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Abstract As early as 1902, Gibbs pointed out that systems

whose partition function diverges, e.g. gravitation, lie out-

side the validity of the Boltzmann–Gibbs (BG) theory. Con-

sistently, since the pioneering Bekenstein–Hawking results,

physically meaningful evidence (e.g., the holographic prin-

ciple) has accumulated that the BG entropy SBG of a (3 + 1)

black hole is proportional to its area L2 (L being a charac-

teristic linear length), and not to its volume L3. Similarly

it exists the area law, so named because, for a wide class

of strongly quantum-entangled d-dimensional systems, SBG

is proportional to lnL if d = 1, and to Ld−1 if d > 1, in-

stead of being proportional to Ld (d ≥ 1). These results vi-

olate the extensivity of the thermodynamical entropy of a

d-dimensional system. This thermodynamical inconsistency

disappears if we realize that the thermodynamical entropy of

such nonstandard systems is not to be identified with the BG

additive entropy but with appropriately generalized nonad-

ditive entropies. Indeed, the celebrated usefulness of the BG

entropy is founded on hypothesis such as relatively weak

probabilistic correlations (and their connections to ergodic-

ity, which by no means can be assumed as a general rule of

nature). Here we introduce a generalized entropy which, for

the Schwarzschild black hole and the area law, can solve the

thermodynamic puzzle.

1 Introduction

The entropy of a black hole presents intriguing aspects that

are being currently discussed since several decades. Indeed,

since the pioneering works of Bekenstein [1, 2] and Hawk-

ing [3, 4], it has become frequent in the literature the (ex-

plicit or tacit) acceptance that the black-hole entropy is ano-

malous in the sense that it violates thermodynamical ex-

tensivity [5–20]. We frequently read and hear claims that
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the entropy of the black hole is proportional to the area of

its boundary instead of being proportional to the black-hole

volume. To discuss this interesting question within a thermo-

dynamically proper context, let us first remind the reader of

a typical form of the thermodynamical energy G of a generic

d-dimensional system [21]:

G(V,T ,p,µ,H, . . . )

= U(V,T ,p,µ,H, . . . ) − T S(V,T ,p,µ,H, . . . )

+ pV − µN(V,T ,p,µ,H, . . . )

− HM(V,T ,p,µ,H, . . . ) − · · · , (1)

where T ,p,µ,H are the temperature, pressure, chemical

potential, external magnetic field, and U,S,V,N,M are

the internal energy, entropy, volume, number of particles

(in turn proportional to the number of degrees of free-

dom), magnetization. We identify three classes of variables,

namely (i) those that are expected to always be extensive

(S,V,N,M, . . .), i.e., scaling with V = Ld , where L is a

characteristic linear dimension of the system (clearly, V ∝

Ad/(d−1), where A is the area), (ii) those that characterize

the external conditions under which the system is placed

(T ,p,µ,H, . . .), scaling with Lθ , and (iii) those that rep-

resent energies (G,U ), scaling with Lε . It trivially follows

ε = θ + d. (2)

If we divide Eq. (1) by Lθ+d and consider the large L limit

(i.e., the thermodynamical limit), we obtain
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where g ≡ limL→∞ G/Lθ+d , u ≡ limL→∞ U/Lθ+d , s ≡

limL→∞ S/Ld , n ≡ limL→∞ N/Ld , m ≡ limL→∞ M/Ld .

The correctness of all the scalings appearing in this equation

has been profusely verified in the literature for (both short-

and long-range interacting) thermal [22–28], diffusion [29]

and geometrical (percolation) systems [30, 31].

Next, let us illustrate relation (2) through four different

physical situations. First, for a standard thermodynamical

system (e.g., a real gas, a simple metal) we have θ = 0 (i.e.,

usual intensive variables), and ε = d (i.e., usual extensive

variables). This is the answer that is found in the textbooks

of thermodynamics.

Second, for a classical many-body Hamiltonian system

with two-body long-range (attractive) interactions asymp-

totically decaying with distance r like 1/rα (0 ≤ α < d) we

have indeed [22–32] θ = d − α, hence, using relation (2),

ε = 2d −α. These peculiar scalings are a consequence from

the fact that such potential is not integrable, i.e., from the

fact that the integral
∫ ∞

constant dr rd−1r−α diverges, and there-

fore the Boltzmann–Gibbs (BG) canonical partition func-

tion itself diverges. In his 1902 book Elementary Principles

in Statistical Mechanics [33],1 Gibbs himself emphatically

points out that whenever the partition function diverges, the

BG theory cannot be used (in his words “the law of distribu-

tion becomes illusory”). As an illustration of his remark he

refers specifically to the case of Newtonian gravitation.2

Third, for a Schwarzschild (3 + 1)-dimensional black

hole, the energy scales like the mass Mbh (where bh stands

for black hole), which in turn scales with L [36–38], hence

ε = 1, hence, using Eq. (2),

θ = 1 − d. (4)

1Notice that Newtonian gravitation generates a double difficulty,

namely at vanishing distances and at diverging distances. The math-

ematical difficulty at short distances, where the potential decreases

without limit, is nowadays considered to be solved due to the quantum

nature of physical laws; this was of course unknown by Gibbs at his

time. The mathematical difficulty at long distances remains still today

in what concerns the thermostatistical properties, in fact intensively

studied nowadays.

2From the microscopic (classical) dynamical point of view, this

anomaly is directly related to the fact that the entire Lyapunov spec-

trum vanishes in the N → ∞ limit, which typically impeaches ergod-

icity (see [34, 35] and references therein). This type of difficulty is also

present, sometimes in an even more subtle manner, in various quantum

systems (the single hydrogen atom constitutes, among many others,

an elementary such example; indeed its BG partition function diverges

due to the accumulation of electronic energy levels just below the ion-

ization energy).

If the black hole is physically identified with its event hori-

zon surface, then it is to be considered as a genuine d = 2

system, then θ = −1, which precisely recovers the usual

Bekenstein–Hawking (BH) scaling T ∝ 1/L ∝ 1/Mbh. If

however the black hole is to be considered as a genuine

d = 3 system (which makes sense given that the correspond-

ing space-time is (3 + 1)-dimensional), then θ = −2, i.e.,

T scales like 1/L2 ∝ 1/M2
bh, in variance with the BH scal-

ing. This is a manner for understanding why such a puz-

zle exists since decades related to the entropy of a black

hole. Let us be somewhat more specific. Wide and phys-

ically meaningful evidence (e.g., the holographic princi-

ple) exists that the Boltzmann-Gibbs entropy (for quan-

tum systems, also referred to as von Neumann entropy)

SBG ≡ kB lnW ∝ L2, and more generally that SBG ≡

−kB Trρ lnρ ∝ L2, W being the total number of inter-

nal configurations, and ρ being the density matrix. For

strongly quantum-entangled d-dimensional systems we sim-

ilarly have what is currently referred to as the area law [39],

i.e., the fact that SBG ≡ −kB Trρ lnρ frequently scales with

Ld−1 for d > 1, and with lnL for d = 1, instead of scaling,

for d ≥ 1, with Ld . This fact also generates a closely related

intriguing question. The above remarks might be consid-

ered the heart of the ongoing discussion for the entropy of a

black hole. Indeed, if the system is to be physically consid-

ered a (d − 1)-dimensional one, then the (additive) entropy

SBG certainly is to be identified as its thermodynamical en-

tropy. But if the system is to be physically considered a

d-dimensional one, then SBG can not be identified as its

thermodynamical entropy, and, as we shall soon see, a non-

additive entropic functional is needed to play that role.

Fourth, a (2 + 1)-dimensional “black hole” has been dis-

cussed as well [40–42]. It has been shown that the energy

scales like L2, hence ε = 2 and, using Eq. (2) once again,

θ = 2 − d. (5)

This case provides an event horizon which is one-dimen-

sional. If, due to this fact, this black hole is to be con-

sidered a genuine d = 1 system, then θ = 1, which corre-

sponds to the (2 + 1) version of BH scaling, i.e., T ∝ L ∝

M
1/2
bh . Indeed, this is precisely the scaling that has been ob-

tained [40–42] for this simplified system. If, however, this

black hole is to be considered as a d = 2 system, we have

θ = 0, and, in this case, T is expected to be an intensive

variable. Consistently, if we assume the system to be a d = 1

one, then clearly SBG plays the role of its thermodynamical

entropy, since SBG ∝ L (as obtained in [40–42]). But simi-

larly to the (3 + 1) case discussed above, if we consider it

to be a d = 2 one, then once again a nonadditive entropic

functional is needed to play the thermodynamical role.

The physical system we primarily focus on in the present

paper is a (3 + 1) black hole like that of Schwarzschild. As

emphasized above, if we are to consider it as a genuine d = 2
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system, then SBG = kB lnW ∝ L2 corresponds indeed to

the (extensive) thermodynamical entropy S, the BH scaling

T ∝ 1/Mbh is to be expected, and there are no controver-

sial or intriguing facts to be further analyzed. If however,

this black hole is to be considered a genuine d = 3 system,

then SBG cannot be the thermodynamical entropy S, since

the latter must scale like L3 while SBG scales like L2. Within

this standpoint, a crucial question then arises, namely, what

is then the microscopic mathematical expression of the ther-

modynamical entropy S of this 3-dimensional system? The

purpose of the present paper is to provide a thermodynami-

cally admissible answer to this important question.

From a historical perspective, we observe that, strangely

enough, Gibbs’s crucial remark and the dramatic theoretical

features to which it is related are often overlooked in text-

books. Similarly, the thermodynamical violation related to

the area law frequently is, somehow, not taken that seriously.

Indeed, not few authors seem inclined to consider that, for

such complex systems, the entropy is not expected to sat-

isfy thermodynamical extensivity. However, various physi-

cal and mathematical facts exist which reveal such stand-

point as kind of bizarre. The specific goal of the present

paper is to address this important issue and develop a path

along which the difficulty can be overcome. The fact (re-

peatedly illustrated in various manners for strongly entan-

gled systems, black holes and, generically speaking, for

systems satisfying the above mentioned area law) that the

Boltzmann–Gibbs–von Neumann (additive) entropy is not

proportional to the volume Ld precisely shows that, for such

strongly correlated systems (hence the total number of ad-

missible states in phase space is sensibly reduced), the ther-

modynamical entropy cannot be identified with the usual one

but with a substantially different (nonadditive) one.

An argument reinforcing the correctness of using nonad-

ditive entropic forms in order to re-establish the entropic ex-

tensivity of the system can be found in the results achieved

by Hanel and Thurner [43, 44] by focusing on the Khinchine

axioms and on complex systems with surface-dominant sta-

tistics.

A further indication we can refer to is the analogy with

the time t dependence of the entropy of simple nonlinear

dynamical systems, e.g., the logistic map. Indeed, for the

parameter values for which the system has positive Lya-

punov exponent (i.e., strong chaos and ergodicity), we ver-

ify SBG ∝ t (under appropriate mathematical limits), but

for parameter values where the Lyapunov exponent vanishes

(i.e., weak chaos and breakdown of ergodicity), it is a non-

additive entropy (Sq , discussed below) the one which grows

linearly with t (see [45–54] and references therein), and con-

sistently provides a generalized Pesin-like identity. If we

take into account that, in many such dynamical systems, t

plays a role analogous to N in thermodynamical systems,

we have here one more indication which aligns with the ex-

tensivity of the entropy for complex systems.

Finally, one more recent result exists [55–57], related to

the so called Large Deviation Theory in theory of proba-

bilities, which also is consistent with the extensivity of the

entropy, even in the presence of strong correlations between

the elements of the system.

2 Nonadditive entropies

Let us now turn onto the fact that entropies generalizing that

of BG become necessary in order to recover thermodynamic

extensivity for nonstandard systems. Let us first describe

briefly an entropic functional form, Sq , generalizing that of

BG, which has been successfully applied for many complex

systems, as illustrated below. After that we shall address an-

other such generalization, Sδ (see Eq. (16)), which consti-

tutes in fact one of the contributions of the present work.

As a possibility for addressing complexities such as tho-

se illustrated above, it was proposed in 1988 [58] (see also

[32, 59, 60]) a generalization of the BG theory, currently

referred to as nonextensive statistical mechanics. It is based

on the nonadditive entropy

Sq = kB

1 −
∑W

i=1 p
q

i

q − 1

= kB

W
∑

i=1

pi lnq

1

pi

(

q ∈ R;

W
∑

i=1

pi = 1

)

, (6)

with lnq z ≡ (z1−q − 1)/(1 − q) (ln1 z = ln z). Sq recovers

SBG = −kB

∑W
i=1 pi lnpi for q → 1. If A and B are two

probabilistically independent systems (i.e., pA+B
ij = pA

i pB
j ,

∀(i, j)), definition (6) implies

Sq(A + B)

kB

=
Sq(A)

kB

+
Sq(B)

kB

+ (1 − q)
Sq(A)

kB

Sq(B)

kB

.

(7)

In other words, according to the definition of entropic addi-

tivity in [61], Sq is additive if q = 1, and nonadditive other-

wise.

If probabilities are all equal, we straightforwardly obtain

Sq = kB lnq W. (8)

If we extremize (6) with a (finite) constraint on the width of

the probability distribution {pi} (in addition to its normal-

ization), we obtain

pi =
e
−βqEi
q

∑W
j=1 e

−βqEj
q

, (9)

ez
q being the inverse of the q-logarithmic function, i.e., ez

q ≡

[1 + (1 − q)z]1/(1−q) (ez
1 = ez); {Ei} are the energy levels;

βq is an effective inverse temperature.
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Complexity frequently emerges in natural, artificial and

social systems. It may be caused by various geometrical-

dynamical ingredients, which include non-ergodicity, long-

term memory, multifractality, and other spatial–temporal

long-range correlations between the elements of the sys-

tem. During the last two decades, many such phenomena

have been successfully approached in the frame of nonex-

tensive statistical mechanics. Predictions, verifications and

various applications have been performed in high-energy

physics [62–71], spin-glasses [72], flux of cosmic rays [73],

turbulence in pure-electron plasma [74], self-organized crit-

icality in biological evolution [75], cold atoms in opti-

cal lattices [76], trapped ions [77], anomalous diffusion

[78–83], dusty plasmas [84], solar physics [85–87], rel-

ativistic and nonrelativistic nonlinear quantum mechan-

ics [88–90], among many others.

If a physical system is constituted by N elements, and

these elements are independent (or quasi-independent in so-

me sense), we have

W(N) ∼ AξN (A > 0; ξ > 1;N → ∞). (10)

(For example, for N independent coins, we have W = 2N .)

Therefore, by illustrating the present point for the particular

case of equal probabilities, we immediately verify that

SBG(N) = kB lnW(N) ∼ kB(ln ξ)N ∝ N (N → ∞),

(11)

hence thermodynamical extensivity is satisfied. This recon-

firms that, for such systems, the thermodynamically admis-

sible entropy is precisely given by the additive one, SBG,

as well known. If, however, strong correlations are present

(of the type assumed in the q-generalization of the Central

Limit and Lévy–Gnedenko Theorems [91, 92]), we can have

W(N) ∼ BN τ (B > 0; τ > 0;N → ∞). (12)

In this case, we straightforwardly verify that, for q = 1 − 1
τ

,

Sq(N) = kB lnq W(N) ∝ N (N → ∞), (13)

which satisfies thermodynamical extensivity, in contrast

with SBG(N) ∝ lnN , which violates it. Probabilistic and

physical models which belong to this class are respectively

available in [60] and [93, 94].

It is clear that, for N ≫ 1, expression (12) becomes in-

creasingly smaller than (10).

However there are cases which are described neither by

Eq. (10) nor by Eq. (12). Such is the case if

W(N) ∼ CνNγ

(C > 0;ν > 1;0 < γ < 1), (14)

Fig. 1 Entropy Sδ as a function of the index δ and the probability p of

a binary variable (W = 2). Concavity is lost for δ > 1 + ln 2

which also becomes increasingly smaller that (10) (though

larger than (12)). More precisely, we have

BN τ ≪ CνNγ

≪ AξN (N ≫ 1;A > 0;B > 0;C > 0;

ξ > 1;ν > 1; τ > 0;0 < γ < 1). (15)

The entropy associated with γ → 1 is of course SBG.

What about 0 < γ < 1? A simple answer is in fact al-

ready available in the literature (footnote of page 69 in [32]),

namely,

Sδ = kB

W
∑

i=1

pi

(

ln
1

pi

)δ

(δ > 0). (16)

The case δ = 1 recovers SBG. This entropy is, like Sq for

q > 0, concave for 0 < δ ≤ (1 + lnW). And, also like Sq

for q -= 1, it is nonadditive for δ -= 1. Indeed, for proba-

bilistically independent systems A and B (hence WA+B =

WAWB ), we verify Sδ(A + B) -= Sδ(A) + Sδ(B). For equal

probabilities we have

Sδ = kB lnδ W, (17)

hence, for δ > 0,

Sδ(A + B)

kB

=

{

[

Sδ(A)

kB

]1/δ

+

[

Sδ(B)

kB

]1/δ
}δ

. (18)

It is easily verified that, if W(N) satisfies (14), Sδ(N) is

extensive for δ = 1/γ . This is in fact true even if

W(N) ∼ φ(N)νNγ

(ν > 1;0 < γ < 1), (19)
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φ(N) being any function satisfying limN→∞
lnφ(N)

Nγ = 0, for

example φ(N) = BN τ . Let us now unify Sq (Eq. (6)) and Sδ

(Eq. (16)) as follows:

Sq,δ = kB

W
∑

i=1

pi

(

lnq

1

pi

)δ

. (20)

Sq,1 and S1,δ respectively recover Sq and Sδ ; S1,1 re-

covers SBG. Obviously this entropy is nonadditive unless

(q, δ) = (1,1), and it is expansible (see, for instance, [32]),

∀q > 0, ∀δ > 0. It is concave for all q > 0 and 0 < δ ≤

(qW q−1 − 1)/(q − 1). In the limit W → ∞, this condition

becomes 0 < δ ≤ 1/(1 − q), ∀q ∈ (0,1), and any δ > 0 for

q ≥ 1; see Figs. 1 and 2. For equal probabilities we have

Sq,δ = kB(lnq W)δ. (21)

The above results for the equal-probabilities case may be

summarized as follows. If we have

W(N) ∼ BN τνNγ

(B > 0; τ ≥ 0;ν > 1;0 ≤ γ ≤ 1),

(22)

Sq,δ is extensive (i.e., Sq,δ ∝ N , for N → ∞) for (q, δ) =

(1,1) if (γ , τ ) = (1,0) (notice that τ > 0 is inadmissible if

γ = 1, since no occupancy of phase space can be larger than

full occupancy), for (q, δ) = (1−1/τ,1) if γ = 0 and τ > 0,

and for (q, δ) = (1,1/γ ) if 0 < γ < 1.

Let us mention at this point that several two-parameter

entropic functionals different from Sq,δ are in fact avail-

able in the literature (see, for instance, [43, 44, 95, 96]; see

also [97]). In particular the asymptotic behaviors of Sq,δ in

the thermodynamic limit coincide, for all values of (q, δ),

with those of the recently introduced Hanel–Thurner en-

tropy Sc,d [43, 44] for appropriate values of (c, d).

3 Discussion and conclusion

We can address now the area law. It has been verified

for those anomalous d-dimensional systems that essentially

yield lnW(L) ∝ Ld−1 (d > 1), which implies that W(L) is

of the type indicated in (19), more precisely that

W(L) ∼ φ
(

Ld
)

νLd−1

= φ
(

Ld
)

ν(Ld )
(d−1)/d

(23)

Therefore, Sδ = S1,δ for δ = d/(d − 1) is extensive, thus

satisfying thermodynamics. For equal probabilities, we

straightforwardly verify that

Sδ=d/(d−1)

kB

∝

(

SBG

kB

)d/(d−1)

(d > 1). (24)

Fig. 2 Parameter space (q, δ) of the entropy Sq,δ . At the point (1,1)

we recover the Boltzmann–Gibbs entropy SBG. At δ = 1 (q = 1) we

recover the nonadditive entropy Sq (Sδ). For any fixed W there is a

frontier q(δ) such that, for δ values at its left, the entropy Sq,δ is con-

cave, and, at its right, it neither concave nor convex. The W = 2 and

W → ∞ frontiers are indicated in the plot. The entropy Sδ is concave

for 0 < δ ≤ 1 + lnW . If we impose the extensivity of Sq,δ for the class

of systems represented by Eq. (19), it must be δ = 1/γ ≥ 1. If Sq,δ is

used for other purposes, the region 0 < δ < 1 is accessible as well

Moreover, for such anomalous systems, the entropy

Sδ=d/(d−1) is expected to be extensive for arbitrary den-

sity matrices, and not only for the simple equal-probability

case. For d = 3, it can be connected with the well-known

Bekenstein–Hawking entropy SBH through

Sδ=3/2

kB

∝

(

SBH

kB

)3/2

, (25)

where

SBH =
kB

4

AH

G!/c3
, (26)

AH being the event horizon area. It is important to stress

that Eq. (25) has not been imposed in an ad hoc manner

just to transform Ld−1 into Ld : it has been derived from

a new entropic functional, namely Sδ . This entropy Sδ has

been defined under the assumption that the current black-

hole result lnW ∝ AH is correct. Also, by using the fact

that d/(d − 1) > 0, we verify that Sδ=d/(d−1) increases

monotonically with SBH. This is consistent with the second

principle of thermodynamics, namely that whenever SBH in-

creases with time, so does Sδ=3/2 (and the same happens in

general with Sδ=d/(d−1)).

At the present state of knowledge we cannot exclude the

possibility of extensivity of Sq,δ for other special values

of (q, δ), particularly in the limit δ → ∞.
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For a block of a d = 1 gapless fermionic system, it has

been analytically proved [93] the extensivity of Sq for a spe-

cific value of q < 1 which depends on the central charge of

the universality class that is being focused on (see also [94]

for a different type of d = 1 system). For a d = 2 gap-

less bosonic system, it has been numerically found [93]

that, once again, it is Sq (with a value of q < 1) the en-

tropy which is extensive and consequently satisfies ther-

modynamics. This kind of scenario might be present in

many d-dimensional physical systems for which lnW(N) ∝

ln2−d N (i.e., ∝ lnL for d = 1, and ∝ Ld−1 for d > 1).

Summarizing, classical thermodynamics and the thermo-

statistics of a wide class of systems whose elements are

strongly correlated (for instance, through long-range inter-

actions, or through strong quantum entanglement, or both,

such as black holes, quantum gravitational dense systems,

and others) can be reconciled (along lines similar to those

illustrated in [59, 60, 93] for simple cases). It is enough, for

such complex systems, to identify the thermodynamical en-

tropy with nonadditive entropies such as Sq,δ , and not neces-

sarily with the usual Boltzmann–Gibbs–von Neumann one,

which corresponds to q = δ = 1. This statement is by no

means in conflict with the well accepted relation that, for a

Schwarzschild (3 + 1)-dimensional black hole, SBG ∝ area.
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