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LEAD establish an interactive closed loop between
the forecast analysis and the instruments: The data
drives the instruments, which, to make more accu-
rate predictions, refocus in a repeated cycle. 

The “Hypothetical CASA-LEAD Scenario” sidebar pro-
vides an example of the unprecedented capabilities these
changes afford. 

Mesoscale meteorology is the study of smaller-scale
weather phenomena such as severe storms, tornadoes,
and hurricanes. System-level science in this context
involves the responsiveness of the forecast models to the
weather at hand as well as conditions on the network
at large and the large-scale computational resources on
which forecasts rely. This responsiveness can be broken
down into four narrowly defined goals:

• Dynamic workflow adaptivity. Forecasts execute in
the context of a workflow, or task graph. Workflows
should be able to dynamically reconfigure in
response to new events. 

• Dynamic resource allocation. The system should be
able to dynamically allocate resources, including
radars and remote observing technologies, to opti-

Two closely linked projects aim to dramatically improve storm forecasting speed and 

accuracy. CASA is creating a distributed, collaborative, adaptive sensor network of low-

power, high-resolution radars that respond to user needs. LEAD offers dynamic workflow

orchestration and data management in a Web services framework designed to support 

on-demand, real-time, dynamically adaptive systems.

Beth Plale and Dennis Gannon, Indiana University Bloomington; Jerry Brotzge and Kelvin
Droegemeier, University of Oklahoma, Norman; Jim Kurose and David McLaughlin, University of 

Massachusetts Amherst; Robert Wilhelmson, University of Illinois at Urbana-Champaign; Sara Graves, University of

Alabama in Huntsville; Mohan Ramamurthy, University Corporation for Atmospheric Research; Richard D. Clark
and Sepi Yalda, Millersville University; Daniel A. Reed, University of North Carolina at Chapel Hill; Everette
Joseph, Howard University; and V. Chandrasekar, Colorado State University

R
ecent hardware and software advances are ush-
ering in a revolution in meteorological research
and forecasting. Whereas today’s forecasts are
generated on a fixed time schedule, new radar
technologies as well as improved model physics

are enabling on-demand forecasts in response to current
weather events. These forecasts ingest regional atmos-
pheric data in real time and can consume large compu-
tational resources in real time as well.

Two highly complementary projects, Collaborative
Adaptive Sensing of the Atmosphere (www.casa.umass.
edu) and Linked Environments for Atmospheric Dis-
covery (http://lead.ou.edu), are developing a hardware
and software framework to enable real-time multiscale
forecasting. CASA and LEAD are stand-alone systems
that offer distinct benefits to their respective user com-
munities, but when used together, they represent a par-
adigm shift in atmospheric science in two respects:

• For the first time, meteorologists can directly inter-
act with data from instruments as well as control the
instruments themselves. 

• Unlike traditional forecasting approaches, which
generate static, fixed-cycle predictions, CASA and
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mize data collection as well as request vast amounts
of computational resources on the fly. 

• Continuous feature detection and data mining. The
system should be able to continuously detect 
significant weather features and mine data from
observational instruments to refocus detection
efforts.

• Model adaptivity. Computational models often run
for one to two hours or longer. Ideally, the models
themselves should respond to changes in atmos-
pheric conditions during execution. 

A fully adaptive framework could not be realized
within LEAD or CASA alone; it is the combination of the
two projects that makes achieving these goals possible.

CASA-LEAD CYBERINFRASTRUCTURE
Figure 1 on the next page shows how CASA and

LEAD cooperate to meet the multiple and often con-
flicting needs of users. CASA comprises an observational
loop with data streams linking the radars to the meteo-
rological command and control (MC&C) module,1

which in turn generates control messages back to the
radars. LEAD comprises a modeling loop, which exe-
cutes forecast models in response to weather conditions.
It requires data storage tools to automate data staging
and collection and monitoring tools to enhance relia-
bility and fault tolerance. LEAD has a path back to the
radars for steering the radar location, while CASA medi-
ates potential conflicting interests in determining the
next radar position.

Hypothetical CASA-LEAD Scenario 

Daytime surface heating on a late spring afternoon in

southwestern Oklahoma creates a wind convergence zone

at the boundary between ripening winter wheat and adjacent

plowed fields. CASA feeds real-time data collected by small-

scale radars scanning in general surveillance mode to

weather-detection algorithms that classify the convergence

zone with respect to location, orientation, depth, and inten-

sity. It combines this information with other data—including

user priorities for controlling the radars at that particular

moment, the radar network’s geometry, local terrain para-

meters, and input from National Weather Service (NWS)

next-generation radar satellites—to yield an optimal

remote-sensing configuration for the next 30 seconds that

lets the radars zero in on the wind convergence zone.

As real clouds and precipitation develop within the surface

convergence zone, the radars adjust their mode of operation

and, via the optimization system, produce extremely fine-

scale, calibrated precipitation rate estimates. CASA makes

this information available to a private regional company that

specializes in hydrologic models and stream-flow decision

support systems, as well as to a university researcher in

California. The researcher configures a LEAD workflow to

run a forecast model in a triply nested mode that can predict

weather at scales ranging from the continental US down to a

few kilometers surrounding the storms. She searches the

community data collection registry and her own personal

space for data products that will strengthen the forecast

accuracy.

The researcher sends output from a 100-member paral-

lelized forecast run to her personal workspace for further

refinement through data mining. She also processes the

output within another workflow to generate probabilistic

forecasts that, when combined with observations and analy-

ses, yields statistically reliable conditional probabilities in

1,000 categories—for example, a probability of precipitation

greater than 0.5 inches in 1 hour. The researcher feeds this

information into a power company’s off-site, proprietary risk

assessment model to which she and her students have access

as part of a summer project. If the probability of the forecast

exceeds a predetermined risk-assessment threshold, the

power company automatically reduces energy production at

a hydroelectric plant downstream.

The researcher can leverage the combined systems to

respond to this emerging severe weather condition in many

ways. As the storms move, she can change the grid spacing

in the forecast model to maintain fine resolution and keep

the features of interest as far away as possible from the

nested grid boundaries. As computing resources become

saturated for this on-demand application, LEAD moves one

of the domains previously computed on supercomputers in

Illinois to Pittsburgh and automatically allocates the band-

width needed to transfer the associated data.The

researcher then decides to add three more domains and to

launch an ensemble of 10 runs, requiring that the three-

hour forecasts finish in 10 minutes.When one of the

processors begins to overheat, LEAD detects this and

automatically shifts the affected model components to

other available resources.

While all of this is occurring, the detection of a small

circulation within one of the storms triggers the two radars

nearest the circulation to hand off tracking responsibility to

neighboring radars as the evolving tornado progresses east-

ward. CASA automatically reports the tornado’s location,

intensity, movement, and projected path via wireless links to

the NWS, local media outlets, and emergency managers and

publishes them to the community metadata catalogues.

When the tornado destroys two CASA radars within the

network and disrupts local communication links, other

nearby radars assume responsibility, via automated fault-

tolerant software both at the data transport and application

levels, and the network reroutes local traffic to ensure qual-

ity of service.
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CASA overview 
CASA is designed to detect and predict hazardous

weather in the lowest few kilometers of the earth’s
atmosphere using distributed, collaborative, adaptive
sensing (DCAS).2

• Distributed refers to the use of numerous small and
inexpensive radars, spaced near enough to “see”
close to the ground despite the earth’s curvature and
thereby avoid resolution degradation due to radar-
beam spreading. 

• Collaborative refers to the coordination of beams
from multiple radars to view the same region in space,
thus achieving greater sensitivity, precision, and res-
olution than is possible with a single radar. 

• Adaptive refers to the ability of these radars and their
computing/communications infrastructure to dynam-
ically reconfigure in response to changing weather
conditions. Rather than “pushing” data from radars,
DCAS “pulls” data, allowing the system to allocate
resources to best meet user needs.

CASA’s first network of radars, NetRad, is a prototype
DCAS system currently deployed in southwestern
Oklahoma. As Figure 2 shows, the initial testbed con-
sists of four mechanically scanning X-band radars with
overlapping footprints. Other principal DCAS compo-
nents include meteorological algorithms that detect,
track, and predict hazards; user preference and policy
modules that determine the relative utility of perform-
ing alternative sensing actions; the MC&C, an underly-
ing substrate of distributed computation, communi-
cation, and storage that dynamically processes sensed
data and manages system resources;1 and control inter-
faces that let users access the system. 

The MC&C currently executes on a cluster of three
Intel Xeon processors with an attached 3.6 Tbytes of
IDE RAID storage. As winds, precipitation, and other
detected features unfold, the MC&C posts these on the
blackboard;3 this feature repository decouples the data
ingested from the radar response, allowing radar com-
mands to be generated asynchronously. The MC&C’s
task-generation component in turn takes features from
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Figure 1. CASA-LEAD interaction.The two systems cooperate to meet the multiple and often conflicting needs of users.



the blackboard and produces a list of tasks, with an asso-
ciated utility. 

NetRad’s optimization routines scan the list of tasks
and redirect the radars to focus on regions of interest
during the next system cycle in a configuration that max-
imizes overall utility. To avoid stalling due to unantici-
pated network and processing delays, NetRad only acts
upon data already posted on the blackboard; it waits
until the next cycle to generate tasks based on late-arriv-
ing data. 

A scan strategy incorporates preferences from multi-
ple users—including emergency response managers,
next-stage consumers of NetRad data such as LEAD,
and meteorological researchers—as well as radar-spe-
cific considerations such as how well a certain radar can
observe a particular object. NetRad’s policy rules deter-
mine the relative weights of these competing needs.1

LEAD overview
LEAD is developing the middleware that facilitates

adaptive utilization of distributed resources, sensors,
and workflows. Constructed as a service-oriented
architecture,4 the system decomposes into services that
communicate with one another via well-defined inter-
faces and protocols. LEAD uses SOA concepts at both
the application and middleware level, and its grid has
about 20 distinct services that interoperate in various
ways.

For example, the Analysis Regional Prediction System
(ARPS) Data Assimilation System has been decomposed

into individual services in which a Web services tool
wraps the original Fortran code.5 The Algorithm
Development and Mining system6 has similarly been
“service-ized” into component services. ADaM uses deci-
sion trees, neural networks, pattern-recognition algo-
rithms, and knowledge discovery techniques to, among
other things, identify rotating storms in data streaming
from radars. 

Data subsystem. The meteorology community
requires access to numerous observational and model-
generated data collections—including from Geo-
stationary Operation Environmental Satellite systems,
upper-air balloons, Meteorological Aerodrome Report
observations, and next-generation radar (NEXRAD)
Level II and Level III Doppler systems. The LEAD data
subsystem consists of about a dozen services that pro-
vide online data mining and filtering of streaming data in
support of on-demand forecast initiation, indexing and
accessing of heterogeneous community and personal col-
lections, personal workspace management, querying of
rich domain-specific metadata utilizing ontologies, and
automated metadata generation. 

Tools. Community tools simplifying human access to
these collections are the foundation of LEAD. These
tools include Unidata’s Internet Data Distribution
(www.unidata.ucar.edu/software/idd/iddams.html),
Thematic Real-Time Environmental Distributed Data
Services (www.unidata.ucar.edu/projects/THREDDS),
and Local Data Manager (www.unidata.ucar.edu/
software/ldm), as well as the Open Source Project for a
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Figure 2. CASA NetRad architecture. (Upper loop) Reflectivity and wind velocity data flow from the distributed radars, through the

network, to storage and meteorological feature detection algorithms, which post detected features on the blackboard. (Lower

loop) NetRad responds to posted meteorological features by redirecting the radars to focus on users’ greatest needs.
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Network Data Access Protocol (OPeNDAP; www.
opendap.org).

Search support. LEAD provides search support over
heterogeneous collections as well as concept-based
searching. These features require advances in metadata
schema definition, ontologies, automated metadata gen-
eration, vocabularies, and efficient XML support. For
example, the LEAD Metadata Schema7 is a semantic,
domain-specific XML schema that extends the Federal
Geographic Data Committee (www.fgdc.gov/standards)
scheme and borrows from the Earth Science Markup
Language8 and THREDDS schemas. 

Search attributes also can include
more generic terms such as “precipi-
tation.” The Noesis ontology service,
based on the Semantic Web for Earth
and Environmental Terminology
ontology (http://sweet.jpl.nasa.gov),
resolves concepts into primitive terms
that the system can then use to search
the archives. Community data prod-
uct holdings currently reside pri-
marily in OPeNDAP servers that
THREDDS catalogues index, while
users implement their personal workspace using the
myLEAD metadata catalogue9 and supporting back-end
storage.

User interface. Users access the rich suite of LEAD
tools and services through the LEAD Portal (https://
portal.leadproject.org/gridsphere/gridsphere). In the
hypothetical weather scenario described in the sidebar,
the researcher logs into the LEAD Portal and searches
for streaming CASA data. Using this and a predefined
workflow from her workspace,9 she launches a request
for on-demand resources on the TeraGrid10 to generate
a 1-km fine-scale gridded analysis to use as initial con-
ditions for a high-resolution, 100-member Weather
Research and Forecasting11 model ensemble. 

A monitoring toolkit based on SvPablo,12 workflow tools
based on the Business Process Execution Language for 
Web Services v1.1 (www-128.ibm.com/developerworks/
library/specification/ws-bpel), and a network communica-
tion protocol, Web Services Eventing (www-128.ibm.
com/developerworks/library/specification/ws-eventing),
underlie the activity. Our WS-Eventing implementation is
a content-based publish/subscribe protocol with persistent
memory ferrying events from one part of the system to
another in a broadcast fashion.

DYNAMIC WORKFLOW ADAPTIVITY
CASA uses a blackboard-based framework3 in which

cooperating agents post messages in response to a cur-
rent situation or problem. Agents watch the blackboard
to see if there is something within their domain of exper-
tise that they can address. An agent can select one or
more “facts” from the blackboard and propose a the-

ory about the facts that leads to some conclusion. The
agent can record this result on the blackboard to replace
or augment the original facts. A new fact can trigger
other fact-gathering agents to add more results.

The goal of a LEAD workflow is to carry a prediction
scenario from the gathering of observation data to user
visualization. A typical workflow would start with a sig-
nal from a data mining service or a signal from the
CASA system indicating possible storm formation in a
particular region. The workflow that this event triggers
will usually begin with a set of data assimilation tasks
that incorporate current weather data in the region of

interest into the form the simulation
service needs.

Scientists use a graphical tool to
create a LEAD workflow control
program. As Figure 3 shows, the
workflow’s individual component
nodes are Web services that execute
specific data analysis and simulation
programs deployed on various hosts.
The graph depicts data and control
dependencies of the execution of the
services representing the nodes. The

graphical tool is actually a compiler that generates a
standard BPEL4WS script that is the executable form of
the workflow. 

The unique way in which services notify the workflow
control program instance that they have completed exe-
cution closely resembles the blackboard-based CASA
workflow. Each service publishes a stream of events,
based on WS-Eventing, to an event “bus” or channel.
Various LEAD components, including each running
workflow instance, subscribe to these events. When a
workflow invokes a service, the invocation includes a
globally unique identifier for the associated computa-
tion experiment. As the service executes the stream of
events, it publishes all details about data products cre-
ated by that execution and tags those events with the
UID. The workflow instance learns about newly created
data products through the event stream because it sub-
scribes to all events having that UID. 

Another benefit of this event-driven model of execu-
tion is the recording of a workflow’s event stream in the
LEAD data services. This makes it easier to debug work-
flows and provides a complete history of each data prod-
uct’s execution that is part of the user’s computational
experiments.

DYNAMIC RESOURCE ALLOCATION
Resource allocation in CASA involves the dynamic, col-

laborative tasking and retasking of radars to meet user
needs. The initial system accomplishes retasking on a 30-
second “heartbeat” interval based on the mechanically
scanning radars’ physical properties and the timescale
over which atmospheric conditions change. As CASA’s

Resource allocation 

in CASA involves 

the dynamic,

collaborative tasking 

and retasking of radars 

to meet user needs.



radars evolve to rapidly reconfigurable, solid-state radars,
we expect to relax the notion of a system heartbeat. 

Dynamic resource allocation in LEAD takes the form
of a very distributed Web services infrastructure to man-
age data repositories and launch jobs on large computer
resources. Because of the better-than-real-time require-
ments of storm forecasting, the needed resources must
be available on demand. If a workflow requires a large
ensemble of simulations to launch, it is imperative to
locate enough computational power to run the simula-
tions as quickly as possible. TeraGrid researchers are
working on procedures that will allow on-demand
scheduling of large computation under emergency situ-
ations such as an impending tornado or hurricane.

However, LEAD also requires a strategy that lets
workflows change how they use resources. For exam-
ple, as a storm progresses, it might be necessary to
dynamically change the workflow and launch additional
simulations that were not initially anticipated. The
LEAD workflow model’s event-driven architecture is the
key to creating workflows that adaptively respond to
the weather and resource availability.   

Computational resource allocation in a dynamic envi-
ronment occurs following submission of a job and

requires monitoring for adjustments as the task runs.
LEAD uses a monitoring architecture from the
University of North Carolina’s Pablo12 infrastructure
that checks network bandwidth and processor instru-
mentation and provides a detailed view of the state of
the computing hardware, including processor tempera-
ture sensors, to detect load and possible failure condi-
tions. LEAD can summarize monitoring data and
publish it to an event stream that provides status infor-
mation to resource brokers. LEAD will use resource bro-
kers from the Virtual Grid Application Development
Software (VGrADS) project (http://vgrads.rice.edu).

CONTINUOUS FEATURE DETECTION 
AND DATA MINING

CASA continuously extracts features from data that
weather-observing instruments gather, while researchers
can use LEAD to dynamically mine such data to refo-
cus detection efforts.

Feature detection
CASA converts arriving NetRad data, including reflec-

tivity and wind velocity values, to a common format and
stores it. Using the Warning Decision Support System—
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Figure 3. Sample LEAD workflow.The control program feeds input data into terrain and surface data preprocessors.The terrain

data preprocessor sends output to a 3D model data interpolator, while the surface data preprocessor generates lateral boundary

conditions. All of these results are derived data products used by the ARPS forecasting program, which sends its output to two

other services that generate the visualization.
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Integrated Information (WDSS-II) software’s linear buffer
publish/subscribe mechanism, the MC&C distributes this
data among various feature-detection modules.13 Upon
activation, these modules detect spatially coherent mete-
orological “objects” in the data such as precipitation
areas, cloud systems, fronts, and pressure centers. 

The MC&C writes the radar data as well as higher-
level features into the blackboard, which makes meteo-
rological objects available for delivery and display to
users.3 The blackboard can also
hand off NetRad data to next-stage
components such as LEAD; such
components can likewise provide
inputs to the blackboard. Model-dri-
ven prediction components external
to NetRad can thus be easily inte-
grated with NetRad’s short-term
detection components. The system
also can store and merge assimilated
exogenous data—for example, from
NEXRAD radars and satellites—
with NetRad-generated data. 

Data mining
In LEAD, users submit custom data-mining requests

that run on their behalf for a specified period of time
looking for weather activity over a particular geospatial
region. Detection techniques range from using a simple
threshold measure of echo intensity returned from a
radar to complex clustering algorithms that identify cou-
plets of incoming and outgoing radial velocities in
NEXRAD radar data as mesocyclone signatures.6

The client view is of a Web service that provides SQL-
like query access to a virtual collection of data streams.
A system administrator sets up multiple virtual stream
stores for an application and registers instrument
streams to one or more stream stores. Clients then dis-
cover stream stores using standard UDDI-like Web ser-
vice discovery techniques and submit time-bounded
queries to the stream store such as, “Watch the Chicago
region for the next four hours looking for mesocyclone
signatures, and trigger workflow ‘myforecast’ if the sig-
nature threshold exceeds x.” The queries execute con-
tinuously on a user’s behalf for a bounded time period.
Queries generate either a stream of results or a single
trigger upon detecting behavior of interest. 

The Calder data stream processing system14 imple-
ments the virtual stream store abstraction, while the
domain data-mining algorithms are part of the ADaM6

toolkit. Calder manages multiple data stream stores
simultaneously, tracking the active queries, streams, and
computational nodes on which the queries are executed.
It also tracks the provenance of streams, enabling users
to track new streams generated as a result of query exe-
cution back to the original streams and queries that
caused the creation of the new streams. 

Calder has a built-in query planner service that
chooses an execution plan for the query and distributes
it to the query execution engines on different computa-
tional nodes. Data streams from instrument sources
enter Calder through a point-of-presence gateway that
maps the flows from their native dissemination protocol
to an internal binary-based publish/subscribe system. 

Calder subscribes to the LEAD notification system;
when a query generates a trigger, that trigger goes to a

gateway node that maps from the
Calder publish/subscribe protocol to
the LEAD notification protocol. The
LEAD workflow engine is listening
on this channel, so it can react when
a trigger is received.

MODEL ADAPTIVITY
The science of adaptivity in large-

scale simulations of complex non-
linear systems is rapidly developing,
and emerging technologies will be an

essential component of future mesoscale weather fore-
casting. Ultimately, adaptivity in CASA and LEAD must
extend beyond the cyberinfrastructure and instruments
to include computational models that make it possible
to refine forecast simulation grids over specified regions. 

This can be accomplished by launching an entirely new
forecast simulation at finer spacing (workflow adapta-
tion) or creating a nested grid within the simulation itself
(application adaptation). This seemingly simple approach
poses major optimization challenges with respect to
potentially competing strategies for assessing the trigger
condition and effectuating adaptation, and continuing
the “parent” forecast run to provide boundary conditions
for the next domain versus running a one-way nest. More
sophisticated analysis might involve using multiple nests,
adding ensembles based upon a specified condition, and
using severe weather precursors such as tornado watches
as a trigger to launch a coarse-grid background forecast
in preparation for finer-grid nests.  

S
oftware systems that monitor and control weather-
observing instruments and ingest and analyze their
data are a key component of the national cyberin-

frastructure needed to guide the response to disasters
that result in loss of life and property. To do their job,
these systems must be responsive to real-world data and
agile in carrying out the computations needed to respond
intelligently within a short period. 

CASA and LEAD each offer highly adaptive capabil-
ities, but the systems are far from complete. The first
end-to-end CASA testbed radar system in Oklahoma is
scheduled to begin operation later this year. CASA col-
laborators will operate other testbeds in Colorado and
Puerto Rico. LEAD is at least one year from realizing

Ultimately, adaptivity 

in CASA and LEAD 

must extend beyond 

the cyberinfrastructure 

and instruments to include

computational models.



the vision of fully dynamic workflows, but much of the
infrastructure is already in place. A major outstanding
component is resource brokers that can dynamically
allocate time on supercomputers on demand. LEAD is
working with the VGrADS and other TeraGrid partners
who will supply these components. 

Looking forward, the next step is to evaluate the com-
bined CASA-LEAD system for its ability to meet sys-
tem-level end-to-end policies drawn from the extensive
use cases we have gathered. Integration of the two sys-
tems will take place over the next two years, but
researchers have already used the architecture built thus
far in numerous experiments. For example, complete
simulations involving Hurricane Katrina data demon-
strate that the LEAD distributed data, event, and appli-
cation services framework is robust and operates
correctly over resources involving TeraGrid computers
and the LEAD testbed of machines and data archives
distributed over five states. 

Together CASA and LEAD represent an instance of
systems science that is expected to change the paradigm
for severe storm prediction and basic atmospheric sci-
ence from a model based on static, fixed-schedule fore-
casts to one based on an adaptive response to weather.
Closing the loop between the instruments and the analy-
sis and simulations should enable more timely forecasts
and provide more accurate information to policy 
makers, thereby saving the lives of those in the path of
storms. ■
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