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Abstract.—Topological heterogeneity among gene trees is widely observed in phylogenomic analyses and some of this
variation is likely caused by systematic error in gene tree estimation. Systematic error can be mitigated by improving
models of sequence evolution to account for all evolutionary processes relevant to each gene or identifying those genes whose
evolution best conforms to existing models. However, the best method for identifying such genes is not well established.
Here, we ask if filtering genes according to their clock-likeness or posterior predictive effect size (PPES, an inference-based
measure of model violation) improves phylogenetic reliability and congruence. We compared these approaches to each
other, and to the common practice of filtering based on rate of evolution, using two different metrics. First, we compared
gene-tree topologies to accepted reference topologies. Second, we examined topological similarity among gene trees in
filtered sets. Our results suggest that filtering genes based on clock-likeness and PPES can yield a collection of genes with
more reliable phylogenetic signal. For the two exemplar data sets we explored, from yeast and amniotes, clock-likeness
and PPES outperformed rate-based filtering in both congruence and reliability. [molecular clock; phylogenomics; posterior
prediction; rate of evolution; systematic error.]

Genome-scale data are increasingly being used for
phylogenetic inference. One consistent finding in such
studies is that topology varies considerably across genes.
Much of this variation is to be expected as a consequence
of incomplete lineage sorting and/or horizontal gene
transfer (Pamilo and Nei 1988; Maddison 1997; Philippe
and Douady 2003). However, some of this variation
may result from using models that do not adequately
account for the evolutionary processes that have shaped
the patterns in the data. Although initial optimism held
that increasing amounts of data would resolve difficult
problems in phylogenetics (Gee 2003; Rokas et al. 2003),
we are now finding that different genome-scale data sets
frequently support contradictory hypotheses, each with
strong support (e.g., Rokas et al. 2003; Phillips et al. 2004;
Dunn et al. 2008; Philippe et al. 2009; Schierwater et al.
2009; Nosenko et al. 2013). The reason for this conflict is
that increasing data set size may reduce stochastic error
(Philippe et al. 2005, 2011), but it can also exacerbate
systematic error leading to high confidence in the wrong
tree (Kumar et al. 2012).

Two routes exist for reducing inferential artifacts due
to systematic error: (i) improving phylogenetic models to
better account for the complexity of molecular evolution
(e.g., Yang 1994; Tillier and Collins 1995; Lartillot and
Philippe 2004) or (ii) selecting subsets of the data that fit
the available models (Philippe et al. 2005). The second
option has historically been limited by data availability,
but that constraint was lifted with the advent of high-
throughput sequencing. The most common approach for
selecting subsets of data is filtering based on the rate
of evolution. Fast-evolving genes or sites are removed,
as they have a tendency to produce complex character
patterns that are not captured by simple models (e.g.,
Lopez et al. 2000; Nozaki et al. 2007). Despite the

frequent use of rate, some have suggested that there
are no “identifiable parameters” to indicate the most
phylogenetically reliable genes (Gee 2003; Rokas et al.
2003; Salichos and Rokas 2013). However, we contend
that many approaches for selecting preferred genes or
sites remain un- or underinvestigated.

In this study, we investigate the performance of two
underutilized approaches to phylogenomic filtering,
and compare them to the use of rate. Our intention
is not to exhaustively explore all approaches, but
simply to ask whether “identifiable parameters” for
filtering might exist. Our first approach is to prefer
genes that evolve in a clock-like manner, as might be
expected when molecular constraints, population sizes,
and selection pressures remain constant over time and
across lineages (Kimura 1964, 1968). Our motivation for
focusing on clock-like genes is to avoid long-branch-
attraction artifacts (Felsenstein 1978; Brinkmann et al.
2005; Zhong et al. 2011), and because clock-like genes
have desirable distance properties. Notably, they remain
clock-like even when distances are estimated using an
incorrect model (Steel and Penny 2000). Under this
model, we expect that analyses of clock-like genes are
less likely to result in systematically biased inferences.
Our focus on the degree to which a gene deviates from
the molecular clock is intended to serve as a proxy for
the potential of model misspecification to result in biased
inferences. We are not interested in deviations from the
clock for their own sake, and we expect that if all models
are adequate, clock-like genes should be no more reliable
than nonclock-like genes.

Our second approach to filtering tests fit between
the model of sequence evolution and the data using
Bayesian posterior prediction (Bollback 2002; Brown
2014). Models of sequence evolution that adequately
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capture the evolutionary processes relevant to the
data should produce the most reliable topological
inferences. Although comparisons of relative model fit
are commonplace in phylogenetics (i.e., model choice),
evaluation of absolute fit between the data and the
selected model is not. The latter can be accomplished in a
Bayesian posterior predictive framework by simulating
data sets using trees and parameter values drawn from
the posterior distribution (Bollback 2002). The simulated
data, also known as the posterior predictive distribution,
can then be compared with the empirical data. If the
model of sequence evolution fits the empirical data
well, the empirical data set should be a plausible draw
from the posterior predictive distribution. In this study,
we compare the phylogenetic information contained in
the empirical and simulated data using test statistics
introduced by Brown (2014).

If some of the topological variation across genes is
driven by systematic error and our approaches are able to
distinguish between genes based on their susceptibility
to such error, we expect to see two patterns. First, genes
judged to be more reliable (by rate, clock-likeness, or
posterior prediction) should be more similar to well-
established reference topologies, when they are known.
Second, such reliable genes would also be expected, in
many circumstances, to have more congruent topologies.
We applied these three filtering approaches to two
empirical phylogenomic data sets where such reference
topologies exist and tested the efficacy of the filtering
based on the two criteria outlined above.

METHODS

Multiple Sequence Alignments
We evaluated the impact of the three different filtering

approaches on gene tree reliability using two previously
published data sets (Hess and Goldman 2011; Crawford
et al. 2012). The first includes nucleotide sequences of
343 protein-coding orthologs from 18 yeast species in the
phylum Ascomycota, subphylum Saccharomycotina. We
briefly outline the methods used by Hess and Goldman
2011 to assemble these multiple sequence alignments
(MSAs), but see their paper for additional details. Hess
and Goldman (2011) collected 1148 orthologous genes
for 14 yeast species included in the Fungal Orthogroups
Repository (FOR) at the Broad Institute (Wapinski et al.
2007). After applying a series of stringent filtering steps
to reduce the inclusion of paralogous loci from the
remaining 4 species not present in FOR, 343 genes with
amino acid sequence data for all 18 species were aligned
using MAFFT v. 6.24 (Katoh and Toh 2008) and uncertain
regions of the alignment were trimmed using Gblocks v.
0.91b (Castresana 2000). The corresponding nucleotide
alignments were reconstructed using BLAT (Kent 2002).
The minimum, maximum, mean, and median length of
the yeast MSAs was 264, 3435, 943, and 837 nucleotides,
respectively.

The second set of MSAs consists of 1145 ultraconserved
elements (UCEs) from 10 amniote species assembled

by Crawford et al. (2012) using previously published
genome sequences and de novo genomic enrichment
(see Crawford et al. 2012 and Faircloth et al. 2012
for details). The amniote UCE sequences were aligned
with MUSCLE (Edgar 2004). Loci missing nucleotide
sequence data from any taxa were excluded. The
minimum, maximum, mean, and median length of
the amniote UCE MSAs was 129, 741, 406, and 403
nucleotides, respectively.

Model Selection and Maximum-Likelihood Gene Tree
Estimation

We selected the best-fit model of nucleotide sequence
evolution for each locus from a set of 24 models
using Akaike’s Information Criterion (AIC; Akaike 1974),
as implemented in MrModelTest 2.3 (Nylander 2004)
and PAUP* v4b10 (Swofford 2003). We inferred the
maximum-likelihood (ML) phylogeny for each locus
assuming the AIC-selected model in Garli v2.0 (Zwickl
2006), using five replicate searches. Branches of near-zero
length (�1×10−8) were collapsed to create polytomies.
Each search was terminated after 5000 generations
without an improvement of 0.01 or more log-likelihood
units. Branch lengths for the reference topology of
Hess and Goldman (2011) are ML estimates based on
a concatenated alignment of all 343 genes assuming a
GTR + I +� model of sequence evolution.

Molecular Clock and Evolutionary Rate Filtering
Given the selected model of sequence evolution and

the ML tree for each gene, we calculated likelihoods
twice: once enforcing a strict clock model and once
estimating each branch length independently. In both
cases, likelihoods were calculated in PAUP* v4b10
(Swofford 2003) using parameter and branch-length
(in the case of heterogeneous rates) estimates from
Garli v2.0 (Zwickl 2006). The likelihood ratio between
these models was calculated as twice the difference
in their log-likelihood scores and used as a measure
of clock-likeness for each gene. Genes were then
sorted in ascending order by their clock-likeness
(likelihood ratios) and binned into deciles such that
each bin contained 34 genes for the yeast data and
114 genes for the amniote data. We also compared the
impact of two different rooting schemes, midpoint
and outgroup rooting, on the likelihood ratio and
subsequent binning. Results from these two different
approaches to rooting were largely congruent, so
hereafter we focus on analyses using midpoint rooting.
For the sake of completeness, we also examined the
frequency with which genes in each data set rejected
a molecular clock using a chi-squared test (Felsenstein
1981), although we are not primarily interested in
testing the molecular clock hypothesis. Our objective
was to use the likelihood ratios from a clock test as
a relative measure of clock-likeness across genes. The
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relative evolutionary rate of each gene was scored as the
sum of the branch lengths on its ML tree. As with
clock-likeness, we sorted genes according to
evolutionary rate in ascending order and then binned
them into deciles.

Posterior Predictive Filtering
Posterior prediction is a Bayesian statistical procedure

for checking the fit of a model to the data being analyzed.
Briefly, posterior prediction in a phylogenetic analysis
involves (i) drawing trees and parameters values from
a posterior distribution, (ii) using them to simulate new
data sets (known as posterior predictive data sets), (iii)
summarizing each data set using a relevant test statistic,
and then (iv) comparing the empirical test statistic value
to the simulated distribution. Different test statistics may
be employed to assess different aspects of fit. Here, we
employ a combination of statistics that aim to capture
model violations affecting topological inferences (Brown
2014).

More specifically, we estimated the joint posterior
distribution of parameter values and tree topologies for
each empirical data set using MrBayes v3.2.1 (Ronquist
and Huelsenbeck 2003; Ronquist et al. 2012) with 4
replicate Markov chain Monte Carlo (MCMC) runs and 4
Metropolis-coupled chains per run, assuming the same
model of sequence evolution as used for ML estimation.
Each run consisted of 5 million generations with a

sampling frequency of 2000 for yeast data, and 2.5
million generations with a sampling frequency of 1000
for amniote UCE data. Convergence checking was done
using the approach outlined by Brown and Lemmon
(2007) as implemented in MrConverge v1b2.5 (Lemmon
2007).

One hundred tree topologies and associated
parameter values were sampled from the posterior
distribution for each gene by drawing 25 samples
evenly spaced across generations from the stationary
distribution of each replicate run. A separate posterior
predictive data set was then simulated for each
sample with PuMA v0.905 (Brown and ElDabaje 2009),
which relies on Seq-Gen (Rambaut and Grassly 1997).
Because Seq-Gen does not simulate MSAs with missing
data, we substituted missing data for nucleotides
in each posterior predictive alignment to match the
patterns of missing data observed in the empirical
data using a custom python script (available from
http://github.com/jembrown/repMissPatterns and
http://dx.doi.org/10.5061/dryad.fd3m4). Each of these
simulated posterior predictive data sets was then
analyzed with MrBayes v3.2.1 in the same manner
as the empirical data, but reducing the number of
generations to 2 million and 1 million for yeast and
UCE data, respectively. In general, convergence occurs
more quickly when analyzing posterior predictive data
sets, due to the close matching between generating
and assumed models of sequence evolution. Figure 1,
replicated from Brown (2014), provides a schematic

FIGURE 1. A schematic representation of data- and inference-based approaches to assessing model plausibility using posterior predictive
simulation. Most statistics proposed for testing model plausibility compare data-based characteristics of the original data set to the posterior
predictive data sets (e.g., variation in GC-content across species). The approach used in this study utilizes test statistics that compare the inferences
resulting from different data sets (e.g., the distribution of posterior probability across topologies). MSAs are represented as shaded matrices
and arrows originating from MSAs point to the MCMC samples of tree topologies and scalar model parameters (�) resulting from Bayesian
analysis of that MSA. Subscripts of MCMC samples taken during analysis of the original data index the samples (1, …, n). Subscripts for each
posterior predictive data set indicate which MCMC sample was used in its simulation. Subscripts for MCMC samples resulting from analysis of
a posterior predictive data set first indicate the posterior predictive data set that was analyzed and next index the MCMC samples from analysis
of that particular data set (1, …, m). This figure is reproduced from Brown (2014).
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representation of inference-based posterior predictive
assessment of model fit.

To detect disparities between the inferences drawn
from analyses of empirical data and those drawn
from posterior predictive data, we calculated several
test statistics that summarize relevant aspects of each
posterior distribution using AMP v0.99e (Brown 2014).
Because we are interested in detecting model violations
that specifically impact topological inferences, we focus
on two classes of test statistics that summarize marginal
distributions of topologies: the distribution of symmetric
differences (unweighted Robinson–Foulds; Robinson
and Foulds 1981) among trees in the posterior and
the difference in statistical entropy between the prior
and posterior distributions of topologies (see Brown
2014 for more details). We summarized all postburnin
samples (m samples) from each posterior distribution
by examining several quantiles in the ordered vector

of pairwise symmetric differences (of length
( m

2

)
),

including the 1st quartile, median, 3rd quartile, 99th
percentile, 999th 1000 quantile, and the 9999th 10,000
quantile. Each of these quantiles is a potential test
statistic. The entropy test statistic measures the change
in the distribution of probability across topologies when
comparing the prior to the posterior. This quantity can
be interpreted as the gain in information provided by
the data, conditional on the assumed model (again, see
Brown 2014 for more details). A uniform distribution
across topologies has maximum entropy, whereas a
single topology with a posterior probability of 1 has
minimum entropy. Figure 2 in Brown (2014) provides
example topological test statistic calculations from a
posterior distribution.

To quantify the position of the empirical value relative
to each posterior predictive distribution, we calculated
effect sizes. We chose to use effect sizes rather than
P-values to differentiate between empirical values
that lie near, but outside, the distribution of posterior
predictive values from those that are very far outside.
Effect size was calculated as the absolute value of the
difference between the median posterior predictive
value and the empirical value divided by the standard
deviation of the posterior predictive distribution. We
calculated effect sizes in the same manner for all test
statistics.

In order to summarize topological model fit with a
single value, we calculated the mean effect size from one
quantile-based test statistic and the entropy test statistic.
We selected the single quantile-based test statistic with
the fewest effect sizes of zero for each data set in order
to maximize our power to detect model violation. We
chose a single quantile-based test statistic so as not to
unduly weight the mean effect size toward this class of
statistics. Genes were then sorted in ascending order by
their mean effect sizes and binned into deciles such that
each bin contained 34 genes for the yeast data and 114
genes for the amniote data. Hereafter, we use PPES to
refer to posterior predictive effect sizes.

Tree Distances
We assessed the utility of the three filtering

approaches described above using two criteria based
on tree-to-tree distances. First, we determined if there
was a significant reduction in the mean distance to the
reference topology for trees in each decile. Sets of trees
equal in number to the size of each decile (34 for the yeast
orthologs and 114 for the amniote UCEs) were randomly
sampled from the full set, the mean distance to the
reference topology was calculated, and this procedure
was repeated 100,000 times. Reductions in distances to
the reference topology were considered significant if
they were in the lower 5% of the null distribution. We also
calculated the Spearman’s rank correlation coefficient,
rs, between the decile indices and the ranked mean
pairwise distances and assessed significance with the
exact one-tailed P-value, using algorithm AS 89 (Best
and Roberts 1975), as implemented in the “stats” package
in R v2.15.1 (R Core Development Team 2012). Second,
we determined if there was a significant reduction
in pairwise distances among ML trees in the lowest
deciles of ranked sets and/or a significant increase in
pairwise distances among trees in the upper deciles of
ranked sets by calculating the mean pairwise distance
between ML trees within each decile and comparing
that value to expectations based on random sampling.
Similar to the distance-to-reference comparisons, the
null distribution was generated by randomly sampling
the same number of ML trees as found in each decile
(34 for the yeast orthologs and 114 for the amniote
UCEs) from the full set of ML trees, calculating the
mean pairwise distance, and repeating this procedure
100,000 times. Reductions in pairwise distances were
considered significant if they were in the lower 5%
of the null distribution. Plots showing intradecile
comparisons and corresponding null distributions are
presented with the Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.fd3m4.

Several metrics have been proposed to measure the
distance between two trees in tree space with the
aim of summarizing their topological similarity or
dissimilarity. The symmetric difference between two
trees is a commonly used metric, but some of its
properties are undesirable for tree comparison. First,
the rearrangement of a single taxon can maximize
the symmetric difference between two trees despite
partial similarities between them (Penny et al. 1982;
Felsenstein 2004; Lin et al. 2012). Second, the distribution
of distances between two random binary trees is
strongly skewed in the direction of larger distances,
reducing the power to discriminate between sets of
trees based on similarity (Penny et al. 1982; Lin et al.
2012). Another metric, the matching distance, was
recently introduced and has a broader distribution of
distances between random trees. The matching distance
provides more discriminatory power and is not as
sensitive to minor leaf rearrangements as the symmetric
difference (Bogdanowicz and Giaro 2012; Bogdanowicz
et al. 2012; Lin et al. 2012). We characterized
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the similarity of trees using both the symmetric
difference, because of its familiarity, and the matching
distance (both matching split and matching cluster),
because of its discriminatory power and robustness
to minor topological changes. Symmetric differences
were calculated with the Dendropy Phylogenetic
Computing Library v3.12.0 (Sukumaran and Holder
2010) and matching distances were calculated using
TreeCmp v1.0-b291 (Bogdanowicz et al. 2012). We used
the matching split metric, a measure designed for
calculating distances among unrooted phylogenetic trees
(Bogdanowicz and Giaro 2012), to calculate distances
among the inferred ML trees. In order to calculate
distances between ML trees and reference topologies,
we used the matching cluster distance, which is
analogous to the matching split distance but designed
for comparisons of rooted topologies (Bogdanowicz and
Giaro 2013). Results based on symmetric differences are
presented in the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4.

For comparisons with reference trees, we also used
a third criterion to assess the utility of the filtering
approaches: the number of splits in each ML topology
that conflict with the reference topology. This criterion is
closely related to the symmetric difference, but focuses
exclusively on “false” splits in the ML trees. When
both the ML tree and the reference tree are fully
bifurcating, this value is simply half the symmetric
difference. However, this relationship does not hold
when either the reference tree or the gene tree
contains polytomies. We assessed the significance of
these values in the same manner as the tree-to-tree
distances, generating a null distribution based on 100,000
resamplings. We also calculated rs as above and assessed
significance of the correlation using a one-tailed P-
value. Plots of the null distributions and the mean
number of conflicting splits within each decile are
presented with the Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.fd3m4.

Conflicting Splits
In addition to characterizing overall topological

similarity, we also examined split-specific conflict
between ML trees and the corresponding reference
topology by calculating the number of trees in each
decile that conflict with each split in the reference
topology. To look for significant increases or decreases
in split-specific conflict, we compared these values for
each decile to expectations based on a null distribution
generated by 10,000 random resamplings. We specifically
tested for significant (P <0.05) reductions in conflict in
the lowest deciles and significant increases in conflict
in the upper deciles with and without adjusting for
multiple comparisons using the Bonferroni and false
discovery rate (FDR) (Benjamini and Hochberg 1995)
correction methods, with the number of comparisons
equal to twice the number of splits in each reference
topology.

RESULTS

Molecular Clock, Evolutionary Rate, and Posterior
Predictive Filtering

The distribution of test statistics from the molecular
clock, evolutionary rate, and posterior predictive
tests are summarized in Table S1 and Fig. S1
available as the Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.fd3m4. LRT values
for clock-likeness varied from 7.27 to 933.21 for the yeast
data with a median of 144.5, and from 2.08 to 163.9
for the amniote UCE data with a median of 29.71. The
999th 1000 quantile was the posterior predictive quantile-
based metric with the fewest effect sizes of zero for
the yeast data, giving an effect size of zero for only
12 yeast orthologs, whereas the quantile-based metric
with the fewest effect sizes of zero for the amniote
UCE data was the 99th percentile. The distribution
of tree lengths is nonoverlapping between the yeast
ortholog and amniote UCE data sets (Table S1; Fig. S1e,f
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4).

Distance between Deciles and Reference Topologies
Yeast orthologs.—The mean matching distances between
the ML trees and the yeast reference topology in four
of the five lowest (most clock-like) deciles of likelihood
ratio test statistics are significantly smaller than expected
(Fig. 2a). Yeast ortholog deciles also exhibit a strong
positive correlation (rs =0.952, P=2.2×10−16) between
clock-likeness ranks and the ranked mean matching
distance to the reference tree. In addition, the mean
number of splits in each ML tree that conflict with
the reference topology is significantly reduced in the
first, second, and third deciles when yeast ortholog
ML trees are ranked by clock-likeness (Fig. S2a
available as the Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.fd3m4). The rank
correlation across deciles between clock-likeness and the
mean number of splits that conflict with the reference is
very strong (rs =0.957, P=6.9×10−6).

Ranking ML trees by PPES does not yield individual
deciles with significantly smaller mean matching
distances to the yeast reference topology (Fig. 2b). The
rank correlation between PPES and mean distance to the
reference tree is much weaker than observed for clock-
based filtering (rs =0.394, P=0.1314). Ranking according
to PPES does lead to a significant reduction in the mean
number of splits in conflict with the reference tree for
the first and second deciles, but the overall relationship
between conflict and PPES is not as strong (Fig. S2b
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4; rs =0.600, P=
0.03656) as it was for clock-likeness.

Similar to ranking ML trees by PPES, ranking by
rate of evolution does not yield individual deciles
with significantly smaller mean distances to the
reference topology (Fig. 2c). The rank correlation

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/64/5/824/1686772 by guest on 20 August 2022

http://dx.doi.org/10.5061/dryad.fd3m4
http://dx.doi.org/10.5061/dryad.fd3m4
http://dx.doi.org/10.5061/dryad.fd3m4
http://dx.doi.org/10.5061/dryad.fd3m4
http://dx.doi.org/10.5061/dryad.fd3m4
http://dx.doi.org/10.5061/dryad.fd3m4


2015 DOYLE ET AL.—REDUCING SPURIOUS PHYLOGENETIC SIGNAL 829

between rate of evolution and ranked mean distance
to the reference tree is moderately negative and
significant (rs =−0.576, P=0.04388). Ranking by rate
of evolution does lead to a significant reduction in
the mean number of conflicting splits for the fourth,
fifth, and eighth deciles, but not the lowest deciles
(Fig. S2c available as the Supplementary Material
on Dryad at http://dx.doi.org/10.5061/dryad.fd3m4).
Overall, the rank correlation between rate of evolution
and conflict with the reference is weak (Fig. S2c
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4; rs =0.103, P=
0.3925).

Amniote UCEs.—The mean matching distances between
the amniote reference topology and amniote UCE

ML trees in the third and sixth clock-likeness deciles
are significantly smaller than expected (Fig. 3a). The
mean distances for each of the lower six deciles
are smaller than the median distance in the null
distribution, whereas the mean distance for each of
the upper four deciles are larger than the median
distance. Across deciles, clock-likeness ranks and
ranks in mean distance to the reference topology
exhibit a moderately strong correlation (Fig. 3a; rs =
0.709, P=0.01376). Ranking by clock-likeness leads
to a significant reduction in the number of splits
that conflict with the reference for the third decile
(Fig. S3a available as the Supplementary Material
on Dryad at http://dx.doi.org/10.5061/dryad.fd3m4),
with a moderate rank correlation between clock-likeness
and conflict across all deciles (rs =0.711, P=0.01055).
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FIGURE 2. Mean matching cluster distance between yeast ortholog ML trees and the reference topology for each filtered decile. a) Mean
matching cluster distance to the reference topology within each decile ranked by likelihood ratio test statistics. b) Mean matching cluster distance
to the reference topology within each decile ranked by PPES. c) Mean matching cluster distance to the reference topology within each decile
ranked by rate of evolution. The null distribution was estimated by resampling 34 (10%) ML yeast ortholog trees and recalculating the mean
matching split distance to the reference topology 100,000 times. rs is Spearman’s rank correlation coefficient between decile indices and the
ranked mean distances to the reference topology.
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The ML trees in the lowest three deciles of PPES
are significantly more similar to the reference topology
than expected, based on matching distances (Fig. 3b).
The mean distances for each of the lowest five deciles
are all smaller than the median distance in the null
distribution and the mean distances for each of the upper
five deciles are larger than the median. In addition,
there is a very strong rank correlation (Fig. 3b; rs =0.985,
P=1.144×10−7) between PPES and mean distance to
the reference topology. Posterior predictive ranking also
yields a significant reduction in the mean number of
splits in conflict with the reference tree for the lowest two
deciles (Fig. S3b available as the Supplementary Material
on Dryad at http://dx.doi.org/10.5061/dryad.fd3m4),
and the third decile is marginally significant (0.042�P�
0.052). As with matching distances, the rank correlation
between PPES and conflict with the reference is very
strong (Fig. S3b available as the Supplementary Material

on Dryad at http://dx.doi.org/10.5061/dryad.fd3m4;
rs =0.964, P=2.2×10−16).

In contrast to rankings based on clock-likeness or
PPES, rankings based on rate of evolution do not
yield trees that have smaller matching distances to
the reference topology in the lowest ranked deciles
(Fig. 3c). In fact, the deciles containing the trees with
the fastest relative rate of evolution (highest ranks)
have the smallest mean distances to the reference
topology. The mean distance in deciles eight and ten
is significantly smaller than expected and each of
the upper five deciles are smaller than the median
distance in the null distribution. Correspondingly, each
of the lower five deciles has a mean distance larger
than the median value in the null. This distribution
of ranks leads to a very strong negative rank
correlation (Fig. 3c; rs =−0.939, P=2.2×10−16) between
rate of evolution and mean matching distance to the
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FIGURE 3. Mean matching cluster distance between amniote UCE ML trees and the reference topology for each filtered decile. A) Mean
matching cluster distance to the reference topology within each decile ranked by likelihood ratio test statistics. B) Mean matching cluster distance
to the reference topology within each decile ranked by PPES. C) Mean matching cluster distance to the reference topology within each decile
ranked by rate of evolution. The null distribution was estimated by resampling 114 (10%) ML amniote UCE trees and recalculating the mean
matching split distance to the reference topology 100,000 times. Numbers separated by commas indicate means that are identical. rs is Spearman’s
rank correlation coefficient between decile indices and the ranked mean distances to the reference topology.
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TABLE 1. Number of trees in different deciles conflicting with each split on the yeast reference topology depicted in Figure 4

Split Total (%) Most Clock-like Least Clock-like Lowest PPES Highest PPES Slowest Fastest

A 54 (15.7) 0 (0)a 14 (41.2)a 6 (17.6) 2 (5.9) 6 (17.6) 17 (50)a

B 70 (20.4) 1 (2.9)a 17 (50)a 4 (11.8) 6 (17.6) 9 (26.5) 19 (55.9)a

C 77 (22.4) 8 (23.5) 7(20.6) 7 (20.6) 10 (29.4) 6 (17.6) 10 (29.4)
D 147 (42.9) 15 (44.1) 21 (61.8)b 11 (32.4) 13 (38.2) 10 (29.4) 28 (82.4)a

E 36 (10.5) 0 (0) 6 (17.7) 3 (8.8) 3 (8.8) 4 (11.8) 4 (11.8)
F 32 (9.3) 1 (2.9) 10 (29.4a 1 (2.9) 2 (5.9) 0 (0) 23 (67.6)a

G 166 (48.4) 17 (50) 18 (52.9) 13 (38.2) 12 (35.3) 9 (26.5)b 26 (76.5)a

H 92 (26.8) 7 (20.6) 8 (23.5) 7 (20.6) 8 (23.5) 9 (26.5) 9 (26.5)
I 58 (16.9) 4(11.8) 6 (17.7) 2 (5.9) 7 (20.6) 7 (20.6) 7 (20.6)

Notes: Significant decreases/increases in split-specific conflict between ML trees and the corresponding reference topology are indicated by bold
font. Values in parentheses are percentages of trees. P−values were estimated by comparison with a null distribution of split-specific conflict
generated by 10,000 random resamplings.
aSignificant after both Bonferroni and FDR correction.
bSignificant after FDR correction only.

reference topology. Similar results hold when using the
mean number of splits conflicting with the reference.
Ranking by rate of evolution does not produce any
deciles with significant reductions in conflict (Fig. S3c
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4), although the
slowest evolving genes (decile 1) do show the least
amount of conflict. Across all deciles, the rank correlation
between rate of evolution and conflict is moderate
(Fig. S3c available as the Supplementary Material on
Dryad at http://dx.doi.org/10.5061/dryad.fd3m4; rs =
0.482, P=0.0793).

Topological Similarity within Deciles
Yeast orthologs.—Topological similarity among
trees inferred from yeast orthologs is significantly
greater than expected in the deciles that are most
clock-like, produce the most plausible inferences,
and are the slowest evolving (Fig. S4 available
as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4). However,
the correlation between decile indices and topological
congruence varied across metrics. Yeast orthologs
exhibit a strong positive correlation (Fig. S4a
available as the Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.fd3m4; rs =0.903,
P=0.00044) between clock-likeness ranks and the
ranked mean distance among trees in each decile,
indicating that the most clock-like orthologs are also
more similar topologically. Rankings based on PPES
and rate of evolution are both moderately correlated
with the ranked mean distance among trees in each
decile, but this correlation was nonsignificant for rate
(Fig. S4b,c available as the Supplementary Material on
Dryad at http://dx.doi.org/10.5061/dryad.fd3m4).

Amniote UCEs.—The 10% of most clock-like ML
trees inferred from amniote UCEs are more
topologically similar than expected and the lowest
five deciles (and the seventh decile) have a mean

pairwise distance smaller than the median (Fig. S5a
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4). Filtering by
PPES significantly reduces topological heterogeneity
among trees in four of the five lowest deciles (Fig. S5b
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4). Similarly,
the decile composed of the shortest trees (genes with
the slowest rates) has the smallest mean distance.
Again, however, these metrics vary in their overall
rank correlations. Although there is a strong positive
correlation between PPES and topological congruence
(Fig. S5b available as the Supplementary Material on
Dryad at http://dx.doi.org/10.5061/dryad.fd3m4;
rs =0.976, P=2.2×10−16), and clock-likeness
and topological congruence (Fig. S5a available
as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4; rs =0.891, P=
0.0006901), there is a very weak negative rank correlation
(Fig. S5c available as the Supplementary Material on
Dryad at http://dx.doi.org/10.5061/dryad.fd3m4;
rs =−0.103, P=0.6206) between evolutionary rate and
topological congruence.

Split-specific Conflict with Reference Topologies
Yeast orthologs.—The most clock-like decile contains
significantly fewer trees in conflict with three splits on
the yeast reference tree (Table 1; Fig. 4), while there
is no significant change with respect to the remaining
splits. The reduction in the number of trees in conflict
with each split remains significant for two of these after
both Bonferroni and FDR corrections (Benjamini and
Hochberg 1995). In contrast to reductions in conflict in
the lowest (most clock-like) decile, trees in the uppermost
(least clock-like) decile exhibit a significant increase in
conflict with four splits on the reference tree, all of
which remain significant after Bonferroni and/or FDR
adjustment (Table 1; Fig. 4).

Unlike clock-based filtering, trees in the lowest
decile of PPES do not show a significant decrease
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FIGURE 4. Split-specific changes in the percentage of trees that conflict with the yeast reference topology among the lower and upper deciles
of clock-likeness. Downward arrows indicate splits with a significant reduction in conflict for trees in the most clock-like decile (lowest likelihood
ratio test statistics). Upward arrows indicate splits with a significant increase in conflict for trees in the least clock-like decile (highest likelihood
ratio test statistics). Those changes that remain significant after adjusting for multiple comparisons with Bonferroni and FDR are annotated with
“b” and “f”, respectively. Branch lengths are ML estimates from a concatenated alignment of all 343 yeast orthologs.

in conflict with any splits on the reference tree
(Table 1). However, trees in this decile do exhibit
marginally significant reductions in conflict with split
I, as well as split F (0.0117�P�0.0501 and 0.0311�P�
0.1542, respectively), but do not remain so after either
Bonferroni or FDR adjustment. Similarly, trees in the
upper decile have no significant increases in conflict
with any splits in the reference tree (Table 1). Trees in
the slowest decile exhibit significantly reduced conflict
with two splits on the reference tree, one of which
remains significant after FDR adjustment (Table 1). Trees
in the fastest decile exhibit a significant increase in
conflict with five splits on the reference tree and these
increases remain significant after both Bonferroni and
FDR adjustment (Table 1).

Amniote UCEs.—Significantly fewer trees in the most
clock-like decile are in conflict with two splits
on the amniote reference tree (Table 2) and both
reductions remain significant after Bonferroni and/or
FDR adjustment. In addition, clock-like genes have a
marginally significant (0.0329�P�0.0585) reduction in
conflict with the split uniting birds (C in Fig. 5), before
adjusting for multiple comparisons. Significantly more
trees in the least clock-like (uppermost) decile conflict
with the same two splits on the reference tree where we

observed a significant decrease among the most clock-
like genes, and both remain significant after adjusting for
multiple comparisons with both Bonferonni and FDR.

Posterior predictive filtering significantly reduces the
percentage of trees in conflict with all 5 nontrivial
splits in the amniote reference tree (Table 2; Fig. 5) for
the lowest decile, all of which remain significant after
Bonferroni and/or FDR adjustment. The percentage of
trees in the uppermost posterior predictive decile that
conflict with reference splits is significantly increased
for four of the five nontrivial splits on the reference tree,
even after adjustments with Bonferroni and/or FDR. The
only split for which there is not a significant increase in
conflict is that uniting squamates (Table 2; E in Fig. 5).

In contrast to filtering by clock-likeness and PPES,
filtering by rate did not yield a significant decrease in
conflict with any split in the amniote reference tree for
the slowest decile nor did it produce any significant
increases in conflict for the fastest decile (Table 2).

DISCUSSION

Methods for quantifying the extent to which
systematic error drives topological variation across gene
trees, and for identifying those genes that are least
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TABLE 2. Number of trees in different deciles conflicting with each split on the amniote reference topology depicted in Figure 5

Split Total (%) Most Clock-like Least Clock-like Lowest PPES Highest PPES Slowest Fastest

A 625 (54.6) 51 (44.7)b 77 (67.5)a 47 (41.2)a 78 (68.4)a 63 (55.3) 60 (52.6)
B 606 (53.0) 74 (64.9) 62 (54.4) 42 (36.8)a 74 64.9)a 56 (49.1) 61 (53.5)
C 206 (18.0) 14 (12.3) 21 (18.4) 7 (6.1)a 33 (28.9)a 28 (24.6) 8 (7.0)
D 109 (9.5) 2 (1.8)a 25 (21.9)a 1 (0.9)a 18 (15.8)b 13 (11.4) 10 (8.8)
E 97 (8.5) 8 (7.0) 11 (9.6) 3 (2.6)b 12 (10.5) 11 (9.6) 11 (9.6)

Notes: Significant decreases/increases in split-specific conflict between ML trees and the corresponding reference topology are indicated by bold
font. Values in parentheses are percentages of trees. P−values were estimated by comparison with a null distribution of split-specific conflict
generated by 10,000 random resamplings.
aSignificant after both Bonferroni and FDR correction.
bSignificant after FDR correction only.
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FIGURE 5. Split-specific changes in the percentage of trees that conflict with the amniote reference topology among the lower and upper
deciles of PPES. Downward arrows indicate splits with a significant reduction in conflict for trees in the lowest decile of PPES. Upward arrows
indicate splits with a significant increase in conflict for trees in the upper decile of PPES. Those changes that remain significant after adjusting
for multiple comparisons with Bonferroni and FDR are annotated with “b” and “f”, respectively.

susceptible to such error, are underdeveloped. Our
results demonstrate that two little used approaches for
ranking genes can increase gene tree reliability and
congruence, although their relative performance varies
across data sets. For two exemplar phylogenomic data
sets with well-established reference trees, one of which is
partially resolved, genes assessed to be more clock-like or
with better fit to assumed models of sequence evolution
exhibited greater topological similarity to reference trees
and to each other. Both of these ranking schemes
preferred genes with more reliable and congruent
topologies than did the commonly used approach of
ranking based on the rate of evolution.

Precise a priori expectations about the cause and
prevalence of systematic bias in any particular data
set are usually difficult to formulate. However, strong
empirical evidence supports the influence of such
bias across many data sets (e.g., Philippe et al. 2011).
Identifying general features of genes that suggest their
evolution matches model assumptions well, or at least
does not violate model assumptions too severely, is
one way to avoid the effects of systematic bias. Rate
of evolution has been used as a common default
proxy for this purpose, based on both theoretical
considerations (e.g., Felsenstein 1978) and empirical
experience (Lartillot and Philippe 2008; Chiari et al.
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2012). However, many other features of genes have
been relatively little explored or underutilized. Clock-
like evolution, or lack thereof, has been characterized
across many data sets for a variety of reasons, but
to our knowledge it has not seen widespread use
as a proxy for the reliability of inferred gene trees
despite connections to phenomena such as long-
branch attraction (Felsenstein 1978). In the same vein,
formal statistical procedures for assessing fit between
model and data are generally underutilized. Despite
the fact that posterior prediction was introduced to
phylogenetics over a decade ago (Bollback 2002) and
parametric bootstrapping nearly a decade before that
(Goldman 1993a, 1993b), they are still not as widely
used as they might be. New test statistics that build
on these approaches allow assessment of model fit to
focus directly on topology or other parameters of interest
(Brown 2014) and, as such, should be of more widespread
appeal. However, these new approaches have not yet
been broadly tested with empirical data.

Clock-likeness performed better than did topological
posterior prediction for the yeast data set, whereas the
opposite was true for the amniote UCE data set. The
reason for this difference is not immediately obvious, but
may reflect differences in the causes of systematic error
in the data sets tested or differences in the discriminatory
power of the different criteria. Qualitative visual
inspection of the distributions of criterion values (Fig. S1
available as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4) suggests that
the criterion that performed best for each data set (clock-
likeness for yeast and topological posterior prediction for
amniotes) had the most even distribution of values across
genes. However, the removal of outliers may weaken this
distinction. Alternatively, clock-based filtering may have
performed better for the yeast data than the UCE data
simply because of the overall higher levels of divergence
in the yeast protein-coding genes. Systematic biases
caused by unmodeled processes (e.g., heterotachy) may
only become apparent above a minimum level of
divergence. The difference in performance of posterior
prediction across data sets could potentially be explained
by soft polytomies present in the yeast reference tree.
We employed topological test statistics that evaluate
phylogenetic information with respect to the entire tree,
but only a subset of splits in the tree are used when
comparing to the reference. If posterior prediction is
strongly influenced by the effects of model fit on support
for splits not present in the reference, which are also
the splits that have proven more difficult to definitively
resolve, the relationship between PPES and distance to
the reference may appear weaker than it actually is. Any
remaining paralogs in the yeast data set may also obscure
this relationship. Clearly, the behavior of these criteria
needs to be characterized across a much wider range
of both simulated and empirical data sets, although
reference topologies will often not be available to directly
compare criterion rankings to the reliability of gene trees.

Rate of evolution was not a very good predictor
of gene tree reliability or congruence for either of

the exemplar data sets. Surprisingly, comparisons to
reference trees produced only very weak positive, or
even negative, correlations between rate ranks and
those based on distance to references. For amniotes,
this correlation was very strongly negative (fast genes
were most similar to the reference) and may have
been driven by increased stochastic error among
more slowly evolving genes, if such genes did not
contain a sufficient number of changes to resolve
all splits. However, were stochastic error the sole
explanation, one might expect a strong negative
correlation between rate and intradecile tree-to-tree
distances, as well as no correlation between either of the
other criteria and distance to the reference. In contrast,
the correlation between rate and intradecile ranks is
weak (Fig. S5c available as the Supplementary Material
on Dryad at http://dx.doi.org/10.5061/dryad.fd3m4)
and the correlation between PPES and reference
distance ranks is very strongly positive (Fig. 3b).
Rate and PPES also exhibit only a weak negative
rank correlation for amniotes (Fig. S11b available
as the Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.fd3m4), indicating
that these two criteria are characterizing different
properties of genes. Because rate itself is a compound
function of the state space available at each site (i.e., the
set of states with tolerable fitness effects), the proportion
of sites-free-to-vary (i.e., those sites with available state
spaces greater than 1), and the intrinsic substitution rate,
observed variation in rates across genes from each data
set may confound easy interpretation. Rate variation in
one data set may be driven primarily by differences in
mutation rate, whereas it may be driven by complicated
and changing patterns of constraints in another. It is
noteworthy that the amniote data set was based on
UCEs, whose molecular evolutionary constraints and
dynamics remain poorly characterized, whereas the
yeast data set was based on protein coding sequences
whose evolutionary dynamics are better understood.

Splits in the reference trees that exhibited significantly
less conflict for preferred genes (more clock-like or lower
PPES) were widespread throughout the tree, as were
splits that exhibited significantly greater conflict for
less preferred genes. However, the modest number of
tips in the amniote reference and uncertainty about
some parts of the yeast reference (represented as soft
polytomies) leads to a small number of internal splits
in both cases. Consequently, we are hesitant to draw
general conclusions about whether any criterion is likely
to improve topological accuracy on splits with particular
lengths or occurring at particular positions in the trees.

We have not attempted a full comparison among
all possible methods for ranking genes here, but have
rather used a comparison between two less utilized
approaches (clock-likeness and topological posterior
prediction) and one commonly used approach (rate) to
highlight the need for further work in this area. Recently,
Salichos and Rokas (2013) suggested that commonly
used approaches for filtering genes (e.g., alignment
certainty, missing data, and rate of evolution) are not
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effective in improving phylogenetic congruence across
gene trees and that researchers should prefer genes that
provide strong support across many splits. However,
Salichos and Rokas also noted that this strategy was
not effective at increasing gene tree congruence for the
most challenging splits. Such splits may be those most
affected by systematic biases, as opposed to stochastic
error. Contrary to Salichos and Rokas, our results suggest
that preferring genes with properties other than the
overall amount of support they provide may improve
both the reliability and congruence of gene trees, but
that the effectiveness of different filtering approaches
varies by data set. In agreement with Salichos and
Rokas, we found that focusing on small subsets of slowly
evolving genes did not increase gene tree reliability
or congruence. Betancur-R (2014) highlighted the role
of stochastic error in driving incongruence among
individual gene trees for slowly evolving genes, and
this same effect may explain why filtering by rate
of evolution was ineffective in our study. However,
filtering by clock-likeness and PPES did improve
reliability and congruence across individual gene trees,
suggesting that they may minimize systematic error
while avoiding the same degree of increased stochastic
error inherent to slowly evolving genes. We also note
that posterior prediction is a very flexible statistical
approach. Alternative test statistics, even others still
based on topological information, may have more
robust performance across data sets than those we
have employed here. Future work will include a broad
survey of the relative performance of these statistics.
Our posterior predictive results should be considered
provisional.

Genes that produce the most topologically unreliable
and incongruent phylogenetic estimates may be of great
biological interest. Convergence, whether occurring at a
small number of positions associated with the function
of individual genes (Castoe et al. 2009) or at broader
scales due to changes in base composition (Boussau et al.
2008; Nabholz et al. 2011; Betancur-R 2013), frequently
misleads attempts to reconstruct phylogenies. However,
convergence is also an indicator of repeated adaptive
evolution, suggesting that phylogenetically misleading
genes may serve as useful starting points for studies of
adaptation. The proxies for phylogenetic reliability that
we have explored here (clock-likeness and topological
PPES) may also identify genes worthy of further scrutiny
even when gene tree topologies are accurate. The causes
of rate heterogeneity across lineages are of inherent
biological interest for a variety of reasons (Lanfear et al.
2010), and patterns of variation in clock-likeness across
genes may shed light on the drivers of rate heterogeneity.
In addition, topological posterior predictive tests should
be able to identify genes that have evolved according
to a variety of unexpected evolutionary processes, as
long as the patterns generated by these processes are
distinct from those consistent with the assumed model
of evolution. Examination of posterior predictive outliers
may provide biologically inspired avenues for extending
models of sequence evolution.

Systematic error (i.e., inconsistency) is particularly
concerning in the era of high-throughput sequencing,
because one may become increasingly confident in
incorrect inferences as more data are gathered. However,
such error may be avoided without the loss of much
phylogenetic resolution if useful proxies are available
for choosing subsets of the data that provide reliable
phylogenetic estimates with currently available models.
Additionally, much can be learned about the biology
of the genome by examining how genes are ranked
by such proxies. We join many previous studies (e.g.,
Jeffroy et al. 2006; Salichos and Rokas 2013; Betancur-R
2014) in suggesting that concatenated or “total evidence”
results should be treated with caution, internal conflict
across different subsets of the data should be explored
and exploited to advance biological understanding, and
future work should investigate unexplored properties of
genes (or other data subsets) that may be used as proxies
for phylogenetic reliability.

SUPPLEMENTARY MATERIAL

Supplementary material, including figures and
scripts, can be found in the Dryad data repository
http://dx.doi.org/10.5061/dryad.fd3m4.
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