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�e waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesteri�cation to produce biodiesel
(methyl ester). �e economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000∘C for
4 h. �e heterogeneous catalysts were characterized by X-ray di
raction (XRD), X-ray �uorescence (XRF), scanning electron
microscopy (SEM), and the Brunauer-Emmett-Teller (BET)method.�e e
ects of reaction variables such as reaction time, reaction
temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell
catalyst was also examined. �e results indicated that the CaO catalysts derived from waste shell showed good reusability and had
high potential to be used as biodiesel production catalysts in transesteri�cation of palm oil with methanol.

1. Introduction

Recently, alternative energies have been focused worldwide
because of recent energy crisis. Biodiesel is one of the
interesting alternative fuels which can be produced from
renewable sources [1]. It can be easily synthesized through
transesteri�cation of oil or esteri�cation of fats using basic
or acidic catalysts with heating functions [2]. Conventional
homogeneous catalysts are expected to be replaced by het-
erogeneous catalysts mainly in the near future because of
environmental constraints and simpli�cations in the existing
processes. Solid catalysts could be easily separated from the
reaction mixture by �ltration and then reused [3]. Heteroge-
neous base catalysts eliminate the need for the neutralization
of homogeneous base catalysts with acids and the removal
of water in the commercial production of biodiesel, thereby
lowering its production cost [4]. Among the heterogeneous
catalysts that are being used in transesteri�cation, calcium
oxide (CaO) has a promising place, and many reports have

been published on CaO-catalyzed transesteri�cation using
laboratory grade. It is cheap, abundantly available in nature
(as limestone), and some of the sources of this compound are
renewable (waste material consisting of calcium carbonate,
CaCO3) [5]. However, the utilization of waste materials as
heterogeneous catalysts has been of recent interest in the
search for a sustainable process [6].

�e catalyst synthesized with the waste shells opens door
for renewable catalyst and at the same time recycles the
waste generated. Utilization of these waste materials not only
reduces the catalyst cost but also promotes environmentally
benign process.�ese shellsmay also �nd their utility in other
base catalyzed important organic reactions which will add
value to the waste generated [7]. Mussel, cockle, and scallop
are found in several parts of �ailand. �e production of
mussel, cockle, and scallop is quite large and the processing of
this food also produces signi�cant amounts of shell waste. In
this paper, we utilized waste mussel, cockle, and scallop shells
as the source of CaO for transesteri�cation of palm oil into
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Figure 1: Preparation of CaO catalyst derived from waste shell (1,000∘C).

biodiesel. �e e
ects of reaction time, reaction temperature,
methanol/oil molar ratio, catalyst loading, and reusability of
catalyst were systematically investigated.

2. Experimental

2.1. Materials. Palm oil was purchased fromMorakot Indus-
tries Public Company Limited, �ailand. �e molecu-
lar weight and density of the oil were measured to be

851.06 g/mole and 0.868 g/cm3, respectively. �e mussel,
cockle, and scallop shells were collected as wastes from
university cafeterias. �e waste shells were rinsed with water
to remove dust and impurities andwere then dried in an oven.
All chemicals were analytical-grade reagents (Merck, >99%
purity) and were used as received.

2.2. Catalysts Preparation. �e catalysts were prepared by
a calcination method. �e dried waste shells were calcined
at 700–1,000∘C in air atmosphere with a heating rate of
10∘C/min for 4 h [2]. �e solid result was crushed and sieved
to pass 100–200 mesh screens. �e products (38–75 �m)
were obtained as white powder. All calcined samples were
kept in the close vessel to avoid the reaction with carbon
dioxide (CO2) and humidity in air before being used. Figure 1
illustrated the preparation process of waste shell-derived
catalyst.

2.3. Catalysts Characterization. �e X-ray di
raction (XRD)
characterization of the waste shell-derived catalyst was per-
formed on a Rigaku (MiniFlex II, England) based generator
X-ray di
ractometer using CuK� radiation over a 2� range
from 20∘ to 80∘ with a step size of 0.04∘ at a scanning speed
of 3∘/min.

�e elemental chemical compositions of the materials
were analyzed by X-ray �uorescence spectroscopy (XRF—
Oxford, ED-2000, England) under energy dispersive mode
for precise measurement of both light and heavy elements.

�e microstructures of the calcined waste shells were
observed by a scanning electron microscope (SEM). �e
SEM images of the representative sample were obtained from
a Camscan-MX 2000 (England) equipped with an energy
dispersive spectroscope (EDS).

To evaluate the surface area, mean pore diameter, and
pore volume, adsorption-desorption of nitrogen (N2) at 77 K
was carried out by a Quantachrome Instrument (Autosorb-1
Model No. ASIMP.VP4, USA). Before taking adsorption data,
degassing at 120∘C and a residual pressure of 300 �m Hg for
24 hwas performed using the degas port.�e surface areawas
calculated using the Brunauer-Emmett-Teller (BET) equation
and the mean pore diameter and pore volume was obtained
by applying the Barret-Joyner-Halenda (BJH) method on the
desorption branch [8].

2.4. Transesteri	cation of PalmOil. �e synthesis of biodiesel
from palm oil andmethanol was carried out in a 500mL glass
reactor equipped with condenser and mechanical stirrer at
atmospheric pressure. �e e
ects of reaction time (2 to 6 h),
reaction temperature (50 to 70∘C), methanol/oil molar ratio
(6 to 18), catalyst loading (5 to 25wt.%), and reusability of
catalyst (1 to 4 times) on the conversion to biodiesel were
studied. A�er a certain period of time, a known amount
of sample was taken out from the reactor for analysis. All
experimentswere repeated 3 times and the standard deviation
was never higher than 7% for any point.

Composition of the fatty acid methyl ester (FAME) was
analyzed with gas chromatograph-mass spectrometry (GC-
MS QP2010 Plus, Shimadzu Corporation, Japan) equipped
with a �ame ionization detector (FID) and a capillary column
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Figure 2: XRD patterns of natural and calcined mussel shell (◻:
CaCO3, ◼: CaO).

30m× 0.32mm× 0.25�m(DB-WAX,Carbowax 20M). Yield
of FAME was calculated by:

Yield (%) = ����� ���
× 100, (1)

where �� is the mass of internal standard added to the
sample, � � is the peak area of internal standard, �� is the
mass of the biodiesel sample, and �� is the peak area of the
biodiesel sample [9, 10].�e physical and chemical properties
of FAME including kinematic viscosity, density, �ash point,
cloud point, pour point, acid value, and water content were
analyzed according to ASTMmethods [11].

3. Results and Discussions

3.1. Characterization of Waste Shell and CaO Catalyst. �e
XRDpatterns of natural and calcinedmussel shell are given in
Figure 2. XRD results revealed that the composition of natu-
ral mussel shell mainly consists of CaCO3 with the absence of
CaO peak, as indicated by di
raction peak at 2� around 29.2∘
[5]. However, with the increase in calcination temperature,
CaCO3 completely transforms to CaO by evolving the carbon
dioxide (CO2). �e composition of calcined catalyst at and
above 900∘C mainly consists of the active ingredient (CaO).
Narrow and high intense peaks of the calcined catalyst de�ne
the well-crystallized structure of the CaO catalyst [6]. �e
major component of the calcined waste shell at 1,000∘C for
4 h was CaO species (Figure 3). �e result reveals sharp XRD
re�ections with (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2
2) orientations, implying that the calcined material was well
crystallized during the heat treatment process [2].

�e chemical compositions of the catalyst are presented
in Table 1. �e major mineralogical component is CaO. �e
waste mussel, cockle, and scallop shells-derived catalysts
have concentration of CaO 98.37, 99.17, and 97.53wt.%,
respectively.

�e morphology of waste mussel, cockle, and scallop
shell calcined at 1,000∘C was examined by SEM (Figure 4).
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Figure 3: XRD patterns of waste mussel, cockle, and scallop shell
calcined at 1,000∘C (◼: CaO).

Table 1: Chemical compositions of waste shell-derived catalyst.

Compound
Concentration (wt.%)

Mussel shell Cockle shell Scallop shell

CaO 98.367 99.170 97.529

Na2O 0.937 0.438 0.565

SO3 0.293 0.117 1.568

P2O5 0.163 0.096 0.204

SrO 0.158 0.132 0.107

ZrO2 0.046 — 0.027

Cl 0.037 — —

Fe2O3 — 0.026 —

Table 2: �e physical properties of waste shell-derived catalyst.

Physical property
Derived catalyst

Mussel shell Cockle shell Scallop shell

Surface area (m2/g) 89.91 59.87 74.96

Pore volume (cm3/g) 0.130 0.087 0.097

Mean pore diameter (Å) 34.55 25.53 30.55

�e natural shell displays a typical layered architecture
[12]. With the calcination temperature rising from 700 to
1,000∘C, the microstructures of natural shell are changed
signi�cantly from layered architecture to porous structure
[13]. �e calcined cockle shell and scallop shell showed
similar particle morphology with the calcined mussel shell.
�e calcined waste shells were irregular in shape, and some
of them bonded together as aggregates. However, the smaller
size of the grains and aggregates could provide higher speci�c
surface areas. Since all samples are considered to be less-
porous or even nonporous, the size of the particle should
directly respond to the surface area [14].

�e physical properties of the CaO catalyst are sum-
marized in Table 2. �e waste mussel shell-derived catalyst

had a large surface area (89.91m2/g) and pore volume

(0.130 cm3/g), and presented a uniform pore size. �e cockle
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Figure 4: SEM images of (a) mussel shell, (b) cockle shell, and (c) scallop shell calcined at 1,000∘C.

and scallop shell-derived catalysts present lower values for

surface area (59.87 and 74.96m2/g, resp.) and pore volume

(0.087 and 0.097 cm3/g, resp.) related to mussel shell. It can
be seen that the heterogeneous catalyst resulted in a strong
increase in the active sites [15]. �is assumption is supported
by the SEM images of catalyst.

3.2. E
ect of Reaction Variables. �e yield of biodiesel was
a
ected by reaction variables, such as reaction time, reaction
temperature, methanol/oil molar ratio, catalyst loading, and
reusability of catalyst. �e reaction variables were associated
with the type of catalysts used [16]. �erefore, the e
ect of
reaction variables was studied in the presence of waste shell-
derived catalyst. For the following reactions, all the catalysts
were prepared by calcinning waste shells at 1,000∘C for
4 h.

�e e
ect of reaction time on the conversion of palm
oil to biodiesel was investigated. Reaction time is one of the
key parameters during the transesteri�cation carried out in
glass reactor. Figure 5 shows an increase in the yield with
time from 2 to 3 h with a catalyst amount of 10 wt.% relative
to oil and a methanol/oil molar ratio of 9 : 1. �e maximum
yields of 97.23, 94.47, and 96.68% were obtained in 4 h at
65∘C for mussel, cockle and scallop shell, respectively. In the
initial stages of the transesteri�cation reaction, production
of biodiesel was rapid, and the rate diminished and �nally
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Figure 5: E
ect of reaction time on % yield of biodiesel.

reached equilibrium [17] in about 4 h. �is can be explained
by that transesteri�cation reaction between oil and alcohol is
reversible, when the reaction time is long enough [18].

In general, the reaction temperature can in�uence the
reaction rate and yield of biodiesel. �e transesteri�cation of
triglyceride (TG) with methanol to methyl ester was carried
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Figure 6: E
ect of reaction temperature on % yield of biodiesel.

out over the catalysts of CaO at reaction temperature 50–
70∘C. �e % yields of biodiesel a�er 3 h of reaction time are
shown as a function of temperature in Figure 6. �e yields
of biodiesel were obviously rising from 76.85 to 95.90% for
mussel shell, 63.83 to 94.13% for cockle shell, and 70.14 to
95.44% for scallop shell with the increasing temperature from
50 to 65∘C. �e e
ect of reaction temperature on promoting
transesteri�cation can be explained due to endothermic
reaction [18]. �e highest yield rate was obtained at the
reaction temperature of 65∘C.When the reaction temperature
continued to increase over 65∘C, the yield of biodiesel was
decreased.�e reaction temperature consumedly exceeds the
boiling point of methanol such as 70∘C, and the methanol
will quickly vaporize and form a large number of bubbles,
which inhibits the reaction on the two-phase interface [19].
Moreover, in order to save energy, it is necessary to choose the
relative low temperature. �erefore, the optimum reaction
temperature for the transesteri�cation of TG to methyl ester
is considered to be around 65∘C.

�e excess of methanol is necessary because it can
increase the rate of methanolysis. Normally, stoichiometric
molar ratio of methanol to TG is near 6 : 1 when the alkali-
catalyzed process is used. However, it increases to 30 : 1, even
50 : 1, in the acid-catalyzed one to ensure high conversion
[20]. �e methyl ester content increased signi�cantly when
the methanol/oil molar ratio was changed from 6 to 18
(Figure 7). �e high amount of methanol promoted the
formation of methoxy species on the CaO surface, leading
to a shi� in the equilibrium in the forward direction, thus
increasing the rate of conversion up to 95.90, 94.13, and
95.44% for mussel, cockle and scallop shell, respectively.
However, further increases in the methanol/oil molar ratio,
did not promote the reaction. It is understood that the
glycerol would largely dissolve in excessive methanol and
subsequently inhibit the reaction ofmethanol to the reactants
and catalyst, thus interfering with the separation of glycerin,
which in turn lowers the conversion by shi�ing the equilib-
rium in the reverse direction [21]. �erefore, the optimum
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Figure 7: E
ect of methanol/oil molar ratio on % yield of biodiesel.
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Figure 8: E
ect of catalyst loading on % yield of biodiesel.

molar ratio of methanol to oil was 9, which is more than
the practical methanol to oil molar ratio for homogeneous
transesteri�cation [22].

Figure 8 reveals the e
ect of catalyst loading on the
methyl ester formation in the transesteri�cation of palm oil
over waste shell-derived catalyst. In the absence of catalyst,
there was no methyl esters formed in the reaction. Applying
the catalyst amount of 10 wt.%, the highest yields of 95.90,
94.13, and 95.44% were obtained within 3 h for mussel,
cockle and scallop shell, respectively. Reducing the catalyst
loading to 5wt.% decreased the methyl ester content to ca.
50.92–65.45%. �is result implies that the transesteri�cation
of TG is strongly dependent on the amount of basic sites [23].
�e loadings of 15–25wt.% created catalyst accumulation
on the wall of the glass reactor, possibly contributing to
di
usional problems during reaction and, therefore, lowering
the activity [24]. From this study, we can conclude that the
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Table 3: �e fuel properties of biodiesel.

Fuel property
Derived catalyst

Mussel shell Cockle shell Scallop shell

Kinematic viscosity (mm2/s) at 40∘C 4.4 4.6 4.5

Density (g/cm3) at 80∘C 0.877 0.878 0.878

Flash point (∘C) 164 165 164

Cloud point (∘C) 11 12 11

Pour point (∘C) 7 8 8

Acid value (mg KOH/g oil) 0.47 0.67 0.55

Water content (%) 0.02 0.03 0.02
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Figure 9: E
ect of reusability of catalyst on % yield of biodiesel.

suitable amount of CaO required for the transesteri�cation
of palm oil is 10 wt.%.

�e reusability of catalyst is examined by carrying out
reaction cycles. When transesteri�cation reaction �nished,
the catalyst is separated from the mixture and used again
without any subsequent treatment in a second reaction
under the same conditions as before. It is found that the
prepared catalyst is active for 3 reaction cycles, with yield
above 90%. A�er 3 reaction cycles, the biodiesel yield lowers
to 90% (Figure 9). Catalyst deterioration is probably due
to the change of catalyst surface structure. Calcium oxide
is transformed to calcium hydroxide gradually due to the
moisture in the reactants, which deteriorate the activity of
catalyst [25, 26]. However, the activity can be recovered a�er
calcination in air at 600∘C [13].

3.3. Fuel Properties of Methyl Ester. �e fuel properties of
methyl ester obtained in this work are summarized in Table 3.
It can be seen thatmost of its properties are in the range of fuel
properties as described in the latest standards for biodiesel
[27].

4. Conclusions

Using cost-e
ective and environment-friendly catalysts is
particularly useful for the production of biodiesel. �e waste
shells are used as the catalyst for this process. �is catalyst
contains CaCO3 which is converted to CaO a�er calcination
at temperatures 1,000∘C for 4 h. �e optimum conditions,
which yielded a conversion of palm oil of nearly 95% for all
waste shell-derived catalysts, were reaction time 3 h, reaction
temperature 65∘C, methanol/oil molar ratio 9, and catalyst
loading 10wt.% with pressure 1 atm in glass reactor. �e
experimental results show that CaO catalyst had excellent
activity and stability during transesteri�cation. �e catalyst
was used for 4 cycles and apparent low activity loss was
observed. �e fuel properties of the biodiesel so obtained
meet all biodiesel standards. As a solid catalyst, CaO can
decrease the cost of biodiesel and the steps of puri�cation.
It has potential for industrial application in the transesteri�-
cation of palm oil to methyl ester.
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