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Abstract

In adipose, muscle, liver and macrophages, signaling by the nuclear receptor PPARγ is a 

determinant of insulin sensitivity and this receptor mediates the insulin–sensitizing effects of 

thioazolidinediones (TZDs)1-4. Since PPARγ is also expressed in neurons5, we generated mice 

with neuron–specific Pparγ knockout (Pparγ BKO) to determine whether neuronal PPARγ 

signaling contributes to either weight gain or insulin resistance. During high fat diet (HFD) 

feeding, food intake was reduced and energy expenditure increased in Pparγ BKO mice, resulting 

in reduced weight gain. When treated with the TZD rosiglitazone, Pparγ BKO mice were resistant 

to rosiglitazone–induced hyperphagia and weight gain and, relative to rosiglitazone–treated 

controls, experienced only a marginal improvement in glucose metabolism. Hyperinsulinemic 

euglycemic clamp studies showed that the effect of rosiglitazone treatment to increase hepatic 

insulin sensitivity during HFD feeding was completely abolished in Pparγ BKO mice, an effect 

associated with the failure of rosiglitazone to improve liver insulin receptor signal transduction. 

We conclude that excess weight gain induced by HFD feeding depends in part on the effect of 

neuronal PPARγ signaling to limit thermogenesis and increase food intake. Neuronal PPARγ 

signaling is also required for the hepatic insulin sensitizing effects of TZDs.
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Thiazolidinediones (TZDs) are a class of drugs that activate peroxisome proliferator–

activated receptor γ (PPARγ) and improve blood glucose control and systemic insulin 

sensitivity in patients with type 2 diabetes mellitus (T2DM)6. In addition to enhancing 

insulin action, TZDs induce weight gain in humans and rodent models not only via enhanced 

adipogenesis and fluid retention, but by increasing food intake7,8. This latter effect suggests 

that PPARγ signaling in the central nervous system (CNS) may influence energy intake and 

storage. Consistent with this hypothesis, PPARγ is expressed in key brain areas involved in 

energy homeostasis and glucose metabolism5, raising the possibility that the CNS might be a 

previously unrecognized site for TZD action.

To investigate the function of neuronal PPARγ, we generated brain–specific Pparγ knockout 

mice (Pparγ BKO mice) using the synapsin I Cre–LoxP system. Cre expression driven by 

the Synapsin I promoter (Syn–Cre mice) leads to recombination in neurons, but not other 

cell types9. To verify brain–specific deletion of Pparγ in BKO mice, we isolated RNA from 

multiple brain regions and from peripheral tissues for measurement of Pparγ mRNA 

abundance. Quantitative PCR (qPCR) showed that brain Pparγ deletion was regional, with 

markedly reduced mRNA abundance in spinal cord, brain stem, hypothalamus, diencephalon 

and hippocampus, mildly reduced expression in cerebral cortex, and unchanged levels in 

cerebellum and olfactory bulb, compared to control mice (Fig. 1a). We further confirmed 

neuron–specific deletion in the Pparγ BKO mice by double–staining for PPARγ and the 

neuronal marker NeuN, and found that PPARγ is expressed in both neurons and non–

neuronal cells in the CNS, albeit with distinctive patterns in different regions. In 

hippocampus, for example, most PPARγ+ cells were also NeuN+ and, accordingly, the 

number of double positive cells was reduced in BKO mice (Supplementary Fig. 1). In 

contrast, the majority of PPARγ+ cells in the cortex were NeuN–, indicating non–neuronal 

PPARγ expression. These histochemical data are fully consistent with the qPCR analysis, 

showing a much greater reduction of Pparγ mRNA in hippocampus than in cortex of BKO 

mice.

PCR detection of genomic DNA (data not shown) and RNA (Fig. 1b) from various tissues 

demonstrated Cre–mediated recombination in brain, but not in muscle, liver, adipose tissue, 

pancreas or other tissues. We also confirmed that tissues other than brain displayed normal 

Pparγ expression (Fig. 1c).

Body weights of Pparγ BKO mice fed a standard chow diet were slightly, but significantly, 

lower than control mice at a young age (8–11wk), but these differences were transient, 

disappearing by age 13 wk (Supplementary Fig. 2a). Metabolic studies on chow fed mice 

did not reveal any difference between genotypes (Supplemental Fig. 2b–f).

When 12–wk old control and Pparγ BKO mice were placed on a HFD, the body weight 

curves diverged over a 7–wk period, with reduced weight gain in BKO mice (Fig. 2a). Body 

composition analysis revealed that this weight difference was due to a reduced body fat 
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percentage in BKO mice compared to controls fed the same HFD (Fig. 2b). To determine 

whether differences in energy intake, energy expenditure, or both contribute to the lean 

phenotype of BKO mice, we measured food intake and metabolic parameters during HFD 

feeding. Ambulatory activity and oxygen consumption were increased in BKO mice, 

compared to controls, in both dark and light cycles (Fig. 2c). Multiple regression analysis10 

demonstrated increased energy expenditure in BKO mice after adjusting for differences of 

body weight, composition, and physical activity (Fig. 2d and Supplementary Table 1). 

Since BKO mice also consumed less food over the course of 12 wk of HFD feeding (Fig. 

2e) than controls, their protection against HFD–induced obesity involves both increased 

energy expenditure and reduced energy intake, indicating that neuronal PPARγ signaling is 

required for the effects of HFD feeding on both sides of the energy balance equation.

Leptin is an adipokine that increases energy expenditure and reduces energy consumption 

via central effects11 and the effects of HFD feeding to reduce leptin sensitivity are well 

established. Since Pparγ BKO mice are protected against excess weight gain on this diet, we 

hypothesized that neuronal PPARγ signaling contributes to leptin resistance in this setting. 

Although the basal circulating leptin concentration was comparable in both genotypes (Fig. 

2f), leptin sensitivity was increased in BKO mice when measured as the effect on food 

intake of leptin administration for 48 h. Leptin induced a larger decrease of food intake in 

BKO mice fed standard chow compared to either f/f mice or Syn–Cre mice (Supplementary 

Fig. 3a), despite no differences in body weight among these three groups (data not shown). 

A similar, but statistically insignificant (p = 0.14), trend was observed in HFD–fed BKO 

mice (Supplementary Fig. 3b). Thus, neuronal Pparγ deficiency appears to sensitize mice 

to leptin's anorexigenic effects. To assess leptin responsiveness using a biochemical 

approach, we measured phosphorylation of STAT3, a downstream mediator of intracellular 

lepin signaling, in hypothalamic extracts following a single intraperitoneal leptin injection. 

As expected, HFD feeding caused leptin resistance in control mice, as indicated by the 

failure of leptin to increase hypothalamic phospho–STAT3 (Y705) levels12. In contrast, 

hypothalamic phospho–STAT3 levels were increased in leptin–relative to vehicle–treated 

BKO mice (Fig. 2g). Although these studies are clearly indicative of a leptin signaling 

defect in the brain, additional experiments will be essential to further define the 

abnormalities in this signaling pathway and their pathophysiologic effects. In this latter 

experiment, the basic phenotype of the BKO mice is that they weigh less than controls so 

their increased biochemical leptin sensitivity could have been secondary to their protection 

against obesity rather than a direct consequence of neuronal Pparγ deficiency. Although 

future studies are warranted to address this issue, in either case these data collectively 

indicate that the phenotype of BKO mice includes increased leptin sensitivity.

To determine whether neuronal PPARγ signaling contribute to the actions of TZD's, we fed 

mice a HFD to induce obesity and insulin resistance, followed by HFD supplemented with 

rosiglitazone. As expected, the addition of rosiglitazone led to an increase of body weight 

and food intake in both f/f mice and Syn–Cre mice compared to age–matched mice fed the 

same diet without rosiglitazone for the same period of time (28–34 weeks of age) (Fig. 3a–

c). Relative to control mice, the effects of rosiglitazone to increase food intake and body 

weight in Pparγ BKO mice were attenuated by ~50% (delta body weight in f/f vs. BKO 
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mice = 4.7 vs. 2.2 gm; Fig. 3a–c). To further characterize this aspect of the BKO phenotype, 

we initiated HFD and rosiglitazone treatment simultaneously in chow–fed mice. As 

expected, the resulting weight gain over the subsequent 2–wk period was substantially less 

in BKO mice than in controls (Supplementary Fig. 3c). Thus, neuronal PPARγ is required, 

at least in part, for TZD–induced hyperphagia and weight gain.

The increased energy expenditure observed in Pparγ BKO mice prompted us to assess the 

expression of thermogenic genes in brown and white adipose tissue. Consistent with 

previous publications13, rosiglitazone administration to control mice increased expression of 

Ucp1 mRNA in white adipose tissue (WAT) and Ucp3 mRNA in liver and muscle (Fig. 3d–

h). Notably, Ucp1 mRNA expression in WAT of BKO mice were higher than control values 

before rosiglitazone treatment, and TZD treatment enhanced WAT Ucp1 mRNA expression 

in BKO mice to a greater extent than in controls (Fig. 3d). Thus, the effect of TZD to 

increase WAT Ucp1 expression is enhanced in mice with neuron–specific Pparγ deletion. 

Ucp1 mRNA content in BAT was also elevated in BKO mice (Fig. 3e), and this effect was 

associated with decreased BAT lipid accumulation (Fig. 3f). In muscle, Ucp3 mRNA 

expression was similar between genotypes both before and after rosiglitazone treatment 

(Fig. 3g) whereas in liver, rosiglitazone induction of Ucp3 expression was markedly 

augmented in BKO mice (Fig. 3h). These observations collectively identify mitochondrial 

uncoupling in WAT and other tissues as a likely mechanism to explain increased energy 

expenditure in mice with neuronal Pparγ deficiency. By extension, we infer a physiological 

role for neuronal PPARγ signaling to limit expression of UCP proteins in adipose tissue and 

liver and thereby limit energy expenditure.

Since increased mitochondrial uncoupling in adipose tissue can result from increased thyroid 

hormone signaling, we assessed the thyroid axis in Pparγ BKO mice. We found that these 

animals exhibit normal plasma thyroid hormone concentrations (Supplementary Figs. 3d 

and e) and normal hypothalamic expression of both the thyroid hormone receptor and 

thyrotropin releasing hormone (Supplementary Fig. 3f). Thus, altered thyroid function is an 

unlikely contributor to the hypermetabolic phenotype of these mice. Similarly, measures of 

blood pressure, heart rate, and catecholamine concentrations were the same between 

genotypes (Supplementary Figs. 4a–c) indicating that stress is not the mechanism driving 

the hypermetabolic phenotype of BKO mice.

We next evaluated the contribution of neuronal PPARγ to the control of insulin sensitivity in 

both the presence and absence of rosiglitazone. After either 3 or 7 wk of TZD treatment, 

glucose tolerance was markedly improved in HFD–fed control mice, but not in Pparγ BKO 

mice, despite equally reduced fasting free fatty acid (FFA) concentrations (Fig. 4a and 

Supplementary Figs. 4d and e). Hyperinsulinemic–euglycemic clamp measurements 

provide a quantitative assessment of insulin sensitivity in vivo and, as expected, we found 

that in control mice, rosiglitazone treatment significantly increased both the glucose infusion 

rate (GIR, a measure of whole–body insulin action) and the insulin–stimulated glucose 

disposal rate (IS–GDR) (Fig. 4b and 4c). At the same time, drug treatment lowered basal 

hepatic glucose production (HGP), while enhancing the ability of insulin to inhibit HGP 

(Fig. 4d and 4e).
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Compared to control mice, Pparγ BKO mice were less insulin–sensitive after rosiglitazone 

treatment. Most strikingly, the beneficial effects of rosiglitazone on both basal HGP and 

insulin–induced suppression of HGP were completely abolished in the BKO mice (Fig. 4d–

f), despite the fact that these mice consumed less food and gained less weight (Fig. 3b and 

c). Although GIR and IS–GDR values were moderately reduced in TZD–treated BKO mice, 

the incremental values for IS–GDR between the untreated and treated state were comparable 

(13 vs. 11 mg kg–1 min–1) between genotypes.

In concert with the clamp studies, biochemical measures of hepatic insulin signaling were 

also blunted in TZD–treated Pparγ BKO mice relative to controls, as reflected by decreased 

AKT and GSK3 phosphorylation after acute insulin stimulation (Fig. 4g and h). 

Rosiglitazone–treated BKO mice also exhibited increased hepatic CREB phosphorylation 

and elevated PEPCK expression (Fig. 4g and i), whereas Socs3 mRNA content was 

increased in rosiglitazone–treated BKO mice compared to controls (Supplementary Fig. 

5a). Since SOCS3 is a negative regulator of insulin signaling, this latter effect could 

potentially contribute to liver insulin resistance in these mice during TZD treatment. Finally, 

liver DAG and ceramide concentrations were lowered by rosiglitazone treatment in both 

genotypes (Supplementary Table 2).

As shown in Supplementary Figs 5b–d, tissue inflammatory gene expression did not differ 

between genotypes, nor were circulating cytokine or adiponectin concentrations different 

between BKO mice and controls (Supplementary Fig 6). Thus, neither increased systemic 

inflammation nor differences in adiponectin levels can explain the relative insulin resistance 

of rosiglitazone–treated BKO mice.

Our results show surprising effects of brain PPARγ on food intake, energy expenditure, and 

insulin sensitivity. Deletion of brain Pparγ led to both reduced food intake and increased 

energy expenditure, effects that were specific to consumption of a HFD and which protected 

mice from excess weight gain and adiposity in this setting. One potential mechanism to 

explain this outcome is increased leptin sensitivity and associated increases of Ucp1 

expression in BAT and WAT, and Ucp3 expression in liver of Pparγ BKO mice. Protection 

against rosiglitazone–induced hyperphagia and weight gain was also observed in BKO mice. 

Despite their reduced adiposity, these animals displayed impaired glucose tolerance and 

reduced insulin sensitivity during rosiglitazone treatment, compared to controls. Of 

particular relevance is the liver–specific nature of the impaired response to rosiglitazone in 

these mice, which implies that the effect of TZDs to improve insulin sensitivity in liver, but 

not in other tissues, involves a CNS mechanism. We conclude that neuronal PPARγ 

contributes to excess weight gain during HFD feeding and in response to TZD treatment, 

and is also required for the TZD–mediated improvement of liver insulin sensitivity. These 

studies define a new role for brain PPARγ as both an integrator of signals affecting energy 

balance and glucose homeostasis and as a target for the action of TZDs.
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Online Methods

Animals

We backcrossed mice carrying Pparγ floxed alleles (f/f mice)1 onto C57BL/6 background 

for >10 generations. We backcrossed transgenic mice harboring Cre recombinase under the 

control of the neuron–specific rat synapsin I promoter (Syn–Cre mice)9 onto the C57BL/6 

background for >6 generations. We bred f/f mice with Syn–Cre mice to generate Pparγ f/+ 

mice with a positive Cre gene, which were further bred with Pparγ f/f mice to obtain Pparγ 

BKO mice. Since occasional male mice carrying synapsin I Cre can generate germline 

deletion of the target gene in progeny due to expression of Cre recombinase in sperms14, we 

screened all Pparγ BKO mice for germline deletion (e.g., heterozygous whole-body Pparγ 

KO mice), and such mice were eliminated from our studies. We housed mice in a 12 h 

light/12 h dark cycle. At 12–wk of age, mice were either fed normal chow diet (LabDiet, 

Cucamonga, CA) or 60% HFD (Research Diets, New Brunswick, NJ). At wk 16 on HFD, a 

subset of mice was switched to 60% HFD with rosiglitazone (3 mg kg–1 d–1) for up to 10 

wk.

Mouse procedures conformed to the Guide for Care and Use of Laboratory Animals of the 

US National Institutes of Health, and were approved by the Animal Subjects Committee of 

the University of California, San Diego.

Metabolic Studies

We performed hyperinsulinemic euglycemic clamp studies as previously described15. We 

only used mice that lost < 6% of their pre–cannulation weight after 4–5 days of recovery. 

The clamp experiments began with a constant infusion (5 μCi h–1) of D–[3–3H] glucose (Du 

Pont–NEN, Boston, MA) in 6–h fasted mice. After 90 min of tracer equilibration and basal 

sampling, we infused glucose (50% dextrose; Abbott) and tracer (5 μCi h–1) plus insulin (6 

mU kg–1 min–1) into the jugular vein. We drew small blood samples from the tail vein at 

10–min intervals and confirmed the achievement of steady–state conditions (120 mg dl–1 ± 

5 mg dl–1) at the end of the clamp by maintaining glucose infusion and plasma glucose 

concentration for a minimum of 20 min. We took blood samples at t = –10, 0 (basal), 110, 

and 120 (end of experiment) min to determine glucose–specific activity and insulin 

concentration. We quantified tracer–determined rates by using the Steele equation for 

steady–state conditions16. At steady state, the rate of glucose disappearance, or total GDR, is 

equal to the sum of the rate of endogenous glucose productions (HGP) plus the exogenous 

(cold) GIR. The IS–GDR is equal to the total GDR minus the basal glucose turnover rate.

We performed other metabolic measurements as previously described15,17,18. For assay of 

biochemical responses to insulin stimulation, we anesthetized mice after a 6–h fast. We 

ligated vessels supplying one side of leg muscles, one lobe of the liver and one epididymal 

fat pad and took basal samples of liver, muscle, and fat. Five minutes after a bolus injection 

of insulin (1 U kg–1 via inferior vena cava), we harvested the remaining liver, muscle, and 

fat and snap froze to measure signal transduction markers.
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Body Composition, Locomotor Activity, and Indirect Calorimetry

We measured mouse lean and fat mass using quantitative magnetic resonance spectroscopy 

(Echo Medical Systems, Houston, TX) after 5 wk of HFD. At wk 6 of HFD, we individually 

placed mice into metabolic cages for measurements. We adapted all animals to the novel 

environment for 48 h before study. We normalized VO2 and VCO2 using a multiple 

regression–based approach10 to account for variation of both lean and fat mass. We 

calculated energy expenditure (EE) based on EE = 3.815 × VO2 + 1.232 × VCO2.

Biochemical Leptin Sensitivity Assays

After 8 weeks of HFD feeding, we injected overnight fasted f/f and BKO mice 

intraperitoneally with either vehicle or recombinant mouse leptin 1 mg kg–1 (National 

Institute of Diabetes and Digestive and Kidney Diseases and The National Hormone and 

Pituitary Program, Torrance, CA) and decapitated mice 90 min later. We rapidly dissected 

and froze the hypothalami for detection of phospho–STAT3 (Y705) and STAT3 by 

immunoblotting.

Western Blotting

We performed Western blotting as previously described19. We purchased all primary 

antibodies, except antibody to β–tubulin (Millipore, Billerica, MA), from Cell Signaling 

Technology, Inc. (Beverly, MA). We analyzed the protein bands using Image J densitometry 

analysis and normalized phosphorylated protein to total protein bands.

Gene Expression Analyses

We carried out quantitative PCR as previously described15. We measured mRNA of Pparγ 

using the following primer set: 5’–GTCACGTTCTGACAGGACTGTGTGAC–3’ and 5’–

GGGTCAGCTCTTGTGAATGGAATG–3’, in which the reverse primer detects the exon 

absent in the mutant mice. We normalized the mRNA content of all genes reported to 

housekeeping genes (cyclophilin A and RNA polymerase II). For detection of mutant Pparγ 

mRNA, we used the following primer set that binds to sequence flanking the absent exons: 

5’–GTCACGTTCTGACAGGACTGTGTGAC–3’ and 5’–

TATCACTGGAGATCTCCGCCAACAGC–3’.

Statistical Analysis

For experiments involving two factors, we analyzed data by two–way ANOVA followed by 

Bonferroni post tests using Prizm (GraphPad Software, Inc., San Diego, CA). We performed 

individual pair-wise comparisons using student t test in Excel (Microsoft, Redmond, WA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Neuronal deletion of Pparγ in brain knockout mice

(a) Quantification of wild type Pparγ mRNA in various brain regions of Pparγ f/f mice and 

BKO mice. Data shown are the fold induction of gene expression normalized with 

housekeeping gene and expressed as mean ± SEM. (b) RT–PCR showing wild type and 

mutant (KO) Pparγ mRNA in various tissues in control and BKO mice. (c) Quantification 

of tissue Pparγ mRNA expression. Data shown are the fold induction of gene expression 

normalized with housekeeping gene and expressed as mean ± SEM. Asterisks indicate 

statistical significance (p < 0.05) between conditions connected by bars.
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Fig. 2. Energy balance parameters in Pparγ brain KO mice

(a) Body weight of Pparγ–f/f and BKO mice on either standard chow or HFD. Dagger 

indicates statistical significance (p < 0.01) between genotypes. (b) Body composition 

analysis of control (n = 8) and Pparγ BKO (n = 6) mice at wk 5 on HFD. (c) Ambulatory 

activity of control (n = 7) and BKO (n = 6) mice at wk 6 on HFD. (d) Average 24–h energy 

expenditure in control (n = 8) and BKO (n = 6) mice after adjustment for body size 

differences and 24–h average activity. (e) Weekly caloric intake of control (n = 12) and 

BKO (n = 11) mice at weeks 1 and 12 on HFD. (f) Serum leptin concentration in control and 

BKO mice fed either standard chow or HFD (n = 5–9 per group). (g) Western blot showing 

acute leptin–stimulated phosphorylation of STAT3 (Y705) in hypothalamus. Data shown are 

quantified ratio of p–STAT3/total STAT3 normalized to vehicle group. All data are mean ± 
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SEM. Statistical significance between control and Pparγ BKO mice, or between conditions 

connected by bars, is indicated by asterisks (p < 0.05), daggers (p < 0.01), double daggers (p 

< 0.001), or NS (not significant).
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Fig. 3. Effect of rosiglitazone on weight gain and food intake in control and Pparγ BKO mice

(a) Rosiglitazone–induced weight gain in Pparγf/f (n = 14), Syn–Cre (n = 6), and Pparγ 

BKO (n = 11) mice. Age of mice, start time of HFD, and HFD + rosiglitazone (rosi) are 

indicated. (b) Body weight gain of control and Pparγ BKO mice that were fed HFD for 16 

wk followed by HFD with or without rosiglitazone treatment. Data are shown for weeks 28–

34 (n = 6–14 per group). (c) Weekly caloric intake before and after rosiglitazone treatment 

in HFD-fed mice showing the effect of rosiglitazone on food intake in control (n = 14) and 

Pparγ BKO (n = 11) mice. (d) Measurement of Ucp1 mRNA in epididymal white adipose 

tissue from control and Pparγ BKO mice. (e) BAT Ucp1 mRNA expression in control and 

Pparγ BKO mice after rosiglitazone treatment. (f) Histochemical image of BAT from 

control and Pparγ BKO mice after rosiglitazone treatment stained with H&E. (g) Muscle 

Ucp3 mRNA expression in control and Pparγ BKO mice on HFD with or without 

rosiglitazone treatment (n = 5–10 per group). (h) Liver Ucp3 mRNA expression in control 

and Pparγ BKO mice on HFD or after rosiglitazone treatment (n = 5–10 per group). (a)–(c), 
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data are shown as mean ± SEM. (d)–(h), all qPCR data shown are the fold induction of gene 

expression normalized with housekeeping gene and expressed as mean ± SEM. Statistical 

significance between control and Pparγ BKO mice, or between conditions connected by 

bars, is indicated by asterisks (p < 0.05), daggers (p < 0.01), or NS (not significant).
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Fig. 4. Neuronal PPARγ is required for the full insulin–sensitizing effect of TZD treatment

(a) Intraperitoneal glucose tolerance tests (IPGTTs) on Pparγf/f and BKO mice on HFD 

with or without rosiglitazone treatment for 7 wk (n = 6–12 per group). Statistical 

significance between values from rosiglitazone–treated control and Pparγ BKO mice 

indicated by asterisks (p < 0.05) and dagger (p < 0.01). (b)–(f), Hyperinsulinemic 

euglycemic clamp study on control and Pparγ BKO mice fed a HFD with or without 

rosiglitazone treatment for 8 wk (n = 7–12 per group). Glucose infusion rate (GIR) (b), 

insulin–stimulated glucose disposal rate (IS–GDR) (c), basal hepatic glucose production rate 

(basal HGP) (d), insulin–stimulated rate of HGP (e), and percent suppression of HGP by 

insulin (f) are shown. (g) Immunoblotting analysis of insulin-stimulated protein 

phosphorylation in liver extracts from control and BKO mice fed a HFD in the presence or 

absence of rosiglitazone treatment. (h) Quantification of relative phospho–protein levels 

normalized to respective total kinase protein content or β–tubulin. Data are shown as mean ± 

SEM. (i) Liver Pck1 (Pepck) mRNA expression in control and BKO mice fed a HFD or after 

rosiglitazone treatment (n = 5–10 per group). (j) Liver weight of control and Pparγ BKO 

mice (n = 10–14 per group) on HFD with or without rosiglitazone treatment. All data shown 

are as mean ± SEM. Statistical significance between conditions connected by bars is 

indicated by asterisks (p < 0.05), daggers (p < 0.01), or NS (no significance).
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