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Abstract 
 

In this paper, the buckling analysis of laminated composite plates reinforced by single-walled carbon nanotubes (SWCNTs) is carried 

out using an analytical approach as well as the finite element method. The developed model is based on the classical laminated plate 

theory (CLPT) and the third-order shear deformation theory for moderately thick laminated plates. The critical buckling loads for the 

symmetrical layup are determined for different support edges. The Mori-Tanaka method is employed to calculate the effective elastic 

modulus of composites having aligned oriented straight nanotubes. The effect of the agglomeration of the randomly oriented straight 

nanotubes on the critical buckling load is also analyzed. The results of analytical solution are compared and verified with the FEM calcu-

lations The critical buckling loads obtained by the finite element and the analytical methods for different layup and boundary conditions 

are in good agreement with each other. In this article, the effects of the carbon nanotubes (CNTs) orientation angle, the edge conditions, 

and the aspect ratio on the critical buckling load are also demonstrated using both the analytical and finite element methods. 
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1. Introduction 

The buckling load of a laminated composite plate depends 

on a variety of parameters, such as, the properties of rein-

forcement, volume fraction and boundary conditions. Com-

posites of carbon nanotubes (CNTs) dispersed in metallic or 

polymeric matrices have attracted a considerable attention in 

recent years. CNTs with their exceptional stiffness and 

strength have been regarded as an excellent candidate of rein-

forcements for advanced composites with high strength and 

low density. A number of experimental and theoretical studies 

have shown that CNTs have superior mechanical properties 

such as high stiffness to weight and strength to weight ratios, 

very high aspect ratio, and enormous electrical and thermal 

conductivities [1, 2]. Therefore, the presence of the nanotubes 

can improve the strength and stiffness of polymers as well as 

electrical and thermal conductivities to polymer based com-

posite systems. Evidently, such composites are of paramount 

interest in aeronautic and astronautic technology, automobile 

and many other modern industries. Wang et al. [3] investi-

gated the effective moduli of the CNT reinforced polymer 

composite, with emphasis on the influence of CNT length and 

CNT-matrix interphase on the stiffening of the composite.  

Tan et al. [4] investigated the effect of nonlinear interface 

debonding on the macroscopic behavior of the composite 

material with high particle volume fraction. They used the 

Mori-Tanaka method to study the constitutive behavior of the 

composite material. 

The effect of van der Waals (vdW)-based interface cohesive 

law on carbon nanotube-reinforced composite materials was 

studied by Tan et al. [5]. Their results show that the increase 

of interface adhesion between CNTs and polymer matrix may 

significantly improve the composite behavior at the large 

strain. 

Lu et al. [6] established the cohesive law for interfaces be-

tween MWCNTs and polymer that are not well bonded and 

are characterized by the vdW force. They concluded that the 

cohesive stress is dominated by the three carbon nanotube 

walls closest to the polymer. 

Salehi-Khojin and Jalili [7] considered the buckling of bo-

ron nitride nanotube reinforced piezoelectric polymeric com-

posites subjected to combined electro-thermo-mechanical 

loadings. Their results indicated that the piezoelectric matrix 

enhances the buckling resistance of composite significantly, 

and the supporting effect of elastic medium depends on the 

direction of applied voltage and thermal flow. Haque and Ra-
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masetty [8] developed an analytical model to study stress 

transfer in SWCNT reinforced polymer matrix composites and 

their model can be used to predict axial stress and interfacial 

shear stress along the CNT embedded in matrix materials. 

Moreover, they considered the effects of CNT aspect ratio, 

CNT volume fraction and matrix modulus on axial stress and 

interfacial shear stress and also compared the results of this 

analytical model with finite element analysis.  

Nanomechanical properties of coiled CNT reinforced epoxy 

composites were investigated by Li et al. [9]. Their results 

show that the hardness, elastic modulus and tensile strength of 

the coiled CNT/epoxy composite increase with increasing the 

weight percentage of the CCNTs. 

Ke et al. [10] investigated the nonlinear free vibration of 

functionally graded nanocomposite beams reinforced by 

SWCNTs based on Timoshenko beam theory and von Kar-

man geometric nonlinearity. Sofiyev [11] investigated the 

torsional buckling problem of cross-ply laminated cylindrical 

thin shells, made of orthotropic composite materials, subjected 

to loads varying as a power function of time, by using the Ritz 

type variational method. He obtained the modified Donnell 

type dynamic stability and compatibility equations and re-

duced these equations to a time dependent differential equa-

tion with variable coefficients by using Galerkin’s method. 

Ozben [12] calculated the critical buckling load value of fiber 

reinforced composite plate by analytical and finite element 

methods. He obtained the composite deformation behavior 

and critical buckling values according to /x yL L  ratio in plate 

dimension. Shen and Zhang [13] studied thermal post-

buckling behavior of functionally graded carbon nanotube-

reinforced composite plates subjected to in-plane temperature 

variation based on a micromechanical model and multi-scale 

approach. The results presented in this article indicate that the 

thermal post-buckling behaviors of carbon nanotube-

reinforced composite (CNTRC) plates are significantly influ-

enced by the thermal load ratio, the transverse shear deforma-

tion, the plate aspect ratio as well as the nanotube volume 

fraction.  

Motivated by these considerations, we aim to study the 

buckling behavior of composite plate reinforced by SWCNTs 

under uniaxial compressive load by using finite element and 

analytical methods. The material properties of SWCNTs are 

obtained using the Mori-Tanaka method. The effect of ag-

glomeration of CNTs on the critical buckling load is investi-

gated using analytical micromechanics methods. It will be 

shown agglomeration of CNTs have significant influence on 

the buckling load and properties of CNTRC. 
 

2. Effective modulus of the composite 

In this section, the effective modulus of the composite plate 

reinforced by CNTs is developed. Different methods are 

available to estimate the overall properties of a composite. The 

Mori-Tanaka [14] method is employed in this section due to 

its simplicity and accuracy even at high volume fractions of 

the inclusions. Initially, the nanotubes are assumed to be 

aligned and straight with a uniform dispersion in the polymer. 

The matrix is assumed to be elastic and isotropic, with the 

Young’s modulus mE  and the Poisson’s ratio mv . 

The constitutive relations for a layer of the composite with 

the principal axes parallel to the ,, −− yx  and −z directions 

are [15]: 
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where ijσ , ijε  and ijQ  are the stress components, the 

strain components and the stiffness coefficients, respectively. 

According to the Mori-Tanaka method the stiffness coeffi-

cients are given by [16]: 
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where mc and rc are the volume fractions of the matrix and 

the CNTs respectively. In the above equations, rk , rl , rm  , 

rn  and rp  are the Hill’s elastic modulus for the CNTs [16]. 
The reduced transformed stiffness coefficient matrix is [15]: 
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where [ ]T  is the transformed matrix which is given by [15]: 
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3. Analytical solution 

The CLPT is used to obtain the analytical solution because 

it is simple to use for moderately thick cross ply laminated 

plates. The length, the width, and the thickness of the plate are 

denoted by a , b  and h , respectively. The edges of the 

plate can be either simply and clamped supported or free. 

 

3.1. Total potential energy 

The total potential energy of the plate, due to the internal 

strain and the surface traction, is given by [17]: 
 

{ } { } { } { } .T T
V AdV t dAε σ ϕΠ = +∫ ∫    (5) 

 

The first term in the right hand-side of Eq. (5) is the strain 

energy which V denoting the volume of the plate. The second 

term is the energy originated by surface traction which A be-

ing the portions of plate surface over which tractions are pre-

scribed. { }ϕ  is displacement vector and { }t is the surface 

traction.  

The constitutive relating the stress and the strain can be 

written as 

{ } { },Cσ ε= ⎡ ⎤⎣ ⎦    (6) 

where [ ]C  is the elastic tensor whose components are given 

by [15]: 
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where k denotes the layer number. According to Eqs. (6) and 

(7), the strain energy can be written as: 
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The relations between the strain and the displacement in the 

CLPT are given by [17]: 
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where 0u  and 0v  are the displacements of the mid-plane in 

x −  and y −  directions, respectively, which are assumed to 

be zero because there is no coupling between the in-plane and 

the out-of-plane displacements. ( , )w x y  denotes the dis-

placement in z −  direction, i.e. the lateral deflection of the 

composite plate. Substituting Eq. (9) into Eq. (8) yields: 
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The surface traction is given by [17]: 
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where xN and yN  are the resultant forces in the x −  and 

y −  directions, respectively and xyN  denotes the shear force. 

yN  and xyN  are assumed to be zero. Substituting Eqs. (10) 

and (11) in Eq. (5) yields the following simplified expression 

for the total potential energy under axial compression [15]: 
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where ijD  is the bending stiffness matrix whose elements are 

given by [15]: 
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It is noted that 16D  and 26D  in Eq. (12) are eliminated in 

orthotropic plates [15].   

xN  in Eq. (13), is the axial compressive load in the x −  

direction which is a function of the buckling parameter (λ ) 

and the edge load. It is given by [17]: 
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where n  is the uniaxial tension modulus in the fiber direction. 
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h  and a  are the length of side and thickness of the plate 

which are equal to 1.5mm  and 25mm , respectively. 

According to the levy solution [17], it is important to find 

suitable function for the lateral deflection. It is assumed that 

the lateral deflection can be written as the following separate 

function of x and y  variables: 
 

( ) ( ) ( ), .w x y f x g y=   (15) 

 

For the simply-supported boundary conditions at the four 

edges ( )s s s s− − − , the lateral deflection is written as [17]: 
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where mnA  is the deflection amplitude, and n  and m  are 

the number of half sine waves in the x −  and y −  directions, 

respectively.  
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For the plate to be in equilibrium, the total energy should be 

stationary:  
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Hence, solving Eq. (18) yield the following buckling load: 
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The critical axial buckling loads for different boundary condi-

tions, which are obtained by minimizing the total potential 

energy of the plate, are presented in Table 1. 
 

4. The effect of agglomeration 

Due to small diameter and small elastic modulus in the ra-

dial direction and high aspect ratio, CNTs have low bending 

stiffness and can easily agglomerate in the polymer matrix. In 

fact, there are some local regions in the composite which have 

higher concentration of CNTs than the average volume frac-

tion. These regions, which have spherical shapes, are called 

“inclusion” [16]. In this section, material properties of 

CNTRC plates with random dispersion of CNTs are devel-

oped and the effect of agglomeration of CNTs on the effective 

material properties is studied. The Random dispersion of 

CNTs renders the composite isotropic with two effective elas-

tic modulus, namely, the effective bulk modulus and effective 

shear modulus [16]: 
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The effective bulk modulus ink  and outk , and the effective 

shear modulus inG  and outG  in the inclusions and out of the 

inclusions are given by [16]: 
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where ζ  denotes the volume ratio of CNTs that are dis-

persed in inclusion and the total volume of the nanotubes, ζ  

denotes the volume fraction of inclusions with respect to the 

total volume of the representative volume element and α , 

β , rδ , rα , rβ and rη which are functions of the bulk 

modulus matrix and shear modulus ( mk , mG ) are presented 

in the Ref. [16]. 
 

5. The FEM solution 

The critical buckling load is derived using the Bodyanski 

method [18]. For a moderately thick plate using a higher shear 

deformation theory leads to better results. In this work, the 

third-order shear deformation theory developed by Reddy is 

used so that the strain equations don’t need a shear correction 

factor which is required in a first-order shear deformation 

theory. The displacement field can be expressed as [19]: 
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where 0 ( , )u x y  and 0( , )v x y  are the displacements of the 

mid-plane in x −  and y −  directions, respectively, and 

0 ( , )w x y  denotes displacement in z −  direction. ( , )x x yφ  

and ( , )y x yφ  are the rotations of the normal to the mid-plane 

about x −  and y −  directions, respectively. The Von Kar-

man strains for the case of in plane strain are composed of 

linear, { }0ε  and nonlinear, { }1ε  strains [20]: 
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It can be expressed in the following form 
 

( ){ }0 1 2 2 3 3{ } [ ] [ ] [ ] [ ] ,d z d z d z dε ϕ= + + +    (24) 

 

where 0 0 0{ }T
x yu v wϕ φ φ= , and the matrix id⎡ ⎤

⎣ ⎦  

(derivation matrix) are given in Appendix A .  
Using Eq. (5), the variation of the total potential energy of 

the plate, due to the internal strain and the surface traction, can 

be expressed as: 
 

({ } ){ } ({ } ){ } .T T
V AdV t dAδ δ ε σ δ ϕΠ = +∫ ∫    (25) 

 

Using the shape function matrix [ ]N , the displacement is 

interpolated by [20]: 
 

( ){ } [ ]{ },eNϕ = Φ    (26) 

 

where { }eΦ  is the vector of unknown nodal values and the 

matrix iB⎡ ⎤
⎣ ⎦  are given by [20]: 

 

[ ] [ ] .i iB d N= ⎡ ⎤⎣ ⎦   (27) 

 

The shape function matrix ( N⎡ ⎤⎣ ⎦ ) and the matrix iB⎡ ⎤
⎣ ⎦  are 

given in Appendix A. Substituting Eqs. (25), (27) and (28) 

into Eq. (26) yields: 
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The stiffness matrix and the load vector for each element 

are given by 
 

( ) 0 1 2 2

3 3 0 1

2 2 3 3

(

) (

) ,

T T T
e

V

T

K B z B z B

z B Q B z B

z B z B dV

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

∫
  (29)  

( ){ } [ ] { } .
T

e

A
W N t dA= ∫    (30) 

 

The stress with respect to the strain is plotted, and according 

to bodyanski method [18] the region where the slop of the 

curve increases severely denotes the critical buckling load. 

Tables 2 and 4 show a comparison between the results of the 

FEM and the analytical solution. 

 

6. Results and discussion 

In this work, the buckling of a composite plate reinforced 

by CNTs is investigated by the finite element and the analyti-

cal method. The results are presented for four different kinds 

of boundary conditions. The composite plate is composed of 

polystyrene as the matrix with the Young’s modulus and the 

Poisson's ratio of 1.9mE Gpa= , and 0.3mν = , respectively. 

The CNTs are modeled as long, transversely isotropic fibers 

based on the analytical result of Popov et al. [21]. The material 

properties of SWCNTs are: 

 

30rk Gpa= , 10rl Gpa= , 1rm Gpa= ,  

450rn Gpa= , 1rp Gpa= .   (31) 

 

The results of the finite element and the analytical methods 

are quite close to each other. However, the analytical results 

show a lower critical buckling load because of eliminating the 

shear strain in the classical plate theory. Tables 2 and 4 show a 

comparison between the results of the finite element and the 

analytical solutions. In these tables, the longitudinal, and the 

transversal mode shapes are assumed to be equal to one 

( , ) 1n m = , and CNTs are arranged in 45  direction with 

respect to load direction and with the aspect ratio of unit. The 

results are given for four different boundary conditions, and 

three volume fractions of CNTs. It is clear from the results 

that the critical axial buckling load increases with increasing 

the volume fraction. Therefore, the highest critical axial buck-

ling load occurs at 0.1rc =  for each boundary condition. The 

effects of CNTs orientation and the laminated layup for differ-

ent boundary conditions are discussed next. 

Fig. 1 shows the effect of the aspect ratio on the critical 

buckling load for different longitudinal mode shapes. There 

are three plots for three boundary conditions in this figure. For 

each boundary condition, increasing the aspect ratio causes the 

buckling to occur in a higher mode shape. By changing one of 

the edges parallel to load direction to the clamped support, at a 
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constant aspect ratio, the critical buckling load increases with 

increasing the longitudinal mode shape. 

Fig. 2 shows the effect of the orientation angle and the vol-

ume fraction of the CNTs on the critical buckling load for one 

layer composite plate. It is seen that the highest critical load 

occurs when the CNTs are arranged in 45  direction. Fig. 3 

depicts the effect of the laminated layup and the volume frac-

tion of the CNTs on the critical buckling load for symmetric 

layup composite plate. This layup ( [0,45]s ) causes to the 

most stable state. 

Figs. 4 and 5 show the effects of the CNTs orientation angle 

and the mode shape on the critical buckling load for different 

aspect ratios and boundary conditions. The variation of the 

buckling load with respect to the orientation angle is different 

for different mode shapes. Fig. 4 is for the aspect ratio of 

/ 2a b = . For example, in Fig. 4(a) for ( )s s s s− − −  sup-

ported, for the first mode shape, the stability of the plate in-

creases with increasing the orientation angle from 0  to 90 ; 

while, for the other mode shape, the stability of the plate in-

creases with decreasing the orientation angle from 0  to 90 . 

For this case, whenever the CNTs are arranged in 33  

direction, the buckling is in the first mode, between 33  to 

 
 

Fig. 1. Effect of aspect ratio on the critical buckling load for different 

boundary condition. 

 

 
 

Fig. 2. Effect of the orientation angle and CNTs volume fraction on the

critical buckling load for one layer composite plate. 

 

 
 

Fig. 3. Effect of laminated layup and CNTs volume fraction on the

critical buckling load for symmetric layup composite plate. 

 

(a) 

 

(b) 

 

(c) 

 
(d) 

 

Fig. 4. Effect of the nanotubes orientation on the critical buckling load 

for different mode shape, at aspect ratio a/b=2 and different kinds of 

edge supports: (a) s-s-s-s, (b) s-s-c-s, (c) s-s-c-c, and (d) s-s-c-f. 



 A. G. Arani et al. / Journal of Mechanical Science and Technology 25 (3) (2011) 809~820 815 

 

  

54  it is in the second mode, and as the orientation angles 

increases the buckling occurs in further mode shapes. These 

results are shown in this Fig. for four boundary conditions. For 

(s-s-s-s) supported and CNTs orientation angle 45 , the buck-

ling occurs in the second mode. When one of the edges 

change from simply supported to the clamped support 

( )s s s c− − −  results in buckling loads occur at lower angles. 

In case one of the edges be free (s-s-c-f), the critical load de-

creases and the buckling occur in the first mode for the angles 

below 60 . In Fig. 5, the aspect ratio is changed to 

/ 2 /3a b = , while the volume of the plate and the volume 

fraction of the CNTs are kept constant for each aspect ratio. 

The buckling load, the mode shape, and the corresponding 

angles for other aspect ratios, and boundary condition are pre-

sented in Table 3. 

Figs. 6 and 7 show the effect of the CNTs agglomeration on 

the buckling load of the plate. Increasing ξ  in Fig. 6 results 

in a uniform distribution of inclusions. Hence, the nanotubes 

disperse more uniformly and the critical buckling load in-

creases. The results in this figure are presented for three dif-

ferent volume fractions of CNTs. Increasing ζ  in Fig. 7 

leads to non-uniform dispersion of the CNTs; hence, the criti-

cal buckling load decreases by increasing the ζ . Similar to 

Fig. 6, the results in this figure are presented for three different 

volume fractions. The buckling load increases drastically for 

higher volume fractions.  

Fig. 8 shows the effect of the thickness-to-width ratio on the 

critical buckling load for different boundary conditions. The 

critical buckling load increases exponentially for all boundary 

conditions, and the slope of the curves increases severely in 

high volume fractions as the thickness of plate increases. 

Table 2 compares the results of the analytical method with 

 

(a) 

 

(b) 

 

(c) 

 
(d) 

 

Fig. 5. Effect of the nanotubes orientation on the critical buckling load

for different mode shapes, at aspect ratio a/b=2/3 and different kinds of

edge supports: (a) s-s-s-s, (b) s-s-c-s, (c) s-s-c-c, and (d) s-s-c-f. 

 
 

Fig. 6. Effect of the CNTs agglomeration on the critical buckling for 

three different volume fractions of CNTs with 1ζ = . 

 

 
 

Fig. 7. Effect of the CNTs agglomeration on the critical buckling for 

three different volume fractions of CNTs with 0.5ξ = . 
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those of the FEM for different boundary conditions and differ-

ent volume fractions of CNTs. As stated before, the CLPT is 

used in the analytical method, and the third order Reddy plate 

theory is employed for the FEM. So, even though the results 

of the two methods are in good agreement, the finite element 

results are lower than the results of analytical method due to 

eliminating the shear strains in the analytical method. 

Table 3 shows the effect of the CNTs orientation angle on 

the buckling load for different mode shapes, aspect ratios, and 

boundary conditions. Even though the ratio of width to length 

is varied, the thickness and the total area of the plate and the 

CNTs volume fraction remain constant for each aspect ratio 

and boundary condition. Therefore, it is possible to compare 

the different kinds of boundary conditions and choose the 

optimized aspect ratio and CNTs orientation angle to achieve 

the highest critical buckling load. For each aspect ratio, the 

mode shape and the corresponding angle that make the plate 

unstable are determined for four different boundary conditions. 

Moreover, the special mode shape, and the CNTs orientation 

angle corresponding to the highest critical buckling load is 

obtained for each aspect ratio and boundary condition. For 

example, for s-s-s-s edges and the width-to-length ratio of 

/ 2a b = , whenever the CNTs orientation angle is less than 

34 , the buckling occurs in the first mode; between 34  to 

53  it occurs in the second mode and in this manner the buck-

ling load increases as the CNTs orientation angle increases. 

For other angles, the corresponding mode shapes are presented 

in Table 3. The highest critical buckling load in this case oc-

curs for the 45  angle, and in the second mode shape. Ac-

cording to this table, as the aspect ratio decreases from 2 to 1/2, 

the highest critical buckling load decreases. Moreover, there is 

no change in the mode shape for different CNTs orientation 

angles. Changing the longitudinal edges from simple to 

clamped increases the stability of plate, and changing it to free 

boundary condition, results in less buckling loads. Therefore, 

for all kinds of boundary conditions except the 

( )s s c f− − −  supported case, the highest critical buckling 

occurs at / 2a b = . For the case of ( )s s s s− − −  boundary 

condition, the critical load which is in the second mode and 

45  CNTs orientation angle is 834croN N= . For the case of 

( )s s s c− − −  supported, the critical load which is also in the 

second mode and 48  CNTs orientation angle is 

1120.2croN N= . For the ( )s s c c− − −  supported case, the 

critical load which is in the third mode and 45  CNTs orien-

tation angle is 1304.4croN N= . Contrary to mentioned 

boundary conditions, for the case of s-s-c-f, the highest critical 

buckling load which is in the first mode and 0  CNTs orien-

tation angle occurs at / 1/ 2a b =  is 404.74croN N= . 

Table 4 shows the effect of CNTs agglomeration on the 

critical buckling load. The CNTs are assumed to be dispersed 

randomly so that the composite is isotropic and only two ma-

terial constants are requited for predicting its behavior. The 

volume fraction of the CNTs and the orientation angle are 

considered to be constant. The first three columns of the table 

are for the inclusion volumes of unit ( 1ζ = ), and the critical 

buckling load is given for three kinds of inclusion dispersions. 

For the remaining three columns, inclusions are dispersed 

uniformly and the critical loads are determined for three dif-

ferent CNTs volume ratios. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Fig. 8. The effect of thickness to width on the critical buckling load of

CNTRC composite plate with different boundary condition: (a) s-s-s-s,

(b) s-s-c-s, (c) s-s-c-c, and (d) s-s-c-f. 
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7. Conclusion 

In this article, the critical buckling load of laminated com-

posite plates reinforced by SWCNTs is investigated using 

both the analytical and the finite element methods. The results 

show that the critical buckling load obtained from FEM is in 

good agreement with those obtained by the analytical solution. 

As the shear strains are ignored in the analytical procedure, the 

buckling load obtained by this method is higher than that of 

the finite element solution. 

The following conclusions can be drawn from the present 

study: 

(1) For all of the boundary conditions considered, the aspect 

ratio of / 2a b =  and the orientation angle of 45  yield the 

highest critical buckling load. The critical buckling load, the 

optimized orientation angle and the optimized mode shape 

decrease with decreasing the aspect ratio.  

(2) For constant aspect ratio and CNTs volume fraction, the 

highest critical buckling load occurs for the case in which two 

parallel edges have clamped supported ( )s s c c− − − .  

(3) The lowest critical buckling load occurs for 

( )s s s f− − −  supported. For the (s-s-s-s) supported case and 

aspect ratio of / 2a b = , the optimized orientation angle for 

the best buckling load is 45  and the buckling occurs in the 

second mode. For the aspect ratio of 2 /3 , however, the opti-

mized orientation angle decreases to 30  and the buckling 

occurs in the first mode. For the aspect of 1/ 2 , the highest 

buckling load occurs when CNTs are arranged in the load 

direction. For all other boundary conditions, the optimized 

CNTs orientation angle changes by varying the aspect ratio. 

However, considering clamped edges instead of simply sup-

port ones, increases the critical buckling load of CNTRC plate.  

(4) Non uniform dispersion of CNTs in the polymer matrix 

decreases the critical buckling load. Moreover, it increases the 

difference between the critical buckling loads obtained by the 

analytical method and the FEM. However, for low CNTs vol-

ume fractions, uniform dispersion does not have a significant 

effect on the critical buckling load; this is despite the fact that 

Table 1. The critical axial buckling load for different boundary conditions [15]. 
 

Different boundary conditions The critical axial buckling load  Displacement function 
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Table 2. Comparison between the analytical and the finite element results for effect of volume fractions, and different boundary conditions. 
 

Boundary condition CNTs volume fraction crN (KN) - ANL crN  (KN) - FEM 

s-s-s-s Cr=0.01 59.546 54.1327 

 Cr=0.05 218.38 201.95 

 Cr=0.1 417 397.268 

    

s-s-c-s Cr=0.01 80.957 73.124 

 Cr=0.05 288.17 273.36 

 Cr=0.1 547.29 539.64 

    

s-s-c-c Cr=0.01 114.7 108.957 

 Cr=0.05 393 379.16 

 Cr=0.1 741.03 727.89 

    

s-s-c-f Cr=0.01 19.015 16.284 

 Cr=0.05 65.59 61.14 

 Cr=0.1 123.83 118.38 
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for the non uniform CNTs dispersion, the critical buckling load 

decreases exponentially with increasing the volume fraction. 

 

Acknowledgment 

The authors would like to thank the referees for their valu-

able comments, and also, the Iranian Nanotechnology Devel-

opment Committee for their financial support. 

 

References 

[1] D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu and R. S. Ruoff, 

Mechanics of Carbon Nanotubes, Applied Mechanics Re-

views, 55 (2002) 495-533. 

[2] R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical 

Properties of Carbon Nanotubes, Imperial College Press, 

London (1998). 

[3] H. Wan, F. Delale and L. Shen, Effect of CNT length and 

CNT-matrix interphase in Carbon nanotube (CNT) rein-

forced composites, Mechanics Research Communications, 

32 (2005) 481-489. 

[4] H. Tan, Y. Huang, C. Liu and P. H. Geubelle, The Mori-

Tanaka method for composite materials with nonlinear inter-

face debonding, International Journal of Plasticity, 21 

(2005) 1890-1918. 

[5] H. Tan, L.Y. Jiang, Y. Huang, B. Liu and K.C. Hwang, The 

Table 3. Effect of the CNTs angle on the buckling load for different mode shapes, aspect ratios, and boundary conditions assuming constant volume 

fractions. 
 

Mode shapes Boundary 

condition 
Aspect ratio 

CNTs orientation angle 

Optimized 

buckling load

Optimized 

angle 

Optimized mode 

shape 

  n=1 n=2 n=3 n=4 n=5 CroN  oθ  on  

s-s-s-s a/b=2 0- 33 34-53 54-64 64-77 78 - 90 834 45 2 

 a/b=3/2 0-43 44-61 62-81 82-90 - 663.54 44 2 

 a/b=1 0-56 57-90 - - - 417 45 1 

 a/b=2/3 0-79 80-90 - - - 335.6 30 1 

 a/b=1/2 0-90 - - - - 410.9 0 1 

          

s-s-c-s a/b=2 0 - 25 26 – 44 45 – 55 56 -64 65 - 90 1120.2 48 2 

 a/b=3/2 0 - 35 36 - 53 54 - 65 66 - 90 - 800 42 2 

 a/b=1 0 - 49 50 - 53 54 -90 - - 563.5 49 1 

 a/b=2/3 0 - 62 63 - 90 - - - 373 36 1 

 a/b=1/2 0 - 62 63 - 90 - - - 413.17 0 1 

          

s-s-c-c a/b=2 0 - 17 18 - 38 39 - 48 49 - 57 58 - 90 1304.4 45 3 

 a/b=3/2 0 - 29 30 - 47 48 - 59 60 - 68 69 - 90 1000 47 3 

 a/b=1 0 - 42 43 - 61 62 - 80 81 - 90 - 711.62 43 2 

 a/b=2/3 0 - 56 57 - 90 - - - 420.41 56 1 

 a/b=1/2 0 - 67 68 - 90 - - - 416.35 0 1 

          

s-s-c-f a/b=2 0 -51 52 - 70 71 - 90 - - 214.05 50 1 

 a/b=3/2 0 - 60 61 - 90 - - - 156.58 35 1 

 a/b=1 0 - 90 - - - - 204.68 0 1 

 a/b=2/3 0 - 90 - - - - 304.32 0 1 

 a/b=1/2 0 - 90 - - - - 404.74 0 1 

 

Table 4. Effect of the CNTs agglomeration in the polymer matrix reinforced by CNTs with volume fraction of 0.1rC = . 
 

 Inclusion volume to total volume ratio CNTs volume fraction in the inclusion 

 1ξ =  0.8ξ =  0.4ξ =  1ζ =  0.7ζ =  0.4ζ =  

( )E Gpa  8.3398 4.6051 1.9597 2.3806 7.6375 8.1496 

v  0.2798 0.2868 0.3033 0.2986 0.28 0.2813 

CroN (KN) - ANL 160.74 89.143 38.308 46.433 147.18 157.22 

CroN (KN) - FEM  160.44 83.63 31.95 40.18 141.17 155.34 

 



 A. G. Arani et al. / Journal of Mechanical Science and Technology 25 (3) (2011) 809~820 819 

 

  

effect of van der Waals-based interface cohesive law on car-

bon nanotube-reinforced composite materials, Composites 

Science and Technology, 67 (2007) 2941-2946. 

[6] W.B. Lu, J. Wua, J. Song, K. C. Hwang, L. Y. Jiang and Y. 

Huang, A cohesive law for interfaces between multi-wall 

carbon nanotubes and polymers due to the van der Waals in-

teractions, Computer Methods in Applied Mechanics and 

Engineering, 197 (2008) 3261-3267. 

[7] A. Salehi-Khojin and N. Jalili, Buckling of boron nitride 

nanotube reinforced Piezoelectric polymeric composites sub-

ject to combined electro-thermo-mechanical loadings, Com-

posites Science and Technology, 68 (2008) 1489-1501. 

[8] A. Haque and A. Ramasetty, Theoretical study of stress 

transfer in carbon nanotube reinforced polymer matrix com-

posites, Composite Structures, 71 (2005) 68-77. 

[9] X. F. Li, K. T. Lau and Y. S. Yin, Mechanical properties of 

epoxy-based composites using coiled carbon nanotubes, 

Composites Science and Technology, 68 (2008) 2876-2881. 

[10]   L. L. Ke, J. Yang and S. Kitipornchai, Nonlinear free vibra-

tion of functionally graded carbon nanotube-reinforced com-

posite beams, Composite Structures, 92 (2010) 676-683. 

[11]   A. H. Sofiyev, Torsional buckling of cross-ply laminated 

orthotropic composite cylindrical shells subject to dynamic 

loading, European Journal of Mechanics A/Solids, 22 (2003) 

943-951. 

[12]   T. Ozben, Analysis of critical buckling load of laminated 

composites plate with different boundary conditions using 

FEM and analytical methods, Computational Materials Sci-

ence, 45 (2009) 1006-1015. 

[13]   H. S. Shen and C. L. Zhang, Thermal buckling and post 

buckling behavior of functionally graded carbon nanotube-

reinforced composite plates, Materials & Design, 31 ( 2010) 

3403-3411.  

[14]   T. Mori and K. Tanaka, Average Stress in Matrix and Av-

erage Elastic Energy of Materials With Misfitting Inclusions, 

Acta Metallurgica, 21 (1973) 571- 574. 

[15]   L. P. Kollar and G. S. Springer, Mechanics of Composite 

Structures, Cambridge University Press, NY, USA, 2003. 

[16]   D. L. Shi, X. Q. Feng, Y. Y. huang, K. C. Hwang and H. 

Gao, The Effect of Nanotube Waviness and Agglomeration 

on the Elastic Property of Carbon Nanotube-Reinforced 

Composites, Transactions of the ASME, Journal of Engi-

neering Materials and Technology, 126 (2004) 250-257. 

[17]   J. R. Vinson, The behavior of thin walled structures, beams, 

plates and shells, Kluwer Academic pub.1989. 

[18]   J. George, An introduction to elastic Stability of Structures, 

Prentice - Hall, 1976. 

[19]   J. N. Reddy, Theory and analysis of elastic plates and 

shells, Second edition, CRC PRESS, USA , 2007. 

[20]   J. N.Reddy, An Introduction to The Finite Element Method, 

McGraw-Hill Inc, 1993. 

[21]   V. N. Popov, V. E. Doren and M. Balkanski, Elastic Prop-

erties of Crystals of Single-Walled Carbon Nanotubes, Solid 

State Communications, 114 (2000) 395-399. 

 

Appendix  

A.1 Derivation matrix 

0,

0,

0

0,

1
0 0 0

2

1
0 0 0

2

0 0 0 1[ ]

0 0 1 0

0 0

x

y

y

w
x x

w
y y

d
y

x

w
y x x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥

∂⎢ ⎥
= ⎢ ⎥∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂⎣ ⎦  

1

0 0 0 0

0 0 0 0

[ ]
0 0 0 0 0

0 0 0 0 0

0 0 0

x

y
d

y x

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

 

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 14
[ ]

0 0 1 0

0 0 0 0 0

d y
h

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂
⎢ ⎥= − ∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥⎣ ⎦

 

0,

0,

3

0,

0 0 0

0 0 0

[ ]
0 0 0 0 0

0 0 0 0 0

0 0 2

x

y

y

w
x x

w
y y

d

w
x y x

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎣ ⎦

   (A1) 

 

A.2 Shape function for serendipity element  
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Displacement in the point of each element 
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