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Abstract

Observations from the first submersible reconnaissance of the Blake Ridge Diapir provide the geological and

ecological contexts for chemosynthetic communities established in close association with methane seeps. The seeps

mark the loci of focused venting of methane from the gas hydrate reservoir, and, in one location (Hole 996D of the

Ocean Drilling Program), methane emitted at the seafloor was observed forming gas hydrate on the underside of a

carbonate overhang. Megafaunal elements of a chemosynthetically based community mapped onto dive tracks provide

a preliminary overview of faunal distributions and habitat heterogeneity. Dense mussel beds were prominent and

covered 20� 20m areas. The nearly non-overlapping distributions of mussels and clams indicate that there may be local

(meter-scale) variations in fluid flux and chemistry within the seep site. Preliminary evidence suggests that the mussels

are host to two symbiont types (sulfide-oxidizing thiotrophs and methanotrophs), while the clams derive their nutrition

only from thiotrophic bacteria. Invertebrate biomass is dominated by mussels (Bathymodiolus heckerae) that reach

lengths of up to 364mm and, to a lesser extent, by small (22mm length) vesicomyid clams (Vesicomya cf. venusta).

Taking into account biomass distributions among taxa, symbiont characteristics of the bivalves, and stable-isotope

analyses, the relative importance of methanotrophic vs thiotrophic bacteria in the overall nutrition of the invertebrate

assemblage is on the order of 60% vs 40% (3:2).
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1. Introduction

A quarter of a century has passed since the first

exploration of hydrothermal vents, yet the pro-

spect remains for discovery of biogeographically

and ecologically distinctive types of chemosyn-

thetic systems in the world’s oceans. Exploration

and investigation of these systems will allow us to

understand the diversity of habitats, species, and

adaptations that can be supported by chemosyn-

thesis. In this report, we provide preliminary

characterization of a soft-sediment, chemosynthe-

tically based ecosystem associated with a methane

hydrate province on the continental margin of the

eastern United States. Gas hydrates close to the

sediment–seawater interface are also known from

other regions, including the Gulf of Mexico

(MacDonald et al., 1994), the Barbados accre-

tionary complex (Olu et al., 1996), the Barents Sea

(Egorov et al., 1999), and the Cascadia margin off

Oregon (Suess et al., 1999; Sahling et al., 2002).

The focus site for this study lies near the

intersection of the Carolina Rise and the Blake

Ridge (Fig. 1). This area of the South Atlantic

Bight has long been recognized as a major gas

hydrate province within the US Exclusive Eco-

nomic Zone (e.g., Markl et al., 1970; Tucholke

et al., 1977; Paull and Dillon, 1981). Over most of

the region, the top of the methane hydrate deposit

probably lies at depths greater than 100m below

seafloor (mbsf; Paull et al., 1996). At some

locations, however, gas hydrate and underlying

free gas occur close to the seafloor, and interaction

of the hydrate reservoir with geologic, oceano-

graphic, and other processes leads to the develop-

ment of focused seeps.

The US Atlantic continental margin south of

34�N is among the most extensively mapped gas-

hydrate provinces in the world’s oceans. Several

generations of seismic surveys (e.g., Tucholke et al.,

1977; Rowe and Gettrust, 1993; Taylor et al.,

1999; Holbrook, 2000) map a regionally extensive

bottom-simulating reflector (BSR) in this area.

The BSR is a negative-impedance contrast reflec-

tor that marks the phase boundary between

overlying gas hydrate and underlying free gas.

While gas hydrates are known to occur on the

Blake Ridge at locations with no BSR (e.g., Paull

et al., 1996), the presence of a BSR beneath a large

part of the Blake Ridge implies widespread

occurrence of gas hydrates.

A line of about 20 salt diapirs begins near the

intersection of the Blake Ridge with the Carolina

Rise and extends northward on the eastern side of

the Carolina Trough (Dillon et al., 1982). The

diapirs rise to within 600m of the seafloor and

disrupt the overlying sediments. Interaction be-

tween the Blake Ridge Diapir (the southern-most

diapir) and the underlying methane-hydrate re-

servoir was extensively investigated by Taylor et al.

(2000). The high thermal conductivity of the diapir

alters the local stability field for methane hydrates,

causing upward warping of the BSR and shifting

of the gas hydrate and free-gas system to shallower

levels in the sedimentary section. At the same time,

partial dissolution of the salt diapir raises local

pore-water salinities, further inhibiting gas-hy-

drate stability and possibly contributing to the

increased mobility of fluids in the sedimentary

section (Taylor et al., 2000). Emplacement of the

diapir has been accompanied by the development

of faults that act as conduits for the transfer of free

gas and waters rich in dissolved gas toward the

seafloor (Paull et al., 1995).

Seismic reflection profiles across the Blake

Ridge Diapir (e.g., USGS CH-06-92 Line 37)

show a prominent BSR that shoals over the diapir,

and a fault that extends from the BSR to nearly
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Fig. 1. Blake Ridge Diapir study site location. Star indicates

Blake Ridge Diapir; shaded off-shore area delineates region of

gas-hydrate deposits; contour lines are in 1000-m intervals.
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the seafloor (Fig. 2). Chemosynthetic communities

and gas-rich plumes rising up to 320m in the water

column have been detected where the fault system

intersects the seafloor (Paull et al., 1995, 1996).

Sediments consisting of hemipelagic silt and clay

with 20–40% pelagic carbonate (Paull et al., 1995;

Dillon and Max, 2000b) drape the diapir. These

sediments, which were deposited by strong, south-

flowing near-bottom currents, were accreted ra-

pidly (up to 48 cmka�1) during the late Pleistocene

interval (Paull et al., 1996).

Leg 164 of the Ocean Drilling Program (ODP;

Paull et al., 1996, 2000) drilled 5 holes along an

B80m, east-west transect across the Blake Diapir.

Three of the holes had total depths of 50–63m,

while two holes near the center of the diapir were

drilled to less than 10m below the seafloor. The

recovered cores contained typical hemipelagic

sediments along with authigenic carbonates and

gas hydrates (Paull et al., 2000). Earlier research

on the Blake Ridge Diapir revealed fluid-flow

pathways and fluid-related features within the

sedimentary section (e.g., Taylor et al., 2000).

High concentrations of methane and sulfide in

pore waters (1000–3400 mM CH4; 1300 mM H2S)

and widespread occurrences of authigenic carbo-

nates and gas hydrates were documented in core

material, and collection of mussels at the tops of

cores provided evidence for the existence of a

chemosynthetic community on the crest of the

diapir (Paull et al., 1996).

The geographic location of the Blake Ridge

methane seep raises questions about the biogeo-

graphical affinities of its fauna. The closest known

deep-sea seep sites are those of the Barbados

region to the southeast (Jollivet et al., 1990; Olu

et al., 1996, 1997) and of the Florida Escarpment,

on the opposite side of the Florida peninsula

(Paull et al., 1984; Hecker, 1985). There is a

perception that seeps support faunas that are more

endemic to local regions than hydrothermal vents

(Sibuet and Olu, 1998); comparisons of species

lists and genetic differentiation in species from

these sites can be used to test this hypothesis.

In this paper, we report new data that enhance

our understanding of the geological context and

ecological setting for the chemosynthetically based

community on the Blake Diapir. Further accounts

of methane hydrate formation, foraminiferal

biology and ecology, and quantitative analyses of

the invertebrate assemblage associated with Blake

Ridge mussel beds will be presented elsewhere.

2. Materials and methods

Four Alvin dives were conducted at the Blake

Ridge Diapir site (ODP Site 996; 32�29.6230N,

76�11.4670W; 2155m depth) on September 25–28,

2001. A map of megafaunal distributions (mussels,

clams, cake urchins) was generated from trans-

ponder navigation and digital video records from

dives 3709, 3711, and 3712. Push cores were used

to sample xenophyophores (P. Granuloreticulosa),

bacterial mats, and sediments. Clams were col-

lected with a suction sampler (1/400 mesh); all other

animals were collected with the Alvin manipulators

or 26-cm-diameter quantitative mussel-bed sam-

plers (described in Van Dover, 2002).

Size-frequency distributions of mussels were

determined from length measurements of indivi-

duals collected in quantitative mussel samplers.

They thus represent samples unbiased by the

limitations of manipulator collections. Mussels
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Fig. 2. Seismic profile across the Blake Ridge Diapir showing

the prominent Bottom-Simulating Reflector (BSR). Single

channel seismic data (line 23 of CH-95-18) collected by the

USGS across the Blake Ridge Diapir during a cruise aboard the

R/V Cape Hatteras in 1995 (Taylor et al., 1999). The raw data

have been slightly reprocessed. The seismic line crosses the

diapir from southwest to northeast. The BSR is warped upward

and disrupted over the core of the diapir, particularly between

shots 340 and 370. Vertically oriented features above the core of

the diapir mark gas migration paths.
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o1 cm are not included in this analysis but the

data will be presented elsewhere upon completion

of the study of the invertebrate assemblage

associated with mussel beds. Size-frequency dis-

tributions of clams were determined from a single

suction sample taken within 2 closely spaced, small

patches of live and dead individuals. Mean

lengths71 s.d. are reported where appropriate.

Transmission electron microscopy (TEM) was

used to provide a preliminary characterization of

putative symbiont types in mussels and clams.

Samples of gill tissue from mussels and clams were

dissected and fixed for 2 h in a 3% solution of

glutaraldehyde and 0.1M phosphate buffer with

0.25M sucrose (pH 7.4). The tissues were rinsed in

the same buffer and post-fixed for 2 h in a 1%

solution of osmium tetroxide. Specimens were then

dehydrated in a graded acetone series, stained with

2% uranyl acetate, and infiltrated with Embed 812

epoxy embedding medium. Thin sections were

stained with lead citrate and examined using a

Zeiss EM 109 electron microscope.

For molecular analyses, DNA from the Blake

Ridge samples was extracted using the DNeasy

Tissue Kit (Qiagen, Valencia, CA). MtDNA was

amplified using universal COI primers (519 bp;

HCO-2198 and LCO-1490) and 16S rDNA pri-

mers (511 bp; 16Sar and 16Sbr), based on

published or ongoing molecular systematic studies

of these taxa (Peek et al., 1997, 2000). PCR

products were sequenced directly using an ABI

3100 sequencer according to the manufacturers

protocol. In all cases, both forward and reverse

strands were sequenced and aligned. Sequence

divergence estimates from other vesicomyids (Peek

et al., 1997, 2000) were determined via Paup 4.0b.

Novel sequences were deposited in Genbank under

accession numbers AY163386 and AY163387

(COI) and AY163388 and AY163389 (16S) for

Blake Ridge vesicomyids and AY163260 (COI) for

Blake Ridge shrimp.

Adenosine triphosphate (ATP) content was

determined for selected fragments of xenophyo-

phore tests to assist in distinguishing living and

dead specimens. Methods are detailed in Bernhard

(1992).

Samples of animal tissues for stable isotope

analyses were dried and ground to a fine powder

and placed into tin capsules. The samples were

converted to CO2, N2, and SO2 for isotope

analysis with a Carlo Erba elemental analyzer

coupled to an OPTIMA stable isotope ratio mass

spectrometer (Micromass, Manchester, UK). Car-

bon and nitrogen isotopes were determined with a

single combustion in a dual-furnace system com-

posed of an oxidation furnace at 1020�C and a

reduction furnace at 650�C. Samples for sulfur-

isotope analyses were separately pyrolyzed at

1050�C in a combination oxidation and reduction

single-furnace system. The resulting gases were

purified by gas chromatography, chemically dried,

and directly injected into the source of the mass

spectrometer by continuous flow. Stable-isotope

ratios are reported as follows:

d
XE ¼ ½Rsample=Rstandard � 1�103ð%Þ:

X is the heavy isotope of the element E; R is the

abundance ratio of the heavy to light isotopes

(13C/12C, 15N/14N or 34S/32S) of that element. The

international standard for carbon is the PeeDee

Belemnite limestone (PDB), for nitrogen, atmo-

spheric N2 (air), for sulfur, the Canyon Diablo

Troilite (CDT); those standards have defined d
XE

values of 0.0%. In the laboratory, the samples

were measured against tanks of CO2, N2 and SO2

that had been calibrated against the international

standards. For sulfur and carbon, the value was

corrected for mass overlap with isotopes of

oxygen. Reproducibility of the measurement is

typically better than 70.2%. Mean d values 71

s.d. are reported where appropriate.

3. Results and discussion

3.1. Submersible observations of the geological

setting

Four Alvin dives targeted the crest of the Blake

Ridge Diapir at ODP Site 996. The terrain

observed from the submersible ranged from flat

to rugged, hummocky surfaces draped by fine,

readily suspended silt-clay sediment that varied in

color from yellow to grey. The prominent mor-

phologic feature on the ridge crest at 2154m is a

circular depression (50m diameter, 4m deep)
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surrounded by a steeply dipping, smooth rim. The

floor of the depression is covered by beds of

densely packed, live and dead large mussels and by

fields of vesicomyid clams. From ODP studies, it is

known that methane and hydrogen sulfide are

present in abundance directly below the mussel

beds (Paull et al., 1996). A faint linear scarp, which

is interpreted to represent the seafloor expression

of the fault, divides the depression into two

unequal sectors.

The prominent depression at the Blake Ridge

Diapir is probably related to seafloor methane

seepage, but the process that led to its formation is

unknown. Hovland and Judd (1988) and Uchupi

et al. (1996) suggest that gas accumulates beneath

a relatively impermeable seal (such as carbonate).

Developing fractures link the gas pocket to the

overlying ocean and are the means for release of

the excess pressure and pockmark formation.

Alternatively, the depression may be the surface

expression of salt withdrawal resulting from

subsurface chemical dissolution, as is often ob-

served on top of salt diapirs in the Gulf of Mexico

(Aharon et al., 1997).

Isolated, massive carbonate blocks are scattered

among the mussel beds and outcrop at the edge of

the depression (Fig. 3). The well-indurated carbo-

nate rocks are composed primarily of carbo-

nate-cemented mussel shells (biocalcirudites or

chemoherms; Aharon, 1994; Aharon et al., 1997)

and are similar to the indurated carbonate beds

recovered by ODP from the subsurface (Paull et al.,

1996). The subsurface carbonates at this site yield

d
13C values as light as –40.8% (Paull et al., 1995),

indicating derivation of the carbonate carbon from

microbial anaerobic methane oxidation (Aharon,

2000; Naehr et al., 2000). Radiocarbon measure-

ments in marine sediments overlying the methane-

derived carbonate beds yield ages of 15,610 yr

before present (BP) at 28 cm and 39,160 yr BP at

3.88m (Paull et al., 1995). Carbon in this overlying

sediment is presumed to be derived from ambient

seawater rather than from old, migrating methane,

and its radiocarbon date indicates that venting

of methane and deposition of carbonate have

occurred at the Blake Ridge Diapir since the

late Pleistocene. Paull et al. (1996) speculate

that carbonate blocks scattered on the seafloor

represent gas-hydrate-rafted dropstones. Submer-

sible observations suggest instead that the large

carbonate blocks within the depression are likely

to have formed at the sediment-water interface.

This interpretation is based on the presence of

contiguous, massive constructions and crusts of

carbonates surrounded by dense mussel beds, and

by the presence of narrow, stacked, vertically

oriented carbonate orifices that serve as venting

conduits for methane and colonization sites for

mussels.

3.2. Gas hydrates

During ODP Leg 164, gas hydrate was recov-

ered from all five boreholes at Site 996, at depths

Fig. 3. Massive carbonate blocks. (A) In situ photograph

showing carbonate outcrop colonized by suspension-feeding

brisingid seastars. (B) Deck-shot of a carbonate block and a

small specimen of the seep mussel, Bathymodiolus heckerae.
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ranging from just below the seafloor (Hole 996D)

to greater than 60 mbsf (Hole 996A) (Paull et al.,

1996). No hydrates were documented on the

seafloor, despite extensive acoustical and photo-

graphic surveys prior to drilling (Paull et al., 1995,

1996; Dillon and Max, 2000b). During the

September 2001 Alvin dives, outcrops of massive,

layered hydrate (Figs. 4A and B) were observed

beneath contorted and chaotically oriented carbo-

nate overhangs near the seafloor, proximal to the

location of Hole 996D of ODP Leg 164. The

hydrates occur as layers (up to 15-cm thick) of

white, crystalline ‘‘bubbles’’, and are in the shape

of upside-down ice-cream cones. Large (B1 cm)

bubbles (Fig. 4C) were observed drifting upward

through the water column from a seafloor emis-

sion site. Hydrate first formed around the bubble,

which then continued rising before becoming

plastered onto the surface of the hydrate layer.

The in situ temperature of the layered hydrate was

3.14�C, slightly lower than the bottom-water

temperature of 3.20�C. Clumps of gas hydrate

broken loose during insertion of the temperature

probe were buoyant.

3.3. Origin and nature of the outcropping gas

hydrates

The methane gas occluded in the gas hydrates

recovered from the Blake Ridge Diapir sediments

at ODP Site 996 had high methane/(ethane+pro-

pane) ratios (>1000, Lorenson and Collet, 2000)

and d
13C and dD values characteristic of biogenic

methane (d13C=�67.571.9% and dD=�181.77

22.7% for n ¼ 7; Lorenson and Collet, 2000; Paull

et al., 2000), leading Lorenson and Collett (2000)

to conclude that the methane is of microbial

origin. Not all of the gas vented on the Blake

Ridge Diapir must be generated by contemporary,

local microbial activity within the sediments,

however. The occurrence of faults and flow-related

disturbances in the shallow sediment imply that

much of the gas seeping from the crest of the diapir

probably migrates there from deeper levels or the

surrounding area (Egeberg, 2000; Musgrave and

Hiroki, 2000).

Ambient conditions (3.2�C, 21.6MPa) are con-

ducive for formation of stable gas hydrates on the

seafloor (Dillon and Max, 2000a), and plumes of

methane were detected venting into the water

column (Paull et al., 1995). Yet no gas hydrate

Fig. 4. Massive layered gas hydrates. (A) Hydrate trapped

under sediment-covered carbonate cap. (B) Close-up of

hydrate-enveloped bubbles. (C) Hydrate formation around a

gas bubble during its ascent; the bubble will rise to accumulate

against other bubbles trapped by the over-lying carbonate

layer. Scale bars=B5 cm.
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out-crops were observed on the seafloor prior to

drilling. The absence of gas-hydrate mounds and

the occurrence of hydrate outcrops only as massive

under-coatings of collapsed beds require an

explanation.

Hydrates are rarely observed at the seafloor,

even where pressure and temperature conditions

are within the stability field for methane-hydrate

formation, since the overlying seawater is under-

saturated in methane. Notable exceptions are

isolated locations in the Gulf of Mexico (Mac-

donald et al., 1994), where gas-hydrate mounds

form at the seafloor at some focused seeps. The

concentration of methane in the plumes observed

by Paull et al. (1995) was 4 mM, much lower than

the 79 mM (calculated from the formulation of

Egeberg and Dickens, 1999) required to saturate

the bottom water with methane and to form gas

hydrate. We postulate that the gas hydrate

observed on the September 2001 Alvin dives

formed beneath carbonate outcrops because the

rock ledges isolated pockets of seawater from the

larger circulation system, generating localized

pools saturated in methane. Because of this local

saturation effect, gas bubbles emitted in the

methane plumes remain undissolved; the plumes

themselves need not have high concentrations of

methane. Initiation of gas-hydrate formation

around bubbles, which represent minimum energy

surfaces, has been observed in a variety of

laboratory experiments (e.g., Tohidi et al., 2001)

as well as in field settings where seeping gases were

captured in inverted vessels (e.g., Brewer et al.,

1997). The hydrate-encased gas bubbles remain

buoyant relative to the surrounding seawater,

explaining their continued ascent until they

encounter the overhanging carbonate.

3.4. Types and distributions of organisms

Dominant megafauna were present as largely

non-overlapping populations of bathymodiolid

mussels and vesicomyid clams (Figs. 5–7). DNA

sequence analysis revealed that the mussels

Fig. 5. Map of major megafaunal distributions at the Blake Ridge Diapir, with locations of Alvin dive tracks, ODP holes (A–E), and

markers deployed (B–E).
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are probably Bathymodiolus heckerae, which

also occurs at West Florida Escarpment seeps

(Gustafson et al., 1998). Won et al. (in press)

report that sequence divergence of the mitochon-

drial ND4 gene (nicotinomid adenine dinucleotide

dehydrogenase subunit 4) between Blake mussels

and Florida Escarpment specimens is low, 1.4%

(70.5 SE). Although the sample sizes were small

Fig. 6. Bathymodiolus heckerae mussel beds. (A) Juvenile and adult mussels at Marker ‘E’. (B) Dead mussels and octopus. (C)

Extensive bed of live mussels of relatively uniform size, partially covered by bacterial mats, at Marker ‘B’. (D) Dead mussels at the

eastward periphery of Marker ‘B’. (E) Mussels with a chiridotid holothurian and Alvinocaris sp. (F) Mussels with Alvinocaris sp. and

ophiuroids. Scale bars: A–D ¼ 10 cm, E; F ¼ 5 cm.
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(N ¼ 2 for each population), this level of diver-

gence is consistent with levels found within other

named species of Bathymodiolus (generally

o2.0%), and well below the range of distances

observed between named species of this genus

(11.3 to 30.6%). Additional samples across the

entire size range of the Blake Ridge mussels should

be analyzed before concluding that only a single

mussel species exists at this site. The Blake mussels

were much larger on average (one live individual

was 364mm in length) than B. heckerae from the

Florida Escarpment (230mm on average, Van

Dover and Turnipseed, pers. obs.), and large

individuals have a ‘‘boomerang’’ shape that

resembles another large species, Bathymodiolus

boomerang, found at diapiric seeps on the Barba-

dos Accretionary prism (von Cosel and Olu, 1998).

Unfortunately, the evolutionary relationships of

B. heckerae and B. boomerang are not known, as

specimens of the latter were unavailable for

molecular analyses. Comparisons of shell growth

rates between these sites are needed to determine

whether the large mussels found at Blake are older

or grow faster than conspecific mussels from the

West Florida Escarpment. No commensal poly-

noids were recovered from hundreds of mussels

sampled at Blake, whereas mussels from both the

West Florida Escarpment and Barbados seeps

support a high incidence of commensal polynoid

polychaetes (Van Dover, pers. obs.; Olu et al.,

1996).

The small ovate clams found at the Blake site

(Figs. 7A–C) morphologically resemble Vesicomya

venusta Dall 1886, a species first described from

specimens dredged off of Havana (1480m) and

Cape Fear (1350m) (G. Oliver, pers. comm.). At

the molecular level, the Blake Ridge clams were

highly divergent from other Atlantic basin vesico-

myids. Mitochondrial COI (cytochrome c oxidase

subunit-I) and 16S ribosomal sequences revealed

Fig. 7. Vesicomya cf. venusta beds and a commensal poly-

chaete. (A) Overview of linear patch of live and dead clams. (B)

Close-up of live and dead clams. (C) Dead clams. (D) Mid-body

segments of a nautiliniellid polychaete found in clam mantle

cavities; the green pigment in parapodial lobes (arrows) is a

fluorescent protein of unknown function. Scale bars: A ¼

10 cm, B, C ¼ 2 cm, D ¼ 1mm.
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the Blake Ridge clams to be distinct from an

undescribed species that occurs in deeper water off

Barbados (5000m), at the West Florida Escarp-

ment seep site (3313m), and at the Logatchev vent

site (14�470, 3038m) on the Mid-Atlantic Ridge

(Peek et al., 2000). Sequence divergence between

this undescribed Atlantic species and the Blake

Ridge specimens is substantially greater (>9.5%

and >5.8% for COI and 16S, respectively) than

intraspecific levels of divergence typically found

for vesicomyids (o2.0–3.0%, Peek et al., 1997,

2000). Shallower species from the Gulf of Mexico,

Calyptogena ponderosa and V. chordata, can also

be ruled out as relatives, as they differ by 10.7%

and 14.2%, respectively, for COI. We cannot rule

out a relationship with ovate clams from 1000–

2000m on the South Barbados Accretionary

Prism, which Jollivet et al. (1990) recognized as

being similar to V. chuni Thiele and Jaeckle (1931),

although the Barbados clams appear to be

significantly larger. Divergence of the Blake speci-

mens from named Pacific Ocean species of

vesicomyids (i.e., Calyptogena pacifica, C. magni-

fica, C. elongata, C. kilmeri, and Vesicomya gigas)

was also great (>10.7% for COI and >5.6% for

16S). Based on morphological considerations,

geographic and bathymetric location, and mole-

cular uniqueness from available samples, we

consider the Blake Ridge clams to be Vesicomya

cf. venusta. A large proportion of the Blake Ridge

clams (B60%) hosted 1–4 commensal nautiliniel-

lid polychaetes in their mantle cavities (Fig. 7D). A

subset of these nautiliniellids contained a green

fluorescent pigment of unknown consequence.

Nautiliniellids were also found in Vesicomya sp.

of Barbados seeps (Olu et al., 1996).

Cake urchins (Sarsiaster griegi; Figs. 8A and B)

and xenophyophores (Fig. 8C) were also common

megafaunal elements, occurring just at the margin

of the mussel beds and not in distant peripheral

areas. To our knowledge, this is the first record of

these two taxa in close association with seeps.

Until recently, Sarsiaster griegi was known from

just a single specimen in the NE Atlantic, but it has

now been collected from the Gulf of Mexico and

the Blake Ridge site (D. Pawson, pers. comm.).

Xenophyophores are reportedly common in

areas with high organic input (e.g., Levin and

Thomas, 1988; Richardson, 2001), so their pre-

sence at the seep was not unexpected. The Blake

xenophyophores appeared to comprise a single

morphotype, probably of the genus Syringammina,

which is known in both the Atlantic and Pacific,

from bathyal to abyssal depths (800–4850m;

Tendal and Gooday, 1981; Gooday, 1996). They

were patchily distributed, often occurring as

groups of 4–5 specimens within a few centimeters

of the mussel beds. Patchiness on scales of

centimeters to meters is not unusual for this group

(e.g., Tendal and Gooday, 1981; Levin and

Thomas, 1988). The largest xenophyophores were

B6–7 cm in diameter. Both live and dead xeno-

phyophores were observed on the seafloor. Live

specimens were distinguishable by the greater

amount of fine sediment covering their tests

(Fig. 8C), a likely consequence of the ‘‘sticky’’

nature of their cytoplasm. This distinction was

confirmed by laboratory observation of pseudo-

podial strands extending from the tests of sedi-

ment-covered specimens and by the presence of

high ATP concentrations in fragments of sedi-

ment-covered specimens but not in fragments of

sediment-depauperate tests (J. Bernhard, unpubl.

data). On-going ultrastructural studies are inves-

tigating whether Blake Ridge xenophyophores

have adaptations to the seep environment (e.g.,

symbionts), although the xenophyophores may be

sufficiently removed from the localized seep

activity to warrant no specific physiological

adaptations.

Within the mussel beds, several macro- and

megafaunal invertebrates were common. These

included a deposit-feeding chiridotid holothurian

(Fig. 6E), which resembles the chiridotid of

Florida Escarpment seeps, and deposit-feeding

sipunculids. Sipunculids have also been reported

at Barbados (Olu et al., 1996) and Gulf of Mexico

seeps (MacAvoy et al., 2002); based on external

examination, the Blake sipunculid appears to

be different from any of the Gulf seep species

(M. Rice, pers. comm.). We observed numerous

alvinocarid shrimp (Fig. 6F) among the mussels.

These shrimp are morphologically similar to

Alvinocaris muricola from Florida Escarpment

seeps, but they differ in some diagnostic features,

including the number, position, and length of the
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telson setae and the presence of a prominent

anterior spine on the 3rd maxilliped. This degree

of difference is sufficient to warrant description of

a new morphospecies. The Blake Ridge shrimp is

almost as different from A. stactophila from

Louisiana seeps as it is from vent shrimp in the

genus Rimicaris spp. (Kimura two-parameter

distance = B15%), based on preliminary analysis

of 600 base pairs of mitochondrial Cytochrome

Oxidase I gene. Samples of A. muricola were not

available for molecular comparisons. Shrimp were

also observed in the vicinity of exposed methane

hydrates, in the absence of other megafaunal

invertebrates (Fig. 8D). Close-up video images

suggest that they are the same species as the

shrimp that are abundant in the mussel beds. Also

among the mussels were large numbers of ophiur-

oids (Fig. 6F) that are morphologically similar

to Ophioctenella acies of Mid-Atlantic Ridge

vent sites (Logatchev, Snake Pit) and Florida

Escarpment seeps (P. Tyler, pers. comm.). Nema-

todes and chaetopterid, maldanid, and capitellid

Fig. 8. Miscellaneous organisms. (A) Cake urchins Sarsiaster greigi, and a macrourid fish. (B) Cake urchins associated with bacterial

mats at the edge of mussel beds. (C) Xenophyophore. (D) Alvinocaris sp. at methane hydrate. (E) Large solitary anemone. (F) Upright

worm tubes. Scale bars=5 cm.
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polychaetes were abundant within Blake Ridge

mussel-bed samples. Large predatory or omni-

vorous species included galatheid crabs, octo-

pods, and fish. A large (B0.5m diameter)

solitary anemone (Fig. 8E), localized patches

of upright worm tubes (Fig. 8F), and sus-

pension-feeding brisingid seastars on carbonate

outcrops (Fig. 3A) were observed but not col-

lected.

Patches of white were visible on the seafloor.

These patches ranged from about 10–80 cm in

maximum dimension. The patches were generally

located in soft sediments outside the mussel beds,

although they were also noted on mussels

(Fig. 6C). Visual inspection indicated that most

of the sampled patches were very thin (B1–2mm)

bacterial mats. Microscopic examination revealed

that the mats were not composed of filamentous

Beggiatoa sp. bacteria, which comprise bacterial

mats in the Gulf of Mexico (Larkin and Henk,

1996). Blake Ridge Diapir mats may be composed

of a sulfide-oxidizing Thiovulum species, which

constructs mat-like, inorganic ‘veils’ (e.g., Fenchel

and Glud, 1998), or the sulfur-oxidizing Arcobac-

ter sp., which precipitates fibrous sulfur (Wirsen

et al., 2002), but further characterization is

required to confirm this. Thicker white mats

resembling foam were also observed; microscopic

examination indicates a composition similar to

that of the thinner mat samples (i.e., Thiovulum sp.

or Arcobacter sp.). Sediments immediately below

the mats were black and smelled strongly of

hydrogen sulfide and hydrocarbons. Preliminary

examination of meiofaunal abundance in the

Blake Ridge bacterial mat samples indicates a

depauperate fauna compared to that of Gulf of

Mexico seeps (Robinson and Bernhard, unpub-

lished). Different geochemical regimes at Blake

Ridge and Gulf of Mexico seeps likely account for

these distinctions.

In overview, the Blake Ridge community shares

some species with Florida Escarpment (and other

Gulf of Mexico) seeps and with Barbados seeps

(Table 1), but the degree of overlap in species

composition among sites is incompletely assessed

at present. Detailed studies of community compo-

sition of the invertebrate species associated with

Florida Escarpment and Blake Ridge mussel beds

are underway and will provide a robust compar-

ison of species and community similarities between

these two sites.

Table 1

Preliminary list of numerically or biomass-dominant taxa from

the Blake Ridge site and the record of occurrence of these taxa

at Florida Escarpment (FE) and Barbados (BA) seeps

Blake Ridge FE BA

Granuloreticulosa

cf. Syringammina sp. � �

Cnidaria

Anthozoa (unidentified) + +

Platyhelminthes

Turbellaria (unidentified) � �

Annelida

Cl. Polychaeta

Nautiliniella n. sp. � ?

F. Maldanidae + �

F. Chaetopteridae � +

F. Capitellidae + �

Sipunculida (unidentified) � ?

Mollusca

Cl. Bivalvia

Bathymodiolus heckerae + ?

Vesicomya cf. venusta � ?

Cl. Cephalopoda

Octopoda (unidentified) + +

Arthropoda

Cl. Crustacea

Munidopsis sp. + +

Alvinocaris cf. muricola ? ?

Nematoda (unidentified) + +

Echinodermata

Cl. Echinoidea

Sarsiaster greigi � �

Cl. Holothuroidea

Chiridota sp. + �

Cl. Ophiuroidea

Ophioctenella ?acies + �

Cl. Asteroidea

Brisingia sp. � �

Florida Escarpment records from Turnipseed and Van Dover

(unpublished); Barbados records from Sibuet and Olu (1998);

(+)=present; (�)=not reported; (?)=species that may be

shared, but for which taxonomic resolution is pending.
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3.5. Bivalve symbioses

TEM of Blake mussel (Bathymodiolus heckerae)

gills (Fig. 9A) documented the presence of two

distinct morphotypes of bacteria-like cells that we

interpret to be methanotrophic and sulfide-oxidiz-

ing bacterial symbionts. Both morphotypes had

cell envelopes typical of gram-negative bacteria

and were contained within vacuoles surrounded by

a peribacterial membrane; vacuoles contained one

or both morphotypes. The larger, cocci-shaped

morphotypes (B1.8 mm in diameter) contained

stacks of complex intracytoplasmic membranes,

characteristic of Type I or Type X methanotrophic

bacteria (Cavanaugh et al., 1992; Cavanaugh,

1994). The smaller, cocci-shaped morphotypes

(o0.5 mm in diameter) lacked intracellular mem-

branes and morphologically resembled sulfide-

oxidizing bacteria seen in other mussel/bacterial

dual symbioses (Cavanaugh et al., 1987; Cava-

naugh et al., 1992).

The presence of methanotrophic symbionts in

the Blake Ridge mussels is supported by the

carbon isotopic composition (d13C=�55.77

1.9%; n ¼ 10 individuals) of the gills (Brooks

et al., 1987; Kennicutt et al., 1992; see also Fisher,

1990; Van Dover, 2000 for reviews of interpreta-

tions of stable isotope data in vent and seep

organisms). Dual symbionts are also known in B.

heckerae from the Florida Escarpment (Cava-

naugh et al., 1987) and in the Barbados B.

boomerang (von Cosel and Olu, 1998). In contrast,

Vesicomya cf. venusta from the Blake Ridge Diapir

likely supports only sulfide-oxidizing bacteria,

based on TEM observations (Fig. 9B) and isotopic

data (d13Cgill=�36.471.8%; n ¼ 10 individuals).

Vesicomya sp. from Barbados seeps also hosts only

sulfide-oxidizing bacteria (Olu et al., 1996). The

Blake Ridge mussel and clam carbon isotope

values mirror the isotopic differences observed in

d
13C values of shallow Gulf of Mexico seep

mussels (off Louisiana) that rely on methanotro-

phy (�56.9 to �49.0%) and seep vestimentiferans

that rely on sulfide oxidation (�38.6 to �31.6%;

Brooks et al., 1987). The Louisiana seep mussels,

however, do not support dual symbionts, and the

similarity in the d13C values of their bulk tissues to

those of the dual-symbiont-hosting Blake Ridge

mussels may be coincidental, perhaps due to

different original methane signatures.

Because of their requirements for reduced

compounds (methane or sulfide), the two Blake

Ridge bivalve species may serve as flux indicators

for these compounds, as has been observed for

bivalve species at Hydrate Ridge on the Cascadia

convergent margin (Sahling et al., 2002). More-

over, their typically discrete, non-overlapping

distributions suggest underlying differences in flux

and chemical conditions, but hydrological, micro-

bial, and geochemical distinctions have yet to be

measured between clam and mussel habitats. It is

also plausible that discrete distributions of clams

and mussels could be explained by competition for

Fig. 9. TEM of bivalve gill tissues. (A) Bathymodiolus heckerae.

(B) Vesicomya cf. venusta. Arrows point to some of the putative

thiotrophic symbionts; M=putative methanotrophs; n=

nucleus. Scale bars=1mm.
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sulfide, as has been observed between interacting

species of clams in Monterey Canyon seep settings

(Barry et al., 1997).

3.6. Bivalve size-frequency distributions and

mortality

Mussel beds within the study area were roughly

circular to ovate in shape (B20m diameter) and

were distinctive in the size-frequency distributions

of mussels within them (e.g., Fig. 10). The mussel

bed at Marker E was distinctive in being char-

acterized by many juvenile mussels attached to

much larger mussels (Fig. 6A). This particular bed

was also colonized by a large number of pedi-

veliger and early post-larval mussel stages.

Mussel patches were often edged by a 1–2-m-

wide band of empty valves (Fig. 6B). Mussel

mortality could not be attributed to a specific

cause, although the uniform size of the empty,

paired valves within most patches suggests a

common cause and timing of mortality. The extent

of the seep may fluctuate and mussels at the

perimeter may die when the seep ebbs. Large

predators, including fish (chimaerids, macrourids,

zoarcids) and octopods (Fig. 6B), seem unlikely to

explain the specific pattern of mortality observed,

given the presence of paired shells without

apparent damage. Clam patches occurred as

roughly linear bands B1-m in width (Fig. 7A) or

as small circular patches (o1m diameter) domi-

nated by small (1–2 cm length) live and dead

individuals. The live clams are relatively uniform

in length (20.772.3mm; Fig. 11) and give the

appearance of a cohort of recruits that settled over

a short period of time (days to weeks), but other

explanations are plausible. The relative uniformity

in size of the dead valves (21.675.0mm; Fig. 11)

and the similar degree of erosion of these valves

(not illustrated) suggest that mortality may have

been massive. As with the mussel populations,

massive mortality among the clams suggests a

common cause and discrete timing, such as might

result from fluctuations in fluid flux.

3.7. Food–web relationships

The chemosynthetic community at the Blake

Ridge Diapir includes primary producers, grazers,

suspension feeders, deposit feeders, predators, and
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decomposers (Table 2). Stable-isotope data

(Fig. 12) and dietary inferences based on knowl-

edge of shallow-water and hydrothermal-vent

analogues are used to provide a preliminary

assessment of trophic relationships (Fig. 13).

As reported above, populations of the two

Table 2

Inferred feeding guilds of invertebrates in the Blake Ridge Diapir chemosynthetic communities

Guild

Primary

producers

Primary consumers Secondary+consumers

Autotrophic

microorganisms

Symbiont hosts Deposit feeders Suspension

feeders

Grazers Predators,

scavengers, &

omnivores

Decomposers

Mussel

symbionts

Mussels Xenophyophores Mussels Shrimp Anemones Nematodes

Clam symbionts Clams Polychaetes Xenophyophores Galatheids Octopus

Free-living Sipunculids Polychaetes Galatheids

Bacteria Ophiuroids Brisingid seastars Fish

Cake urchins Flat worms

Holothurians
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Fig. 12. Stable-isotope composition of selected Blake Ridge invertebrates. (A) d15N vs. d13C (%). (B) d34S vs. d13C (%). Number of

individuals analyzed: mussel (Bathymodiolus heckerae) paired gill and mantle, n ¼ 10; clam (Vesicoyma cf. venusta) paired gill and

mantle, n ¼ 10; clam commensal polychaete (Nautiliniella n. sp.), n ¼ 18 except for d34S, where n ¼ 16; sipunculid, n ¼ 3; chaetopterid

polychaete, n ¼ 4; maldanid polychaete, n ¼ 3; anemone, n ¼ 1; nematodes, 2 samples of pooled specimens (12 and 62 individuals).
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symbiont-bearing bivalves have distinctive carbon

isotopic compositions, consistent with differences

in their autotrophic symbiont populations and

with likely carbon sources (a mix of methane and

seawater CO2 for mussels, seawater and porewater

CO2 for clams). For both the mussels and clams,

we can reasonably assume that photosynthetically

derived organic carbon is likely not important in

their nutrition (Fisher, 1990). The relative impor-

tance of methanotrophy vs. sulfide oxidation in the

nutrition of the mussels may be estimated by

assuming a two-end-member mixing equation (Fry

and Sherr, 1984) in which photosynthetically

derived organic material plays a negligible role.

In this model, d
13Cconsumer=f (d13Csource 1)+

(1� f ) (d13Csource 2), and f is the proportion of

source 1 used. If the d
13C value of methanotro-

phically generated biomass is assumed to be that

of the source methane (�67.8%; Paull et al., 1995,

2000) and the d
13C value of thiotrophically

generated biomass is that of the clams (�36%;

this study), then these mussels (�56%) derive

approximately 60% of their organic carbon from

methanotrophic symbionts and approximately

40% of their carbon from sulfide-oxidizing sym-

bionts. This contrasts with the situation in mussels

of Gulf of Mexico seeps, where only methano-

trophs are symbiotic in the gills and the carbon

isotopic composition of mussel tissues is similar to

that of the source methane (d13Cmussel=�40.6%;

d
13Cmethane=�41.2%; Brooks et al., 1987). This

simple approach to assessing the relative impor-

tance of methanotrophy and thiotrophy neglects

the potential for differential fractionation effects

related to microbial-host interactions and translo-

cation of nutrients.
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Sulfur isotopic compositions were also distinc-

tive between the two bivalve species (Vesicomya cf.

venusta d
34Sgill=�15.675.6%; Bathymodiolus

heckerae d
34Sgill=13.071.7%; Fig. 12B) and may

be interpreted to indicate reliance on hydrogen

sulfide as a sulfur source in clams (Brooks et al.,

1987; Vetter and Fry, 1998; MacAvoy et al., 2002)

and a combination of seawater sulfate (20%;

Michener and Schell, 1994) and hydrogen sulfide

(B�10%; Michener and Schell, 1994) as sulfur

sources in mussels. The d
34S value of mussel gill

tissue was significantly more positive (B7%) than

that of the mussel mantle tissue (paired t-test;

Po0:001). Using a 2-source mixing equation, we

conclude that mussels could derive as much as

B75% of their organic sulfur from seawater

sulfate rather than from sulfide, suggesting that

sulfide uptake and oxidation is not as critical to the

organic sulfur budget in mussels as it is in clams.

This model, however, does not account for

differential fraction of sulfur by microbes and

host–microbe interactions, nor does it take into

account the effect of inorganic sulfur storage in the

host tissues.

Florida seep clams (Calyptogena cf. kaikoi; Van

Dover et al., 2002) and mussels (B. heckerae) have

carbon and sulfur isotopic compositions (Cary

et al., 1989; Vetter and Fry, 1998) that mirror

those of the Blake Ridge clams and mussels,

respectively. The isotopic data suggest nutritional

similarities within these bivalve taxa despite their

disparate geological and geochemical settings

(brine seepage from the carbonate platform at

the Florida Escarpment and methane-hydrate

deposits at Blake Ridge). This observation sug-

gests congruence in microbial processes that

generate and use methane and hydrogen sulfide

even under different physical regimes.

Nitrogen sources for both bivalve species are

inferred to have the same isotopic composition;

enrichment in 15N from gill to mantle tissues is

consistent with the trophic characterization of

mussels and clams as primary consumers of

organic material derived from gill symbionts

(Fisher, 1990).

The d
13C and d

15N values of the commensal

nautiliniellid polychaetes (Fig. 12A) suggest that

these worms might derive nutrition from tissues of

their host, but the mean sulfur isotopic composi-

tion of the polychaete is so distinctive

(Dd34SX20%) from that of the host clams

(Fig. 12B) that an alternative diet must be inferred.

One alternative feeding strategy is that ciliary

activity of the clam gills moves sufficient volumes

of seawater to allow the polychaetes to collect

suspended organic particles either from gill mucus

or a worm-generated mucus net. Mucus-net

feeding in polychaetes is not uncommon and is

known in, for example, the maldanid Praxillura

maculata (McDaniel and Banse, 1979) and the

nereid Nereis diversicolor (Riisgaard et al., 1992).

Higher trophic-level organisms (fish, octopus)

were not captured. Small nematodes had the most

positive d
15N values of any organism examined.

These nematodes could be members of a decom-

poser guild, involved in recycling of locally

produced organic material. Two turbellarian flat-

worms (Platyhelminthes) were collected from

gaping clams, suggesting that the flatworms are

predators or scavengers.

Based on examination of gut contents, sipuncu-

lids from the mussel beds and cake urchins from

the peripheral muds ingest large volumes of

sediment and might be among the most sensitive

indicators of the role of surface-derived organic

material (SDOM) in the seep food web. Body-wall

tissues of three sipunculids had d
13C values

averaging B�40% rather than the �22% ex-

pected if they were dependent on SDOM (Van

Dover et al., 1992). Assuming a 2-member mixing

model and the same d
13C values for organic

carbon derived from methanotrophic and sulfide-

oxidizing bacteria as discussed for mussels and

clams above, methanotrophically derived organic

material contributes less than 15% of the organic

carbon in sipunculid tissues. If, however, a 2-

member mixing model is constructed that dis-

misses the role of thiotrophs in favor of methano-

trophically and photosynthetically derived organic

carbon, then the methanotrophic contribution

would be >40%. Given that the sulfur isotopic

composition of the sipunculids is more like that of

the mussels, this latter scenario seems plausible. A

3-end-member mixing model that incorporates

photosynthetically derived carbon cannot be

discounted. Fatty-acid biomarkers and their
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stable-isotope compositions would prove helpful

in determining the relative importance of different

carbon sources, but these were outside the scope of

the present study.

Given the importance of methanotrophic micro-

organisms in the nutrition of mussels determined

from carbon isotopes (60% of mussel organic

carbon assuming a 2-source mixing model), and

the dominance of mussels in the community, the

bulk of the organic carbon at the Blake Ridge

Diapir is derived from methane. Based on carbon-

isotope compositions of seven other members of

the Blake Ridge seep community (average

d
13C=�41.8%) and the number of organisms

potentially linked to thiotrophs (Fig. 13), sulfide-

oxidation by free-living thiotrophic bacteria may

contribute to the nutritional base of the food web,

but the sulfur-isotope data for these species

(average d
34S=6.3%) is more consistent with

dependence on sulfur with a seawater sulfate

signal (d34S=7–15%) than sulfidic sulfur (o0%).

The possibility of a major role of photosyntheti-

cally derived organic material in the food web

cannot be ruled out using bulk isotope data alone.

Further isotopic characterization of potential

nutritional resources is needed before the parti-

tioning of thiotrophically, methanotrophically,

and photosynthetically derived organic material

within the Blake Ridge Diapir food web can be

determined with greater resolution.
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