydrolyze components of the cell wall,

followed by acid insoluble lignin and ash determination (Van
Soest et al., 1991; Uden et al., 2005). Each method highlighted
here assumes the monomeric sugars are derived from certain

polymers in the cell wall, and each method has its own set of biases
(Moxley and Zhang, 2007; Wolfrum et al., 2009).

While any method is probably feasible for high-throughput
given enough investment in lab time, equipment or automa-

tion (such as robotics), we highlight recent approaches in lignin
quantification and monomer composition with pyrolysis molec-

ular beam mass spectroscopy (pyMBMS) (Mann et al., 2009;
Studer et al., 2011) or thioglycolic acid lignin (Suzuki et al.,

2009). Cellulose, hemicellulose and lignin have been estimated
with a thermogravimetric analyzer (TGA) which is essentially a

microbalance inside a controlled-atmosphere furnace (Serapiglia
et al., 2009). High-throughput glycome profiling of cell wall

extracts detects presence or absence of specific polysaccharides
but does not quantify the various components (Pattathil et al.,

2012). Pretreatment and saccharification approaches (Gomez
et al., 2010; Santoro et al., 2010) or ethanol yield (Lee et al.,
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2012) directly test how amenable biomass is to enzymatic con-
version, and indirectly provide information about the cell wall

composition.

PROXIMATE ANALYSIS

Proximate analysis separates the biomass into moisture, VM, FC,

and ash. This is accomplished through controlled heating of a
ground sample in a furnace and observing mass lost during heat-

ing. VM and FC are determined after correcting for moisture and
ash content. Proximate analysis can also be conducted in a single

operation using a TGA. Heating value is also typically measured
in the course of proximate analysis using bomb calorimetry, in

which a biomass sample is fully combusted in a pure oxygen envi-
ronment within a reaction vessel suspended in a water jacket;

calorific value of the fuel is inferred from changes in the water
temperature. HHV includes the energy released when the H2O

produced during the combustion process condenses. An adjust-
ment can be made since the energy due to water condensing is

not captured in some systems—the adjusted value is the LHV.
While moisture content is part of standard proximate analy-

sis procedure, it can also be evaluated by itself. The simplest, yet
most time consuming method to assess moisture content is the

oven dry method—moisture is removed by drying and the dif-
ference in mass is assumed to be moisture loss. These methods
assume that the sample has been stored in an airtight container;

otherwise moisture gain or loss (due to varying relative humidity
of the storage environment) will have occurred between sam-

ple collection, and moisture determination. Often “as received”
moisture is referred to in the literature—this is a meaningless

value as it depends on the conditions that the sample underwent
between the field and the lab and varies with humidity in the

environment, and how long the plant was allowed to senesce in
the field. Moisture content can also be estimated on a wet basis

with handheld moisture meters (Jensen et al., 2006). These meters
work by testing the conductance or capacitance of the material

or various chemical means but only work in certain ranges of
moisture (Bala, 1997). Biomass moisture is conceptually simple to

understand and measure, but often goes unmeasured or unclearly
reported, hampering our knowledge of the underlying genetic

and environmental control.

ULTIMATE ANALYSIS

Profiling the individual elements is accomplished with

approaches that measure electronic properties of elements
(absorption, emission, and fluorescence spectroscopy) or tech-

niques that measure nuclear properties (radioactivity, mass
spectroscopy). Elemental analyzers available from many man-

ufacturers either flash oxidize or pyrolyze the biomass and
measure products such as CO2, H2O, NOx in the exhaust gas

via gas chromatography and thermal conductivity in order to
stoichiometrically back-calculate the initial concentrations in the

biomass (see standards in Figure 2B). Profiling elements in the
ash fraction has traditionally been accomplished by solubilizing

the ash and detection with atomic absorption spectroscopy
(AAS). This involves ionizing atoms using a flame and measuring

the portion of light absorbed by the elements as they pass
through the detector (Dean et al., 1997; Hoenig et al., 1998).

When coupled with autosamplers, these instruments can be
relatively high-throughput.

Recently, profiling the inorganic fraction in whole biomass
(ionomics), has improved with advances in Inductively Coupled

Plasma (ICP) techniques. These techniques ionize atoms in
a plasma gas and measure emissions using Optical Emission

Spectroscopy as the atoms fall to their ground state (ICP-
OES), or the ionized atoms are passed to a mass spectrometer
(ICP-MS) (Salt et al., 2008). ICP-OES can also be called ICP-

AES (Atomic Emission Spectroscopy). Advantages with these
approaches include sensitivity, small sample size, and the ability to

quantify many elements from the same sample but quantification
of some elements (notably Si; see Box 1 for further discussion)

require special equipment and additional sample preparation.

OTHER TRAITS

Grindability is measured by recording the energy consumption
of the equipment used to grind a sample to specified size (Mani

et al., 2004; Abdullah and Wu, 2009). A standard procedure does
not appear to exist but would be essential to develop before larger

studies are undertaken because the trait is influenced by many
factors including moisture content, particle size, and how tightly

the biomass is packed before measurement (Lam et al., 2008;
Chevanan et al., 2010). It should be possible to adapt the exist-
ing standard for testing and comparing different types of grinding

equipment (ASTM E959) to compare different types of biomass
using a standardized piece of equipment. Standard procedures

exist for bulk density (Figure 2B), but are highly dependent on
the initial particle size. Particle density, which excludes the air

space between particles, is another technique to estimate density
of biomass. This can be measured with a gas pycnometer that dis-

places the air between biomass particles with a known volume of
gas (Sokhansanj et al., 2008).

HIGH-THROUGHPUT PHENOTYPING: AUTOMATION AND INDIRECT

MEASUREMENTS

Phenotyping biomass to distinguish between genetic and envi-
ronmental controls on individual bioenergy traits requires the

characterization of large populations of plants, and some of the
techniques described above are more appropriate for analyzing
large sets of samples than others. Detergent fiber analysis has

been somewhat automated with filter bag systems (Vogel et al.,
1999). Robotic systems that can grind and weigh many samples at

once exist to determine properties important for enzymatic con-
version (Santoro et al., 2010). Traditionally, protein is quantified

with dyes (Bradford, Lowry, etc), with UV-vis spectroscopy, or
other techniques reviewed in Sapan et al. (1999) or Noble and

Bailey (2009), but indirect methods that quantify N (such as the
Kjeldahl method or elemental analyzers) simply use a conversion

factor to estimate crude protein (Mosse, 1990). There are a num-
ber of automated proximate analyzers, elemental analyzers, and

calorimeters available (e.g., Fu et al., 2011; Kumar et al., 2011;
Smets et al., 2011), in which multiple samples can be loaded into

racks and then analyzed automatically by the instrument.
Another approach to high-throughput phenotyping is the

identification of correlations between the trait of interest and oth-
ers traits that are more easily measured. For example, heating
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value can be estimated based on biochemical, proximate, or ulti-
mate analysis through various equations, summarized in Sheng

and Azevedo (2005). Interestingly, ultimate analysis is the most
reliable approach—maybe in part due to variation in estimat-

ing biochemical or proximate properties. It should be highlighted
that like many regression approaches, the sample set that is used

to build the equation is critical and thus the equations may be
plant species specific. Since grindability is ultimately a function of
properties like moisture and composition, equations can be used

to predict it in various types of biomass (Ghorbani et al., 2010;
Miao et al., 2011).

A variety of properties can also be predicted from non-
destructive high-throughput spectroscopic methods, particularly

infrared (IR), often measured with an instrument capable of
utilizing a Fourier Transform approach (FTIR), or raman spec-

troscopy which provides information complementary with FTIR,
and Near Infrared (NIR) methods. IR spectroscopy measures the

absorption of IR radiation by functional groups within com-
pounds and may be used to directly fingerprint the compound,

or in complex samples (such as biomass) a predictive model
can be developed to quantify the biomass composition. NIR

spectroscopy provides information through the combinations of
fundamental bond vibrations (harmonics and overtones) in many

compounds that absorb different wavelengths of NIR radiation
depending on their resonance structure and penetrates deeper

into the sample than IR (Reich, 2005). Because of the complex
interactions in the NIR spectra, it is generally necessary to develop

a predictive model to correlate spectra with a primary analyti-
cal method to predict composition and may not be as sensitive
as IR methods. Spectra and primary analytical quantification of

the trait of interest is collected on a diverse set of representative
samples and this is used to derive a calibration equation using

multivariate statistical methods such as partial least squares (PLS)
or principal component analysis (PCA) to correlate the spectra

with the primary analytical methods. An excellent example of the
range of assays that can be utilized as analytical methods to build

NIR models is presented by Vogel et al., 2010. The equation is
tested on another subset of samples to ensure that it accurately

predicts the trait of interest basely solely on the spectra obtained
(Sanderson et al., 1996; Burns and Ciurczak, 2001).

While there is a large initial investment in developing a model,
the ability to predict composition of new samples based only

on quickly capturing spectral information makes these meth-
ods an attractive option. Consequently, spectroscopic methods

have been used to estimate almost all the properties previously
discussed. Based on detergent fiber calibration, NIR has pre-

dicted biochemical composition of sugarcane (Sabatier et al.,
2012), rice (Jin and Chen, 2007), corn stover and switchgrass

(Liu et al., 2010), miscanthus (Hodgson et al., 2010) and sev-
eral other species. Dietary fiber calibration has also been used to
predict detailed monomeric sugar composition of corn (Wolfrum

and Sluiter, 2009) and miscanthus (Hayes, 2012). Proximate and
ultimate analysis and heating value have been estimated for rice

straw using NIR (Huang et al., 2008, 2009). FTIR models have
successfully been used to estimate N content, heating value and

alkali index of switchgrass and reed canary grass (Allison et al.,
2009), and lignin and heating value in poplar (Zhou et al.,

2011). NIR has been used to estimate moisture, ash and heating
value of spruce (Lestander and Rhén, 2005) as well as mis-

canthus and willow (Fagan et al., 2011) and heating value in
sorghum and miscanthus (Roberts et al., 2011; Everard et al.,

2012). Lestander et al., 2009 also show that NIR can even pre-
dict the energy required to pelletize sawdust, and NIR would

likely have similar success in predicting the energy required to
grind biomass. Though often omitted in methodological discus-
sions, sample preparation can become the limiting step for any

high-throughput phenotyping method. From this perspective,
these may be less attractive due to necessary sample prepara-

tion steps. Both IR and NIR can utilize small sample sizes;
<10 mg for IR and <100 mg for NIR (Laurens and Wolfrum,

2011) and while commonly the samples are ground, this is not
always necessary (Penning et al., 2009). NIR is non-destructive,

and through the use of various techniques [Attentuated Total
Reflectance (ATR), Diffuse Reflectance (DR)], FTIR can also be

non-destructive.
While research exploring the genetic basis for variation among

these traits is often conducted in conditions that minimize the
environmental variability (growth chambers and greenhouses),

assessing the genetic and environmental interplay in field envi-
ronments is essential to improving desirable traits in the new

energy feedstocks. Recent efforts have begun to assess field popu-
lations with sensors that use various spectra of light and correlate

with phenotypes such as plant height, biomass, drought toler-
ance and others (Montes et al., 2011; Normanly, 2012; White

et al., 2012). These efforts need to be expanded to other bioen-
ergy relevant traits. Non-destructive spectral imaging could be
adapted from current applications in precision fertilizer applica-

tion (Haboudane et al., 2002) to other compositional properties.
These approaches might be used to predict heating value or even

moisture content from spectral-based elemental composition
(Seelig et al., 2008).

In summary, several primary analysis techniques might be
amenable to high-throughput, mostly by automating the steps

involved or multiplexing to process many samples at once.
However there appears to be real promise in leveraging regression

or multivariate approaches to predict key properties like heating
value and ash based on data from elemental analyzers or spectral

approaches.

CONCLUSION

Thermochemical conversion of biomass is an increasingly viable
way to use bioenergy crops and agricultural residues to fulfill

energy needs. Plant biologists and engineers both have impor-
tant roles to play in the design of thermochemical bioenergy

systems that result in appropriate pairings of biomass feedstocks
and conversion technologies, though each group is limited by

the constraints of their respective sub-systems. For engineers, this
involves the design of efficient supply chains and conversion tech-

nologies that are robust to natural variations in biomass prop-
erties while minimizing energy use, material costs, and harm-

ful emissions. Preprocessing technologies such as baling straw
(Lötjönen and Paappanen, 2013) or torrefaction (Robbins et al.,

2012) can also contribute to feedstock standardization. For biol-
ogists, this involves optimizing favorable biomass traits without
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compromising the plant’s ability to survive in a sometimes hos-
tile ecosystem. Natural genetic variation is a powerful resource for

the improvement of bioenergy traits (both enzymatic and ther-
mochemical) in feedstock plants, and the biological community

has made great progress in understanding and manipulating the
genetic pathways behind various relevant plant traits. Conversely,

if natural variation for a trait is low, it is likely that modifications
would incur serious consequences for the plant.

We find sufficient variation in lignin and evidence for poten-

tial genetic manipulation and several relatively high-throughput
measurement methods. Unlike enzymatic systems where lignin

is highly problematic, its role is more nuanced in thermochem-
ical conversion systems where it is associated with higher HHV

feedstocks, but changes to product distributions that may or may
not be desirable. From an agronomic standpoint, increased lignin

might be more feasible than reduced lignin due to the impor-
tant roles it plays in physical stability and protection against

pathogens. While less clear how amenable ash content is to
genetic manipulation, we find larger variation in ash and varia-

tion in many of the minerals that contribute to ash and suitable
methods to phenotype them. Silica is a special problem with

grasses, but could be addressed by exploiting the huge diversity
observed within and among species, particularly using knowledge

of the transporters with which its deposition might be controlled.
Reducing silica in grasses and increasing lignin to mitigate the

associated agronomic impacts might lead to an optimal ther-
mochemical feedstock. However, the relationship between lignin,

ash, and thermochemical conversion products is still not well
understood, and additional systematic experimentation or meta-
analysis will be necessary to confirm these strategies. The most

biologically interesting traits may not be the traits that will have
the greatest economic and lifecycle impact. Efforts to determine

heritability in more abstract traits such as moisture content,
grindability and bulk density would be valuable next steps based

on observations of genetic variation seen in rice and other species,
though high-throughput methods to measure grindability and

density do not currently exist.
Biochemical and proximate/ultimate analysis are both equally

valid paradigms for describing a kilogram of biomass, though
the latter does present two distinct advantages in the context of

feedstocks for thermochemical bioenergy production. Predicting
biomass properties such as HHV from biochemical analysis

results is challenging (likely because of biases associated with
different measurement methods), while regressions based on ulti-

mate analysis appears to work even across diverse data sets (Sheng
and Azevedo, 2005). Secondly, ultimate analysis may prove to

be more amenable to high-throughput phenotyping efforts, with
automated elemental analyzers and spectroscopy as promising

direct and indirect methods for the measurement of many impor-
tant properties. While initial investments in equipment and

model development can be high, the establishment of core facili-
ties and modeling equations for thermochemical characterization

of biomass can make these approaches more accessible.
While this review has focused on genetic approaches to crop

improvement, agricultural management (including what fertiliz-

ers to apply, when to harvest, and how to store the biomass) is
critical and will impact the characteristics of the biomass, and

ultimately, the lifecycle of the system (Robbins et al., 2012; Davis
et al., 2013; Wilson et al., 2013). Teasing out genetic variation

and environmental effects has been and will continue to be a
major challenge. Careful observation of all key traits, including

agronomic traits related to sustainable crop production, will need
to be done—some pathways are common to some molecules or

elements, and plants may need to compensate for composition
changes in unexpected ways. It is critical to analyze results in

the context of the environment and avoid sweeping generaliza-
tions attributed to a certain species or specific transgenic plant

(Voelker et al., 2010). Moving from the individual plant in the
greenhouse to a field of plants will present new challenges and

new surprises. Can we make valid conclusions from biomass com-
position at the field level, or will understanding genetic control

require phenotyping at the resolution of individual plant organs
or even cell types? Large-scale high-throughput phenotyping is

the next frontier in plant science, and this review can help biolo-
gists and engineers prioritize traits for next generation bioenergy
crop improvement. Beyond bioenergy, the food, forage, pulp, and

paper industries will benefit as we fine-tune all aspects of biomass
composition.
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