
PERSPECTIVE
published: 12 April 2017

doi: 10.3389/fmars.2017.00100

Frontiers in Marine Science | www.frontiersin.org 1 April 2017 | Volume 4 | Article 100

Edited by:

Gretchen E. Hofmann,

University of California, Santa Barbara,

USA

Reviewed by:

Michael Yu Roleda,

Norwegian Institute of Bioeconomy

Research, Norway

Stein Fredriksen,

University of Oslo, Norway

*Correspondence:

Carlos M. Duarte

carlos.duarte@kaust.edu.sa

Specialty section:

This article was submitted to

Global Change and the Future Ocean,

a section of the journal

Frontiers in Marine Science

Received: 27 November 2016

Accepted: 24 March 2017

Published: 12 April 2017

Citation:

Duarte CM, Wu J, Xiao X, Bruhn A

and Krause-Jensen D (2017) Can

Seaweed Farming Play a Role in

Climate Change Mitigation and

Adaptation? Front. Mar. Sci. 4:100.

doi: 10.3389/fmars.2017.00100

Can Seaweed Farming Play a Role in
Climate Change Mitigation and
Adaptation?
Carlos M. Duarte 1, 2, 3*, Jiaping Wu 4, Xi Xiao 4, Annette Bruhn 2 and Dorte Krause-Jensen 2, 3

1 Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2Department of

Bioscience, Aarhus University, Silkeborg, Denmark, 3 Arctic Research Centre, Aarhus University, Silkeborg, Denmark, 4Ocean

College, Zhejiang University, Zhoushan, China

Seaweed aquaculture, the fastest-growing component of global food production, offers a

slate of opportunities to mitigate, and adapt to climate change. Seaweed farms release

carbon that maybe buried in sediments or exported to the deep sea, therefore acting

as a CO2 sink. The crop can also be used, in total or in part, for biofuel production,

with a potential CO2 mitigation capacity, in terms of avoided emissions from fossil fuels,

of about 1,500 tons CO2 km−2 year−1. Seaweed aquaculture can also help reduce

the emissions from agriculture, by improving soil quality substituting synthetic fertilizer

and when included in cattle fed, lowering methane emissions from cattle. Seaweed

aquaculture contributes to climate change adaptation by damping wave energy and

protecting shorelines, and by elevating pH and supplying oxygen to the waters, thereby

locally reducing the effects of ocean acidification and de-oxygenation. The scope to

expand seaweed aquaculture is, however, limited by the availability of suitable areas

and competition for suitable areas with other uses, engineering systems capable of

coping with rough conditions offshore, and increasing market demand for seaweed

products, among other factors. Despite these limitations, seaweed farming practices

can be optimized to maximize climate benefits, which may, if economically compensated,

improve the income of seaweed farmers.

Keywords: seaweed, aquaculture, carbon dioxide, macroalgae, sequestration, climate change

INTRODUCTION

With an annual production of 27.3 million tons in 2014 and a growth rate of 8% year−1,
seaweed aquaculture now comprises 27% of total marine aquaculture production. Still the
value of the seaweed produced only amounts to 5% of the total value of aquacultural
crops (FAO, 2016a). Looking at the process chain of seaweed from production through
processing to final products, the growth of the actual seaweed production lags behind the
demand of biomass for the many traditional and novel applications for this expanding
crop (Mazarrasa et al., 2014; Callaway, 2015). Further expansion of seaweed aquaculture
will require development of a skilled labor force and new technologies to occupy additional
suitable areas for farming. Also a diversification of applications will make the industry
more resilient to impacts derived from shifting demands from specific industries. A closer
synergy between further expansion of seaweed aquaculture and the development of novel
demands for this crop will be essential to continue to fuel the growth of this emerging blue
industry (Mazarrasa et al., 2014). Compensating farmers for the role of seaweed production
in climate change mitigation and adaptation need also be considered. Indeed, an increased
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contribution of seaweed aquaculture to climate change
mitigation and adaptation requires that seaweed production
continues to grow. However, further growth of seaweed
production may drive market prices down, in turn discouraging
farmers from engaging in this activity. Thus, providing economic
incentives associated with the benefits for climate change
mitigation and adaptation may be instrumental in supporting
increased seaweed production into the future.

Seaweed production, both from wild stocks and from
aquaculture, represents an important conduit for CO2 removal
from the atmosphere, with strongly autotrophic seaweed
communities globally taking up 1.5 Pg C year−1 via their net-
production (Krause-Jensen and Duarte, 2016). Yet, the potential
of managing seaweed production to mitigate climate change by
sequestering CO2 has not yet been fully incorporated into the
emergent concept of Blue Carbon, referring to climate change
mitigation strategies based on the capacity of marine plants to
bind CO2 (Nellemann et al., 2009; McLeod et al., 2011; Duarte
et al., 2013). The reason for such neglect is the belief that the
large majority of seaweed production is decomposed in the
ocean and therefore, does not represent a net sink for CO2.
However, this view has been recently challenged (Hill et al.,
2015; Trevathan-Tackett et al., 2015; Moreira and Pires, 2016)
and new evidence suggests that seaweeds are globally-relevant
contributors to oceanic carbon sinks (Krause-Jensen and Duarte,
2016). Hence, the contribution of seaweed to Blue Carbon and
climate change mitigation strategies is now being reconsidered.

One pathway to broaden Blue Carbon strategies to incorporate
the CO2 sink capacity of seaweeds is to manage the fate
of seaweed production, whether derived from aquaculture or
harvest of wild stocks, to reduce CO2 emissions derived from
fossil fuel use. This can be achieved, for instance, through the
use of seaweed biomass as biofuel directly replacing fossil fuels
(e.g., Kraan, 2013; Chen et al., 2015), and/or replacing food or
feed production systems with intense CO2 emission footprints
by seaweed-based food systems, which have much lower life-
cycle CO2 emission (Fry et al., 2012). Indeed, a seaweed-based
Blue Carbon program has been developed in Korea (Chung et al.,
2013; Sondak and Chung, 2015), providing an initial step in
this direction. Yet, Korea contributes only 6% of global seaweed
aquaculture production (FAO, 2016b), so the development of
seaweed farming as a Blue Carbon strategy for climate change
mitigation would require that major producers, such as China
accounting for more than half of the global seaweed aquaculture
production, engage with this strategy.

The development of seaweed farming as a strategy for climate
change mitigation would help alleviate present constraints on
the further growth of seaweed aquaculture. Growth of seaweed
production is exceeding that of traditional markets, leading to
a steady decline in price at about 1–2% year−1 (Kronen et al.,
2013), deterring farmers and investors from engaging. Economic
compensation for the environmental benefits brought about by
seaweed farming, including its role in climate change mitigation,
would allow for further growth and a more sustainable seaweed
aquaculture industry. In particular, economic compensation for
climate services associated with seaweed farming would help
generate a newmarket for seaweed production while also creating

incentives to reduce further the life-cycle CO2 emissions of
seaweed aquaculture.

Here we outline the potential to develop seaweed Blue
Carbon Farming as a strategy for climate change mitigation and
adaptation. We do so by first assessing the potential, based on
wild and aquaculture production, and the pathways for this
production to be managed as to result in avoidance of CO2

emissions while possibly generating climate change adaptation
co-benefits. We then evaluate the role of seaweed aquaculture in
adaptation to specific impacts of climate change in the marine
environment, such as ocean acidification, deoxygenation, and
shoreline erosion (e.g., Gattuso et al., 2015). Finally, we propose
a number of actions required to consolidate such program as
a component of the pathway to solutions for climate change
adaptation and mitigation.

GLOBAL SEAWEED PRODUCTION AND
THE ASSOCIATED CO2 UPTAKE

Seaweed communities are strongly autotrophic, generating far
more organic matter through photosynthesis than consumed by
respiration in the ecosystem, and are thus responsible formuch of
CO2 capture in marine vegetated habitats (Duarte and Cebrian,
1996). An upper limit to the CO2 capture potential of seaweed
aquaculture can be calculated at 2.48million tons of CO2 (0.68 Tg
C) per year. This upper limit assumes that all of the 27.3 million
tons fresh weight produced in 2014 be dedicated to carbon
capture with a 100% yield given by the average carbon content of
24.8% of seaweed dry weight (Duarte, 1992) and a conservative
dry weight:fresh weight ratio of 0.1. However, even this upper
limit constitutes only about 0.4% of the global wild seaweed
CO2 capture estimated at 173 Tg C year−1 (Krause-Jensen and
Duarte, 2016). At current growth rates, the upper limit to the CO2

capture potential of seaweed aquaculture would exceed 6% of the
global CO2 sequestration by wild seaweed by 2,050. Hence, CO2

capture by seaweed aquaculture alone cannot represent a major
underpinning of emission reduction programs with the current
and even projected potentials. However, these comparisons are
based on quantities spread over hugely different areas. The 173
Tg C year−1 sequestered by wild seaweed is spread over the entire
ocean, as most of this sequestration occurs in the deep sea, and
the carbon supporting this flux is produced over the 3.5 million
km2 occupied by seaweed (Krause-Jensen and Duarte, 2016). In
contrast, the area occupied by seaweed aquaculture, calculated
from a typical yield of seaweed aquaculture of 1,604 tons DW
km−2 (The Fishery Bureau MoA, 2015), represents only about
1,600 km2 globally, i.e., 0.04% of the area covered by wild seaweed
habitats or about 0.004% of the global extent of agricultural
land (43 million km2 in 2,000, Ramankutty et al., 2008). Hence,
whereas seaweed aquaculture does not yet have a scale that would
support a global role in climate change mitigation, it has a strong
potential CO2 sequestration intensity of about 1,500 tons CO2

km−2 year−1, corresponding to the annual CO2 emissions of
about 300 Chinese citizens.

Whereas, seaweed aquaculture currently occupies a minimal
fraction, 0.004%, of the coastal ocean, the scope for expansion
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may be limited by the availability of suitable areas and competing
demands for suitable space, and face constraints due to limits
to seaweed production imposed by nutrient availability as well
as shifting temperature regimes. Current technology for seaweed
aquaculture, based on simple structures, can be deployed only
in relatively sheltered areas, which will restrict the industry to
a fraction of the potential area. Whereas, the effects of climate
change on macroalgal cultivation are not yet clear (Callaway
et al., 2012), ocean warming may reduce fucoid canopies through
physiological stress as well as additional associated pressures
from warm-water herbivores (Harley et al., 2012), increased
storm energy and reduced nutrient supply (Callaway et al.,
2012), possibly reducing seaweed aquaculture yields. Species
cultured at latitudes close to their thermal limits may be impacted
by further warming, whereas warming may increase the yield
in areas where temperature or ice cover may limit current
production, such as predicted for the Arctic (Krause-Jensen and
Duarte, 2014). In addition, increased CO2 may increase the
yield of seaweed aquaculture (Callaway et al., 2012). Lastly, the
expansion of seaweed aquaculture need also consider potential
impacts, such as the introduction of invasive species. However,
assessment of the impacts of invasive seaweed species, derived
from aquaculture (e.g.,Undaria pinnatifida), report both benefits
and impacts, which are not severe in nature (McLaughlan et al.,
2014).

Despite the limitations acknowledged above, the scope for
expansion of seaweed aquaculture with available structures and
constraints is substantial. Gattuso et al. (2006) calculated the
potential coastal area marine macrophytes may occupy, on the
basis of the assessment of their light requirements and light
availability, to be 5.71 × 106 km2 in the non-polar regions.
However, this estimate is based on the light reaching the seafloor,
whereas seaweed aquaculture is based on algae suspended near
the surface, thereby overcoming issues of light limitation. For
instance, Norway has assessed that seaweed aquaculture can
markedly stimulate the Norwegian bio-economy (Skjermo et al.,
2014) by expanding seaweed aquaculture along its extensive
(90,000 km2) and productive economic zone from current
negligible levels to 20 × 106 tons by 2,050 (Olafsen et al., 2012).
The surface area occupied by seaweed cultivation has more than
tripled the Norwegian coast in only 3 years along (2014 and
2016, Stévant et al., 2017). Moreover, the scope for expansion of
seaweed aquaculture beyond the currently suitable areas may be
facilitated in the future by developments in offshore aquaculture,
allowing cultivation (e.g., Sulaiman et al., 2015) and seaweed
biorefining (Fernand et al., in press) in offshore farms (Lehahn
et al., 2016). Current marine spatial models already propose
solutions to competing demands for suitable space, such as the
co-location of offshore wind farms and seaweed aquaculture
(Gimpel et al., 2015).

However, calculations of the CO2 removal potential with
seaweed aquaculture also need consider the energy consumption
of seaweed farming. Life cycle analyses have concluded that the
net removal of CO2 from the atmosphere by biofuel production
from seaweed aquaculture is about 961 kg CO2 per ton DW
of seaweed (Alvarado-Morales et al., 2013). The potential CO2

sequestration intensity of seaweed farms of about 1,500 tons
CO2 km

−2 year−1 is somewhat above 10% of the CO2 emissions

avoided by offshore wind farms of about 12,500 tons CO2 km
−2

year−1. The CO2 emissions avoided per unit area by offshore
wind farms were derived by dividing the CO2 avoidance of wind
farms by the area occupied by the farms, corrected for a 2%
lifecycle CO2 emissions over a nominal 20 year life span of the
turbines (Martínez et al., 2009). The calculations were based on
data for the Sanbanks offshore wind farms (Germany, 21 turbines
in 61 km2, Vattenfall, 2016)1 and for the LINCS offshore wind
farms (UK, 83 turbines in 35 km2, Centrica Energy, 2007).

Clearly, the comparison above would suggest that seaweed
aquaculture cannot be the option of choice if the sole intent is
to mitigate climate change. However, establishing a seaweed
farm in some areas of the world is rather inexpensive, requiring
for instance an initial investment of <US $ 15,000 for a 1 ha
seaweed farm in Mexico (Robledo et al., 2013), whereas the cost
of a state-of-the-art offshore wind turbine, including installation,
is about US $ 1.5 million per turbine, and involves order-of-
magnitude larger maintenance costs. Hence, many developing
nations cannot afford addressing climate change mitigation
through high-cost solutions, such as off-shore wind farms, but
can indeed establish seaweed farms, and thereby in addition to
climate mitigation, they will be producing a valuable biomass
with potential for delivering food, feed, biomolecules, and energy
http://www.fao.org/docrep/field/003/AC287E/AC287E01.htm
(Msuya, 2011; Rebours et al., 2014). Moreover, “blue” biofuels,
such as seaweed biofuels, do not compete for resources with
agriculture, as they do not require arable land, freshwater or
fertilizer, herbicide or pesticide applications and are, therefore in
many respects, more environmentally sustainable than current
biofuels derived from land crops (Duarte et al., 2009, 2013).
Calculations of the area required for seaweed aquaculture to
supply 60% of the transportation fuel vary broadly, from <1%
of the economic exclusive zone (EEZ) for Norway, to 10% of
the Dutch EEZ and about twice of the German EEZ (Fernand
et al., in press). The option to expand seaweed aquaculture by
increasingly occupying offshore areas is not without challenges,
including new engineering designs to withstand rough sea
states as well as additional costs, and energy use, involved in
transporting the crops and operators across greater distances
(Fernand et al., in press). Further, as nutrient concentrations
typically decrease offshore, nutrient availability may impose
constraints on seaweed aquaculture yield in offshore farms
(Fernand et al., in press).

A stepwise approach to maximizing the benefits from seaweed
aquaculture would include to sequentially extract high-value
molecules used in the food, pharma or biotech industries, such as
bioactive sulphated polysaccharides, pigments, and antioxidants
(D’Orazio et al., 2012; Mak et al., 2014; Herrero and Ibáñez,
2015), and then convert—after extraction of carbohydrates for
the hydrocollid industry or for biofuels production—the lower-
value residue to protein concentrates with value in the feed
industry (Francavilla et al., 2015; Bikker et al., 2016; Seghetta
et al., 2016). Algal biorefineries have evolved from concept and
laboratory tests to pilot-scale plants involving a range of seaweed
species and environments (e.g., Baghel et al., 2014; Lorbeer et al.,

1Available online at: https://corporate.vattenfall.com/about-energy/renewable-

energy-sources/wind-power/wind-power-at-vattenfall/).
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2015; Bikker et al., 2016; Masarin et al., 2016), and may soon
become commercial operations. The range of potential products
also include using the nutrient-rich residues from a biofuel
production for fertilizer, which may also serve for C retention
in soil (Seghetta et al., 2016). New bioenergy concepts also use
seaweed by-products and debris in energy production (Kaspersen
et al., 2016).

Seaweed farms also act as a source of DOC and POC
exported to adjacent locations, where some of this carbon may
be buried (Zhang et al., 2012). We recently summarized 105
reports of sequestration of seaweed to carbon sequestration in
sediments or the deep sea, and showed that 25% of the carbon
exported from macroalgal stands, which represents about 43%
of their net primary production, is sequestered in continental
shelf sediments or in the deep-sea (Krause-Jensen and Duarte,
2016). A fraction of the organic carbon exported from seaweed
farms is also ultimately sequestered in sediments or exported to
the deep sea (e.g., Zhang et al., 2012), further supporting the
role of seaweed farms in climate change mitigation. However,
as seaweed grown in aquaculture is harvested, the fraction
of its net primary production available to be sequestered is
likely smaller than that of wild seaweed stands. Whereas, most
macroalgal stands grow on rocky shores, thereby requiring the
export of carbon to depositional sites to contribute to carbon
sequestration (Krause-Jensen and Duarte, 2016), seaweed farms
can be placed over soft sediments, where detritus could be buried.
The processes conducive to sequestration are, otherwise, similar
to those operating in wild seaweed stands, including export with
ocean currents during storms and/or tidal currents, transport to
the deep-sea along submarine canyons, and sinking of exported
seaweedmaterial ballasted by epiphytes and/or stones attached to
their holdflasts (Krause-Jensen and Duarte, 2016).

Even where food production, and not climate change
mitigation, is the main goal of seaweed farming, benefits in
terms of climate change mitigation can be substantial. The
reason for this is that the CO2 emissions involved in producing
seaweed aquaculture are much less than those involving in
producing a comparable amount of agriculture products on
land. Agriculture is responsible for about 30% of greenhouse gas
emissions, resulting from land-use change in conversion of wild
ecosystems into croplands, intense emissions associated with the
production and application of industrial fertilizers and emissions
from cattle (Robertson et al., 2000; Smith, 2002). Seaweed
aquaculture generates food while minimizing the impacts
associated with land-based food production systems (e.g., Duarte
et al., 2009). For instance, recent in vitro experiments showed that
fermentation of seaweed, simulating that of ruminant digestion,
substantially reduced methane emissions (Kinley et al., 2016;
Maia et al., 2016), and that addition of only 2% of specific seaweed
species to the diet of cattle could reduce the methane emission
from cattle production by 99% (Machado et al., 2016). Indeed,
ruminants were traditionally fed seaweed in many coastal regions
during periods of feed scarcity, but the potential benefits in terms
of reduced methane emissions have only recently been realized
(Kinley et al., 2016; Maia et al., 2016). Hence, supplementing
feed for ruminant cattle with seaweed holds a potential to reduce
methane emissions, a possibility that, if confirmed by in vivo

and farm-scale experiments, could greatly contribute to mitigate
emissions of this powerful greenhouse gas. Prebiotic compounds
and essential minerals in seaweeds may furthermore help to
enhance livestock production and health (Rey-Crespo et al., 2014;
Makkar et al., 2016), as well as substitute the use of antibiotics
in the intensive livestock production (O’Doherty et al., 2010;
O’Shea et al., 2014). An additional potential benefit of seaweed
farming for agriculture is a reported increase in productivity
of crops via soil amelioration by nutrient-rich seaweed biochar
(Roberts et al., 2015; Zacharia et al., 2015) or seaweed compost
(Cole et al., 2016), thereby avoiding emissions involved in
synthetic fertilizer production (Smith, 2002). Yet, it is unlikely
that seaweed aquaculture will comprise a sizeable fraction of
vegetable production on land, particularly as food demand is
growing with increasing human population.

BENEFITS OF SEAWEED AQUACULTURE
FOR CLIMATE CHANGE ADAPTATION

The IPCC defines climate change adaptation as the process
of adjustment to actual or expected climate and its effects
(IPCC, 2014). In human systems, adaptation seeks to moderate
or avoid harm or exploit beneficial opportunities whereas in
natural systems it refers to human intervention to facilitate its
adjustment to expected climate and its effects (IPCC, 2014).
In this context, we address the use of seaweed aquaculture for
climate change adaptation in terms of its capacity to avoid harms
to human systems (e.g., coastal protection, ensure food security)
and vulnerable ecosystems (e.g., provide refugia from ocean
acidification and ocean deoxygenation).

By creating coastal habitats, seaweed aquaculture can
potentially contribute some of the ecosystem functions that
natural kelp forests and macroalgal beds support (Smale et al.,
2013). Some of these functions contribute, as mentioned above,
to mitigate climate change while another set of functions have
climate change adaptation benefits (Figure 1, cf. Duarte et al.,
2013). For example, the canopies of farmed seaweeds, like those
of wild seaweeds, dampen wave energy and hence, serve as live
coastal protection structures buffering against coastal erosion
(Mork, 1996; Løvås and Tørum, 2001). Norwegian kelp forests
dominated by Laminaria hyperborea have been reported to
reduce wave heights by up to 60% (Mork, 1996). A key difference,
in terms of the capacity of farmed seaweed to reduce wave energy
is that their canopies are suspended from the surface rather than
being benthic. The wave-attenuating effect depends on the extent
and structure of the seaweed habitat (Gaylord et al., 2007) as well
as the energy involved as seaweed farms will be damaged during
high-energy storms.

Dense seaweeds, farmed as well as wild, also represent
productivity hot-spots with associated high pH during day when
photosynthesis reduces CO2 concentrations (e.g., Middelboe
and Hansen, 2007; Krause-Jensen et al., 2015). They may,
hence, serve a role in protecting calcifies from projected ocean
acidification (Krause-Jensen et al., 2015). Kelp forests support
high biodiversity, including calcifiers such as lobsters, crabs,
molluscs, and crustaceans (Steneck et al., 2002; Smale et al.,
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FIGURE 1 | Overview of key climate change mitigation- and adaptation benefits of seaweed farming. Photo: Yngvar Olsen.

2013) and high daytime pH probably contributes to this effect.
Seaweed farms are similarly reported to support high biodiversity
(Radulovich et al., 2015). As day-periods of high productivity
and pH in seaweed habitats can alternate with night-periods
where respiration creates reduced pH (Delille et al., 2009), the
potential for pH-upregulation and associated effects of seaweeds
as refugia for calcifiers should increase with photoperiod. Indeed,
during midsummer near the poles where photoperiods exceed 21
h, seaweed productivity can create sustained high pH over the
summer period and be particularly suitable habitats for calcifiers
(Krause-Jensen et al., 2016). The capacity of seaweed aquaculture
to affect pH and provide refugia for calcifiers depend also on flow
regimes (Hurd, 2015) and increase where the farms are located
in coastal environment with weak currents and/or where the
seaweed themselves slow down flow. The capacity of seaweed
farms to offer habitat for biodiversity is, however, temporary, as
this capacity is lost at harvest.

Ocean de-oxygenation with warming is also a component
of climate change impacts in the ocean of mounting concern
(Keeling et al., 2010), particularly for eutrophic coastal areas,
which are particularly prone to experience hypoxia (Diaz
and Rosenberg, 2008). Seaweed aquaculture results in more
autotrophic ecosystems than even those supported by wild
seaweed, because the production is harvested, and is, therefore,
removed from being remineralized, consuming oxygen, in the
ecosystem. Hence, seaweed farms provide oxygen-rich habitats,
providing refugia from hypoxia and declining oxygen levels,

further contributing to allow marine organisms to adapt to this
component of a warmer ocean.

SPATIAL PLANNING TO MAXIMIZE
SEAWEED BLUE CARBON FARMING

Maximizing the climate change mitigation impact of seaweed
farming also requires that the farms exert no negative impact on
natural coastal carbon stocks, particularly those associated with
seagrass meadows. Seagrass meadows are hot-spots of carbon
sequestration and hence, key Blue Carbon habitats (Duarte et al.,
2005, 2013; McLeod et al., 2011; Fourqurean et al., 2012). They
are vulnerable to human disturbance leading to shading and
mechanical damage (Waycott et al., 2009), both of which could
result from activities at neighboring seaweed farms. On the other
hand, nutrient removal by seaweed farms can improve water
quality and allow recovery of seagrass in severely eutrophied
areas.

Of course the placement of seaweed farms must also consider
the habitat requirements of the cultured seaweed (Kerrison et al.,
2015) as well as habitat conditions optimizing the quality of
the crop for the targeted use (Bruhn et al., 2016). Additional
environmental benefits may arise from choosing areas already
enriched in nutrients, including use in polycultures to reduce
nutrient impacts of animal aquaculture. While seaweed farming
under eutrophic conditions may increase the yield of some crops,
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it can represent a severe challenge for other crops such as kelp,
which risks overgrowth by epiphytes and hence thrive better
at less eutrophic sites with sufficient water flow to replenish
nutrients, CO2, and oxygen, and limit epiphytic growth (Bruhn
et al., 2016).

Locating seaweed farms in areas under particular risk
from climate change impacts, such as low-lying coastal areas,
vulnerable to flooding during storms with increasing sea level,
areas prone to exposure to acidified and/or oxygen-depleted
waters, may provide a tactical approach to enhance the benefits
of seaweed aquaculture for climate change adaptation. However,
these, and other, environmental conditions also place constraints
on the type of seaweed that can be grown as well as the possible
products that can be derived from the farm.

Spatial planning of seaweed aquaculture to mitigate climate
change should also seek to minimize life-cycle CO2 emissions
by co-locating farming and processing, and covering energy
requirements by renewable energy where possible. In addition,
spatial planning is required to minimize negative interactions
with other uses of the coastal zone, such as navigation, as
well as to minimize environmental impacts from seaweed
aquaculture.

CONCLUSION

The discussion above provides a suite of arguments supporting
the consideration of seaweed aquaculture as a tool for climate
change mitigation and adaptation, while also identifying possible
caveats and limitations. Indeed, the growing seaweed aquaculture
industry is already delivering these benefits, which have not
been properly accounted for nor have been credited to seaweed
farmers. Because of the very low investment required to set up
seaweed aquaculture farms, seaweed aquaculture is a particularly
sound strategy for coastal developing nations to contribute
to climate change mitigation while protecting their shoreline
and marine ecosystems from some of the effects of climate
change, such as ocean acidification and ocean de-oxygenation.
Constraints for the expansion of the climate mitigation and
adaptation benefits associated with seaweed aquaculture are
multiple. In the case of China, the main challenges are
competition for suitable space with other uses and the
maintenance of a sufficient profit margin to continue to engage
farmers. More generically, the constraints involve physical
constraints, such as the availability of suitable areas; regulatory
constraints, such as the requirements for concessions for

seaweed aquaculture; marine spatial planning constraints, such
as competition for space with other marine-based activities; and
market constraints, such as the existence of demand for seaweed
aquaculture products, necessary to maintain a profit margin that
may motivate prospective farmers to engage. Promoting seaweed
aquaculture as a component of climate change mitigation and
adaptation strategies requires that all four dimensions of the
social-ecological system that supports seaweed aquaculture (cf.
Broitman et al., 2017) be addressed: (1) biological productivity
to enhance carbon capture, (2) environment constraints to the
expansion of seaweed aquaculture, (3) policy tools that enable

seaweed aquaculture, and (4) manage societal preferences and
markets demands for seaweed products. Maintaining a market
price that encourages seaweed farmers to engage and implement
design improvements to maximize climate services delivered by
the farm requires that markets diversify to increase the demand
for seaweed products. Subsidizing farmers, either directly or
indirectly through tax abatement, for farms credited as blue
carbon seaweed farms may further increase engagement with
this strategy. While the contribution of seaweed aquaculture to
climate change mitigation and adaptation will remain globally
modest, it may be substantial in developing coastal nations and
will provide add-on value to the societal benefits derived from
seaweed aquaculture.
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