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ABSTRACT As an emerging research topic for proximity service (ProSe), automatic emotion recognition

enables the machines to understand the emotional changes of human beings which can not only facilitate

natural, effective, seamless, and advanced human–robot interaction or human–computer interface but also

promote emotional health. Facial expression recognition (FER) is a vital task for emotion recognition. How-

ever, significant gap between human and machine exists in FER task. In this paper, we present a conditional

generative adversarial network-based approach to alleviate the intra-class variations by individually control-

ling the facial expressions and learning the generative and discriminative representations simultaneously. The

proposed framework consists of a generator G and three discriminators (Di,Da, andDexp). The generator G

transforms any query face image into another prototypic facial expression imagewith other factors preserved.

Armed with action units condition, the generator G pays more attention to information relevant to facial

expression. Three loss functions (LI , La, and Lexp) corresponding to the three discriminators (Di, Da,

and Dexp) were designed to learn generative and discriminative representations. Moreover, after rendering

the generated expression back to its original facial expression, cycle consistency loss is also applied to

guarantee the identity and produce more constrained visual representations. Optimized by combining both

synthesis and classification loss functions, the learnt representation is explicitly disentangled from other

variations such as identity, head pose, and illumination. Qualitative and quantitative experimental results

demonstrate the proposed FER system is effective for expression recognition.

INDEX TERMS Facial expression recognition, emotion recognition, conditional generative adversarial

network, human-robot interaction.

I. INTRODUCTION

As an emerging research topic for Proximity Service (ProSe)

[1]–[3], safe, natural, and advanced human-robot interac-

tion (HRI) system is supposed to provide not only friendly

physical contact between robots and human beings, but also

emotional interaction. Among human emotional commu-

nication channels, facial expression is arguably the most

important visual cue for reflecting the underlying human

intentions, physiological changes, affective and cognitive

mental states [4]. Therefore, automatic facial expression

recognition (FER) pays a vital role in emotional commu-

nication based HRI. For instance, as illustrated in Fig. 1,

the artificial intelligence agent with soft skins [5] can work

alongside people as cooperative teammates to improve pro-

ductivity. After face detection and deep feature learning,

the intelligent robot is able to recognize nuanced mean-

ings conveyed by facial expressions. Moreover, the agent

can even improve people’s quality of life by taking their

emotional health into account in the system and ser-

vice design. Apart from HRI/human-computer interface

(HCI) [10]–[14] and assistive robotics [6]–[9], automatic

FER is also important in other applications including

movie or advertisement recommendations, driver fatigue

surveillance, student engagement estimation [15], and the

improvement of expression production in autism disorder

patients [16].
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FIGURE 1. Emotional recognition and friendly physical contact based
human-robot interaction (HRI). Icons are created by Olena Panasovska
and Knut M. Synstad from the Noun Project.

In recent years, great progress has been achieved in auto-

mated facial expression analysis on lab controlled datasets

which were collected under uniform background and illumi-

nation, such as CK+ [17], MMI [18], and Oulu-CASIA [19].

Nevertheless, accurate FER under wild conditions still

remains an unsolved issue. The task of FER is challenging

because the strong intra-class variability exists due to the var-

ious personal identities, such as age, gender, and ethnic back-

grounds. Besides the identity bias, other adverse factors in the

wild condition may include poor illumination, low resolution,

blur, as well as head deflection, etc. Additionally, taken

‘‘in-the-wild’’ datasets are unbalanced. For instance,

the training sample number of happy expression images

is much bigger than the training sample number of angry

expression images in taken ‘in-the-wild’ datasets [60], [61].

Therefore, in this work, we propose a conditional genera-

tive adversarial network (cGAN) based network to disentan-

gle the facial expression factor and learn the generative and

discriminative representations simultaneously. Our proposed

model consists of a generator G and three discriminators

(Di, Da, and Dexp). The task of disentangling the facial

expression factor is realized in two stages: learning by the

conditional generator G and learning by three discriminators.

The generator G individually controls the facial expressions

by transforming any query face image into another synthetic

facial expression image where others factors are preserved

such as identity and background, etc. The generator G was

also designed for data enrichment to alleviate the imbalance

of the data set. Three loss functions (LI , La, and Lexp) were

developed corresponding to the three discriminators (Di, Da,

and Dexp). In addition, after rendering the generated expres-

sion back to its original facial expression, cycle consistency

loss is also applied to guarantee the identity and produce

more constrained visual representations. Optimized by com-

bining both synthesis and classification loss functions, not

only the synthesized facial expression images were preserved

with identity and background, but also more discriminative

features for the expression recognition were obtained.

The rest of this paper is organized as follows. Section II

presents three main steps required in a FER system and

describes the related background. Section III provides facial

image preprocessing, details of proposed neural network

architecture and optimization strategy. Adopted facial expres-

sion databases, experimental results and analysis of the pro-

posed methodology are introduced in Section IV. Finally,

the conclusions are presented in Section V.

II. RELATED WORK

A. FACIAL EXPRESSION RECOGNITION

1) FER APPROACHES BASED ON SHALLOW LEARNING

Themajority of existing FER systems focus on six basic emo-

tions types, namely: happy, surprised, fearful, sad, angry, and

disgust, which were defined by Ekman [20], [21]. Automatic

FER consists of three main stages: pre-processing, facial

feature extraction, and expression classification. Accord-

ing to the adopted feature representation, traditional hand-

crafted FER approaches or so called shallow learning FER

approaches can be approximately categorized into four main

groups: geometric features based methods, appearance fea-

tures based methods, action unit (AU) based methods, and

motion features based methods.

Appearance-based methods capture global and detailed

information by leveraging image filter or filter bank. Pixel

intensity [22], Gabor texture [23], local binary patterns

(LBP) [24], and histogram of oriented gradients (HOG) [25]

are popular descriptors for the appearance-based feature

extraction methods. Geometric features based methods work

with shapes, positions of the facial components and com-

ponents’ geometric relationships. Motion features are com-

monly used in video analysis which mostly focus on the

temporal correlations of contiguous frames in a sequence,

such as motion history images (MHI) [26], volume LBP [27],

and optical flow [28]. AU based method was inspired by the

physiological and psychological theory. As different facial

expressions are the results of the different facial muscles

motions, Facial Action Coding System (FACS) [29]–[31]

developed by Ekman and Friesen defines facial AUs, the basic

elements in formularizing facial expressions, to describe

facial muscle activations. Thus facial expressions can be

decomposed into multiple AUs. Fig. 2 shows eight basic AUs.

Fusion of different handcrafted features was also investigated

in previous work. In [32], the texture features and landmark

features extracted from facial images were combined which

are complementary with each other. Allaert et al. [33] con-

sidered a hybrid of motion features with geometric features.

Additionally, the shape of facial regions of interest were

exploited to form the apex frame [33].

2) FER APPROACHES BASED ON DEEP LEARNING

Over the last few years, deep convolutional neural net-

works (CNNs) [34]–[36] have produced unprecedented
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FIGURE 2. Action unit images for AU 1, 4, 6, 9, 12, 15, 26, and 28.

performance on a variety of tasks, such as object

recognition [37], scene classification [38], and face

recognition [39]–[41]. Meanwhile, conventional handcrafted

features or shallow learning based FER approaches have been

reported a limited recognition performance, because they lack

the ability to cope with the great diversity of factors which

are irrelevant to facial expressions. These factors irrelevant to

facial expressions include backgrounds, hair, and head deflec-

tion. Consequently, utilization of deep learning techniques in

FER has attracted considerable attention among researchers.

Yang et al. [42] leveraged a partial VGG16 network and

a shallow CNN to extract two feature vectors from facial

grayscale images and LBP facial images, respectably. Then

the two feature vectors were fused to fully use complementary

facial information. Tang et al. [43] extracted features by

twelve convolutional and pooling layers which were more

efficient and provided a great improvement, compared with

the 78 dimensions geometric features. Zheng et al. [44]

presented a VGG16 + 1D-CNN model for FER. In their

framework, representations of each frame of a video were

extracted with VGG16 network followed by four 1D-CNN

networks. Then the features were concatenated and were

fed to two fully connected (FC) layers to predict facial

expressions.

B. GENERATIVE ADVERSARIAL NETWORKS (GANS)

Generative adversarial networks (GANs) [45] have been vig-

orously studied in recent years, since the model has achieved

remarkable results in various computer vision tasks such as

image generation, image translation, etc. The goal of GANs

is to model distribution as similar as possible to the true data

distribution. To achieve this goal, the generator G and the

discriminator D of GANs compete in a two player minimax

game. Specifically, the discriminator learns to distinguish

real samples from fake samples while the generator learns to

generate fake samples to fool the discriminator until reach

the Nash equilibrium [46] between the two modules. The

cGAN [47] is an extension of the GAN where the model

receives additional variables (features or label, etc.) as input,

which could deterministically control the output of the gen-

erator. cGAN has been successfully applied to synthesize

images from labels, reconstructing objects from edge maps,

and photo editing [48], etc. Lai and Lai [49] proposed a

GAN-based network model to achieve canonical-view facial

expression recognition. The generator in their model frontal-

ized input non-frontal face images into frontal face images

while preserving the identity and expression characteris-

tics. Yang et al. [50] presented a cGAN based approach

which generated facial expressions in order to alleviate the

issue of subject variations. The input of their model was

restricted to image pairs where each image pair included two

different expressions of the same person. However, paired

images are usually not available in the wild condition. For

instance, there are rarely paired images in AffectNet [60] and

RAF-DB [61] datasets which are taken in the wild. In con-

trast, the proposed model in this paper is capable of dealing

with unpaired data. As AUs are the basic elements of facial

expressions, we present an EAU-Net network to transform

any query face image into another prototypic facial expres-

sion image by editing AUs. More specifically, with desired

AUs condition, the cGAN based EAU-Net edits original AUs

of a given face image and reconstructs a synthetic face image

with desired AUs. In the meantime, generative and discrimi-

native representations are learnt for recognition. To this end,

two different expressions of the same person are dispensable.

III. PROPOSED METHOD

A. FACIAL IMAGE PRE-PROCESSING

Adverse variations exist in wild condition, such as complex

backgrounds and poor illumination, etc. Therefore, pre-

processing to align and normalize the facial images is neces-

sary, before deep feature learning. The three steps for facial

image pre-processing are described below. Step1: Crop the

face region to remove the uncorrelated information. To crop

the facial image, firstly, multi-task cascade convolutional

neural networks (MTCNN) [51] is employed to detect face

and to provide the bounding box of facial region, as MTCNN

is found to be robust and effective for alignment [52]. Then,

according to the bounding box, the face region is cropped

from the original facial image. Step2: Resize the cropped

image to a fixed size which makes sure that the same scale

is shared among all images. In order to capture more sub-

tle facial expression information, the fixed size is set to

256 × 256 pixels. Step3: Normalize the resized images from

[0, 255] to [0, 1] and augment the data using techniques such

as random flip. The purpose of normalizing the image inputs

is not only to remove the high frequency noise but at the same

time to ensure that the pixels of the image have a similar

distribution. Additionally, after random flipping (flipping an

image horizontally or vertically), the data sample size is

expanded, which is very helpful to improve the accuracy and

the generalization capability of the model.

B. NETWORK ARCHITECTURE

A cGAN based network for data enrichment whilst perform-

ing FER is proposed in this paper. The overall architecture
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FIGURE 3. The overall architecture of the proposed model, which consists of a generator G and three discriminators (Di, Da, and Dexp). The generator G
is applied twice: G transforms any given query face image to another facial expression image and then rends it back. Openface [53] is applied to extract
the AUs.

is depicted in Fig. 3, which composes of a generator G and

three discriminators (Di,Da, andDexp). The processing flow

is described as follows:

Here we take the transformation of a happy real face to a

neutral fake face as an example, as shown in the lower part of

Fig. 3. Firstly, a cropped, resized, normalized and augmented

facial expression image (happy real face) concatenated with

AUs is fed to the generator G to generate a synthetic face

(neutral fake face). The AUs are a set of 17-dimensional

vectors, and AUs applied here are extracted from a neutral

real face using Openface [53], as shown in Fig. 3. Actually,

the proposed generator G is capable of transforming any

given facial expression image into another prototypic facial

expression (happy, surprised, fearful, sad, angry, disgust,

or neutral) image. For instance, with the AUs extracted from

a sad real face, the generator G is able to transform any given

facial expression image to a sad fake face.

Secondly, both the real face and fake face are sent to three

discriminators. The functions of the three constructed dis-

criminators vary, and the specific functions of each discrimi-

nator are described as below: 1) Discriminator Di: In order to

generate photorealistic image, the discriminator Di is indis-

pensable. The discriminator Di evaluates the quality of the

generated image to distinguish the real face from the fake

face. 2) Discriminator Da: The discriminator Da learns to

estimate the AUs values to make sure that the AUs from

the neutral fake face is similar to the AUs from the neutral

real face. 3) DiscriminatorDexp: The discriminatorDexp per-

forms the FER task which learns to predict facial expression

labels (including happy, surprised, fearful, sad, angry, disgust,

and neutral).

Thirdly, the generatorG renders the generated face (neutral

fake face) back to the original facial expression (happy) to

generate a reconstructed face (happy reconstructed face). This

reconstruction guarantees the generatorGmapping one facial

expression to another facial expression with identity (includ-

ing age, gender, and ethnic backgrounds, etc.) and other

factors (including background and illumination, etc.) pre-

served by minimizing cycle consistency loss Lcyc. The cycle

consistency loss Lcyc is defined as the difference between

the original image (happy real face in this case) and the

reconstructed image (happy reconstructed face in this case).

Finally, the parameters of generator G and three discrimi-

nators (Di, Da, and Dexp) are learnt by optimizing four loss

functions (LI , La, Lexp, and Lcyc). The details of these four

loss functions are described in part C of section III.

The detailed structures of each component in the proposed

model are described below: 1) Generator G: Fig. 4 reports

the architecture of the proposed generator G where convo-

lutional encoder-decoder layers are embedded. More specif-

ically, the generator G comprises an encoder with output

channels {64, 128, 256} and a decoder with output channels

{128, 64, 3}. Batch normalization (BN) [54] is applied

between each convolutional layer (‘‘Conv3’’ or ‘‘Conv4’’)/

deconvolutional layer (‘‘Deconv3’’ or ‘‘Deconv4’’) and

non-linear activation function (ReLU). The function of BN

here is to reduce internal covariate shift to regularize the

model and to improve the convergence speed. As shown
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FIGURE 4. The architecture of the proposed generator G where convolutional encoder-decoder layers are embedded.

TABLE 1. A Detailed Description of The Architecture of the Proposed
Discriminator Di. The Output Shape is Described as (#channels, height,
width).

in Fig. 4, ‘‘Conv3’’ and ‘‘Conv4’’ employ 3 × 3 filters and

4 × 4 filters, respectively. Similarly, ‘‘Deconv3’’ and

‘‘Deconv4’’ employ 3 × 3 filters and 4 × 4 filters, respec-

tively. Residual blocks are also used here, where the stride

size is set as 1 and the filter size is set as 3× 3. 2) Discrimina-

tor Di and Discriminator Da: The detailed descriptions of the

architectures of the proposed discriminator Di and discrim-

inator Da are provided in Table 1 and Table 2, respectively.

Both the discriminator Di and the discriminator Da have a

13-layers structure. For instance, layer 1 of discriminator

Di is a convolutional layer with filter size of 4 × 4 where

the stride and the pad are set to 2 and 1, respectively. And

the outputs of layer 1 are 64 × 128 × 128 feature maps.

The architectures of the two discriminators (Di and Da) are

similar. The only difference between the two discriminators

is the last convolutional layer. In the discriminatorDi, the last

convolutional layer employs 4 × 4 filters and provides 17 ×

1 × 1 feature maps as output where the stride and the pad are

set to 1 and 0, respectively. In the discriminator Da, 1 × 2 ×

2 feature map is outputted from the last convolutional layer

with filter size of 3 × 3 where the stride and the pad are set to

1 and 1, respectively. 3) DiscriminatorDexp: VGGNet-19

TABLE 2. A Detailed Description of The Architecture of the Proposed
Discriminator Da. The Output Shape is Described as (#channels, height,
width).

network [70] is applied in the discriminator Dexp which is

trained using original images and synthetic images gener-

ated from generator G. The detailed description of VGGNet-

19 model is illustrated in Table 3. It can be observed that the

VGGNet-19 model follows a conventional CNN structure,

comprising 16 convolutional layers and 3 fully connected

layers. The VGGNet-19 model also includes 5 pooling layers

which are used to reduce the number of parameters to speed

up the computation.

C. OPTIMIZATION STRATEGY

1) ADVERSARIAL LOSS (Ladv )

The generative network (generator) G and the discriminative

network (discriminator) D compete in a two player mini-

max game. In the game, the generator G generates synthetic

images to fool the discriminator D while the discriminator D

in turn tries to accurately distinguish the real images from the

generated images. Given the training data, GAN is trained

by optimizing the adversarial objective min
G
max
D

Ladv. The

discriminator D tries to maximize the adversarial loss while

the generator G tries to minimize it. The adversarial loss is
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TABLE 3. A Detailed Description of The VGGNet-19 Architecture.
The Output Shape is Described as (#channels, height, width).

defined in equation (1) below:

Ladv = (Ex∼Px [logD (x; θD)]

+Ex∼Px

[

log(1 − D
(

G(x; θG); θD

)]

(1)

where x is the input image from the training data, Px denotes

the distribution of the training data, E [·] represents the

expected value operator, θD and θG are the parameters of

discriminator D and generator G, respectively.

2) WASSERSTEIN LOSS (LI)

However, training GAN with Ladv is unstable [55]. Thus, one

of the most stable variation of GAN called Wasserstein GAN

(WGAN) [56] is employed in this work. WGAN allows a

stable training of GAN by minimizing an approximation of

the Wasserstein distance [57] which is an efficient metric to

measure the dissimilarity between twomultidimensional data

sets. TheWasserstein loss in this case is calculated as follows:

LI = (Exao∼Px

[

Di
(

xao; θDi

)]

−Exao∼Px

[

Di
(

G(xao |aT ; θG); θDi

)]

− λEx̂∼Pxα

[

(

‖ ∇x̂Di
(

x̂; θDi

)

‖2 −1
)2

]

(2)

where xao is the input image with AUs a0, E [·] represents the

expected value operator, aT denotes the target AUs, λ is the

penalty coefficient, ∇ represents the vector differential oper-

ator, θDi and θG are the parameters of discriminator Di and

generatorG, respectively, Px is the distribution of the training

data, Pxα is the joint distribution of the original images and

the synthetic images G(xao |aT ; θG) produced by generator G,

and x̂ is defined as x̂ = αx + (1 − α)G(xao |aT ; θG), with

α ∼ U (0, 1) (i.e., uniform distribution).

3) CONDITIONAL AUS LOSS (La)

With the AUs condition, the generator G maps any query

face image to another prototypic facial expression image

according to the regions relevant to facial expression. Thus,

the discriminator Da is employed to estimate the AUs values

which forces the generator G to make its best efforts to

generate more nuanced facial expression images. As AUs can

be extracted from the generated images as well as the original

images, the conditional AUs loss is defined in equation (3)

below:

La = Exao∼Px

[

‖ Da
(

G
(

xao | aT ; θG
)

; θDa

)

− aT ‖22

]

+ Exao∼Px

[

‖ Da
(

xao; θDa

)

− ao ‖22

]

(3)

where xao is the input image with AUs a0, E [·] represents

the expected value operator, aT denotes the target AUs, Px

is the distribution of the training images, G
(

xao | aT ; θG
)

represents the generated image, θDa and θG are the parameters

of discriminator Da and generator G, respectively.

4) CYCLE CONSISTENCY LOSS (Lcyc)

Although the GAN based FER approaches were investigated

in previous studies [50], [58], the unconstrained nature of

the mapping process (from one facial expression to another

facial expression) may produce distribution that is far away

from the real distribution in the training set, resulting in an

ineffective multi-class classifier training. Therefore, a multi-

modal cycle consistency loss is adopted. The cycle consis-

tency loss is used to estimate the reconstruction error between

the original facial expression image and the reconstructed
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facial expression image. This regularization is inspired by

cycle consistency loss [59]. After rendering the generated

expression back to its original facial expression, the cycle

consistency loss is applied in training GAN to produce more

constrained visual representations to maximally maintain

identity information and other factors (including background

and illumination, etc.). The above-mentioned cycle consis-

tency loss is computed as:

Lcyc = (Exao∼Px

[

‖ G
(

G
(

xao | aT ; θG
)

| ao; θG
)

− xao ‖1
]

(4)

where xao is the input image with AUs a0, E [·] represents the

expected value operator, aT denotes the target AUs, θG are the

parameters of generator G, Px is the distribution of the train-

ing images, G
(

xao | aT ; θG
)

represents the generated image,

G
(

G
(

xao | aT ; θG
)

| ao; θG
)

denotes the reconstructed image.

5) CLASSIFICATION LOSS (Lexp)

While the WGAN loss and the conditional AUs loss are

applied, they do not guarantee that the generated facial

images are discriminative for facial expression classifica-

tion. Consequently, the classification loss is formulated. The

classification loss encourages the generator G to construct

images that can be correctly categorized into different facial

expression labels by discriminator Dexp. The classification

loss for the expression classification is defined as:

Lexp = −Ex∼Px

[

log Dexp(y|x; θDexp )
]

(5)

where x is the input image, Px denotes the distribution of

the training data, E [·] represents the expected value operator,

θDexp are the parameters of discriminator Dexp, the term

Dexp(y|x; θDexp ) represents a probability distribution over

expression labels computed by Dexp.

6) FULL LOSS (L)

Finally, we use the full loss function by combining the four

loss functions (LI , La, Lcyc, and Lexp):

L = λ1LI + λ2La + λ3Lcyc + λ4Lexp (6)

where λ1, λ2, λ3, and λ4 are hyper-parameters for adjusting

the weights of individual loss functions. Actually, during

the course of the experiment, we find that dividing the

training process into two phases is beneficial in terms of

improving training stability and speeding up the conver-

gence. More specifically, in the first phase of the two-phase

scheme, λ1, λ2, λ3, and λ4 are set to 1, 4000, 10, and 0,

respectively. In the second phase of the two-phase scheme,

λ1, λ2, λ3, and λ4 are set to 0, 0, 0, and 1, respectively.

These weight hyper-parameters are chosen through numerous

experiments.

IV. EXPERIMENTS AND DISCUSSION

A. IMPLEMENTATION DETAILS

AffectNet [60] and Real-world Affective Faces Database

(RAF-DB) [61] taken ‘‘in-the-wild’’ datasets are used, since

these two datasets are more approximate to the real world

scenarios than posed datasets collected in a constrained lab-

oratory. Though several other databases such as CK+ [17],

MMI [18], Oulu-CASIA [19], and JAFFE [62] for FER are

available, most of them are sampled in well controlled envi-

ronment. The details of AffectNet and RAF-DB datasets are

provided in Table 4.

TABLE 4. The Details of Experiment Set for FER including the Expression
Categories, Training, and Validation Samples.

To date, AffectNet is the largest database with anno-

tated facial emotions [60]. It contains about 400,000 images

and each image is labeled with one of the discrete facial

expressions (including neutral, anger, disgust, fear, happy,

sad, surprise, and contempt). Nevertheless, limitations exist

in AffectNet database. For instance, each image is anno-

tated by only one labeler. Following [71], [72], around

280,000 images with seven prototypic facial expressions

(anger, disgust, fear, happy, sad, surprise, and neutral) are

selected as training samples and 3,500 images as validation

samples in this work.

RAF-DB is a large-scale facial expression database

with around 30,000 great-diverse facial images downloaded

through various search engines [61]. The images in this

dataset vary in personal identities (including age, gender, and

ethnic backgrounds, etc.), head pose, and lighting conditions,

etc. And each image from RAF-DB dataset contains more

annotation information which is the effort result of about

40 independent labelers, compared with the images from

AffectNet dataset. In RAF-DB dataset, 15331 images are

labeled with seven basic expression categories (anger, dis-

gust, fear, happy, sad, surprise, and neutral) where 12271 are

used for training and 3068 for validation.

The implementation is carried on the workstation acceler-

ated by GeForce GTX 1080Ti 11G. And the EAU-Net model

is developed in the deep learning framework Pytorch [63].

Training a single two-phase proposed model EAU-Net takes

5.2 hours for 20k iterations with the batch size of 16 on

RAF-DB dataset while the one-phase EAU-Net takes 8 hours

for training. And it takes 50 hours to train a single two-phase

EAU-Net model for 30 epochs with the batch size of 48 on

AffectNet dataset.
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TABLE 5. Expression Recognition Accuracies of Different Methods on the
RAF-DB Database.

B. QUANTITATIVE EVALUATIONS OF

THE PROPOSED APPROACH

For the FER task on RAF-DB database, the proposed method

performance is compared with performances of recently pub-

lished methods in literatures [64]–[69], as shown in Table 5.

It can be seen that the method proposed in this paper achieves

an average recognition accuracy up to 81.83%, which

outperforms the listed state-of-the-arts methods including

handcrafted feature based method [67], CNN-based meth-

ods [64], [68], [69], capsule-based method [65], and data

augmentation based method [66]. Compared with the listed

state-of-the-arts methods, our cGAN based approach is able

to disentangle facial expression factor by individually con-

trolling the facial expressions and optimizing both synthesis

and classification loss functions (LI , La, Lcyc, and Lexp)

and thus achieves high accuracy in FER task on RAF-DB

database.

TABLE 6. Expression Recognition Accuracies of Different Methods on the
AffectNet Database.

Table 6 shows the comparison between our work and

other state-of-the-arts methods for the FER task on Affect-

Net database. Among these methods, [70], [71] are CNN

based approaches and [72], [73] are CNN with attention

based approaches. The model proposed in this paper achieves

74.80% accuracy for the FER task evaluated on AffectNet

database which outperforms the listed state-of-the-arts meth-

ods. In [73], visual salient regions joined with original face

image were fed to CNN to perform FER while the visual

salient regions were just found to be more related to eyes,

mouth, and nose, these rough regions. However, our cGAN

basedmodel is capable of not only learning the regions related

to expression, but also maximally capturing nuanced char-

acteristics relevant to expression and then transforming the

original expression to another expression with identity and

other factors preserved which is shown in Fig. 7 and Fig. 8.

FIGURE 5. Per-class accuracy of RAF-DB dataset and AffectNet dataset
where the seven facial expression classes include surprise (SU), sad (SA),
neutral (NE), happy (HA), fear (FE), disgust (DI), and anger (AN).

Per-class accuracy of RAF-DB dataset and AffectNet

dataset is illustrated in Fig. 5 where the seven facial expres-

sion classes include surprise (SU), sad (SA), neutral (NE),

happy (HA), fear (FE), disgust (DI), and anger (AN). It can

be seen that the top two with the highest recognition rates

in both datasets are NE and HA. However, the classification

accuracies of SU, FE, DI and SA expressions evaluated on

AffectNet dataset are relatively low compared with other

expressions. Reason is the training sample numbers of SU,

FE and DI expressions are much fewer than others which are

shown in Table 4. Additionally, in comparison with the facial

expression images in RAF-DB database, the facial expression

images in AffectNet dataset are more difficult to distinguish,

even by humans. Examples can be found in Fig. 6; four

expression samples (surprise, fear, disgust, and sad) from

AffectNet dataset have only tiny difference and these expres-

sions can be easily confused with each other resulting in

poor recognition performance. Overall, the high classification

accuracies evaluated on both RAF-DB andAffectNet datasets

indicate that the proposed network is effective for the facial

expression classification task in wild conditions.

FIGURE 6. Ambiguous samples of the four facial expression classes
(sad, disgust, fearful, and surprise) from AffectNet dataset.

C. QUALITATIVE EVALUATIONS OF

THE PROPOSED APPROACH

Some qualitative results are visualized in Fig. 7 and Fig. 8.

In Fig. 7, the left column are the real images and the right
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FIGURE 7. Synthesis results: real facial image (left column), generated
facial image (right column).

FIGURE 8. Synthesis results: real facial image (left column), three
generated facial images (right three columns).

column are the generated images. It can be observed that the

generated images are disentangled from other variations such

as backgrounds, head pose, and illumination, etc. It vividly

shows that the feasibility of individually controlling the facial

expressions and simultaneously learning of the generative

and discriminative representations. In addition, the proposed

model achieves high-quality image synthesis results, even in

the cases with various light intensity and head deflection.

As shown in the right columns of Fig. 7, the details of facial

characteristics like hair, skin color, wrinkles, background and

illumination are generated nicely. In Fig. 8, the left column

are the real images and the right three columns are generated

images. Each image is constructed to three synthesis images

with expressions of happiness, anger, and surprise, respec-

tively. It demonstrates that our cGAN based model is capable

of disentangling the facial expression factor and transforming

any given query face image into several images at the same

time, each with a different expression.

FIGURE 9. The 3-D t-SNE plot of the deep features learnt by the proposed
model on RAF-DB dataset.

To visualize the learnt deep features of each expression,

T-distributed Stochastic Neighbor Embedding (t-SNE) [74]

is employed to nonlinear reduce the learnt high-dimensional

features to a three-dimensional space. Fig. 9 presents a 3-D

t-SNE plot of the deep features learnt from RAF-DB dataset.

The deep features were the output of the last fully connected

layer of discriminator Dexp. The random sample number is

set to 1250 with considering of the computation speed and

the number of the validation set of RAF-DB dataset. It can

be observed that the dots of fear expression in the 3-D t-SNE

plot are relatively few. That is because the data distribution

of the publicly available training set of RAF-DB database

is unbalance. As it can be seen in Table 4, the available

training number of fear expression in the RAF-DB database

is only 281 while the training number of happy expression

is 4772. Although adverse variations (including various race,

age, head pose, and illumination, etc.) exist in RAF-DB

dataset, the dots of every expression tend to cluster and there

is relatively clear interval among seven expressions which

demonstrates the effectiveness of the learnt representations.

V. CONCLUSION

As an emerging research topic for ProSe, automatic FER has

attracted a great amount attention in recent years, as FER

plays a vital part in emotion recognition and has a variety

of applications in HRI and emotion healthcare, etc. However,

accurate FER in real world scenarios remains a challenging

task due to the complex backgrounds, various light intensity

and head deflection, etc. In this paper, we propose a cGAN

based approach to disentangle the facial expression factor and
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learn the generative and discriminative representations simul-

taneously. The task of disentangling the facial expression

factor is implemented in two stages: learning by a conditional

generator G and learning by three discriminators (Di, Da, and

Dexp). The generator G disentangles the facial expression

factor by transforming any face image into a synthetic image

with one of the seven basic facial expressions (anger, disgust,

fear, happy, sad, surprise, and neutral). Three loss functions

(LI , La, and Lexp) corresponding to three discriminators

(Di, Da, and Dexp) are developed to learn the generative

and discriminative representations simultaneously. Addition-

ally, the cycle consistency loss is also applied to guarantee

that the personal identity, background, head deflection and

illumination are persevered. By optimizing the overall loss

functions, the learnt representations are disentangled from

other variations. The experimental results show that the pro-

posed approach is effective for FER task and the proposed

approach outperforms the known competing methods on both

AffectNet and RAF-DB datasets. One limitation of this work

is that the model is trained individually for different datasets.

Since it is subjective to annotate the face expressions, the bias

of annotations is inevitable among different datasets. Thus,

one model trained on a specific dataset may get poor perfor-

mance on another dataset with a different distribution for FER

task. Making pseudo annotations and learning latent features

are worth to be investigated in cross-dataset learning where

the training data and the verification data are from different

datasets.

REFERENCES

[1] J. Qi, P. Yang, M. Hanneghan, S. Tang, and B. Zhou, ‘‘A hybrid hier-

archical framework for gym physical activity recognition and measure-

ment using wearable sensors,’’ IEEE Internet Things J., to be published,

doi: 10.1109/JIOT.2018.2846359.

[2] P. Yang et al., ‘‘Lifelogging data validation model for Internet of Things

enabled personalized healthcare,’’ IEEE Trans. Syst., Man, Cybern., Syst.,

vol. 48, no. 1, pp. 50–64, Jan. 2018.

[3] J. Qi, P. Yang, A. Waraich, Z. Deng, Y. Zhao, and P. Yang, ‘‘Examining

sensor-based physical activity recognition and monitoring for healthcare

using Internet of Things: A systematic review,’’ J. Biomed. Inform., vol. 87,

pp. 138–153, Nov. 2018.

[4] J. F. Cohn, ‘‘Foundations of human computing: facial expression and

emotion,’’ inProc. 8th Int. Conf. Multimodal Interfaces (ICMI), Banff, AB,

Canada, 2006, pp. 233–238.

[5] G. Pang, J. Deng, F. Wang, J. Zhang, Z. Pang, and G. Yang, ‘‘Development

of flexible robot skin for safe and natural human–robot collaboration,’’

Micromachines, vol. 9, no. 11, pp. 576–591, Nov. 2018.

[6] D. Feil-Seifer and M. J. Mataric, ‘‘Defining socially assistive robotics,’’

in Proc. 9th Int. Conf. Rehabil. Robot. (ICORR), Chicago, IL, USA,

Jun./Jul. 2005, pp. 465–468.

[7] A. Guler et al., ‘‘Human joint angle estimation and gesture recognition

for assistive robotic vision,’’ in Proc. Eur. Conf. Comput. Vis., Berlin,

Germany, 2016, pp. 415–431.

[8] E. S. John, S. J. Rigo, and J. Barbosa, ‘‘Assistive robotics: Adaptive

multimodal interaction improving people with communication disorders,’’

IFAC-PapersOnLine, vol. 49, no. 30, pp. 175–180, Nov. 2016.

[9] A. Bolotnikova et al., ‘‘A circuit-breaker use-case operated by a humanoid

in aircraft manufacturing,’’ in Proc. 13th IEEE Conf. Autom. Sci. Eng

(CASE), Xi’an, China, Aug. 2017, pp. 15–22.

[10] Y. Dai et al., ‘‘An associate memory model of facial expressions and

its application in facial expression recognition of patients on bed,’’ in

Proc. IEEE Int. Conf. Multimedia Expo (ICME), Tokyo, Japan, Aug. 2001,

pp. 591–594.

[11] G. Anbarjafari and A. Aabloo, ‘‘Expression recognition by using facial and

vocal expressions,’’ in Proc. 25th Int. Conf. Comput. Linguistics, Dublin,

Ireland, 2014, pp. 103–105.

[12] I. Lüsi et al., ‘‘Joint challenge on dominant and complementary emo-

tion recognition using micro emotion features and head-pose estimation:

Databases,’’ in Proc. 12th IEEE Int. Conf. Autom. Face Gesture Recog-

nit. (FG), Washington, DC, USA, May/Jun. 2017, pp. 809–813.

[13] K. Nasrollahi et al., ‘‘Deep learning based super-resolution for improved

action recognition,’’ in Proc. Int. Conf. Image Process. Theory, Tools

Appl. (IPTA), Orleans, France, Nov. 2015, pp. 67–72.

[14] M. S. Bartlett, G. Littlewort, I. Fasel, and J. R. Movellan, ‘‘Real time face

detection and facial expression recognition: Development and applications

to human computer interaction,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. Workshops, Madison, WI, USA, Jun. 2003, p. 53.

[15] J. Whitehill, Z. Serpell, Y.-C. Lin, A. Foster, and J. R. Movellan,

‘‘The faces of engagement: Automatic recognition of student engage-

mentfrom facial expressions,’’ IEEE Trans. Affect. Comput., vol. 5, no. 1,

pp. 86–98, Jan./Mar. 2016.

[16] J. Cockburn, M. Bartlett, J. Tanaka, J. Movellan, M. Pierce, and R. Schultz,

‘‘Smilemaze: A tutoring system in real-time facial expression percep-

tion and production in children with autism spectrum disorder,’’ in Proc.

Workshop Facial Bodily Expressions Control Adaptation Game (ECAG),

Enschede, The Netherlands, 2008, pp. 978–986.

[17] P. Lucey et al., ‘‘The extended Cohn-Kanade dataset (CK+): A complete

dataset for action unit and emotion-specified expression,’’ in Proc. IEEE

Comput. Vis. Pattern Recogit. Workshop (CVPRW), San Francisco, CA,

USA, Jun. 2010, pp. 94–101.

[18] M. Valstar and M. Pantic, ‘‘Induced disgust, happiness and surprise: An

addition to the mmi facial expression database,’’ in Proc. 3rd Int. Workshop

EMOTION (Satellite LREC), Corpora Res. Emotion Affect, Paris, France,

2010, pp. 65–70.

[19] G. Zhao, X. Huang, M. Taini, S. Z. Li, and M. PietikäInen, ‘‘Facial

expression recognition from near-infrared videos,’’ Image Vis. Comput.,

vol. 29, no. 9, pp. 607–619, Aug. 2011.

[20] P. Ekman, Pictures of Facial Affect. Palo Alto, CA, USA: Consulting

Psychologists Press, 1976.

[21] P. Ekman, ‘‘Facial expression and emotion,’’ Amer. Psychol., vol. 48, no. 4,

pp. 384–392, 1993.

[22] M. R. Mohammadi, E. Fatemizadeh, and M. H. Mahoor, ‘‘PCA-based

dictionary building for accurate facial expression recognition via sparse

representation,’’ J. Vis. Commun. Image Represent., vol. 25, no. 5,

pp. 1082–1092, Jul. 2014.

[23] C. Liu and H. Wechsler, ‘‘Gabor feature based classification using the

enhanced Fisher linear discriminant model for face recognition,’’ IEEE

Trans. Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002.

[24] C. Shan, S. Gong, and P. W. McOwan, ‘‘Facial expression recognition

based on local binary patterns: A comprehensive study,’’ Image Vis. Com-

put., vol. 27, no. 6, pp. 803–816, 2009.

[25] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F. Cohn,

‘‘DISFA: A spontaneous facial action intensity database,’’ IEEE Trans.

Affect. Comput., vol. 4, no. 2, pp. 151–160, Apr. 2013.

[26] M. Valstar, M. Pantic, and I. Patras, ‘‘Motion history for facial action detec-

tion in video,’’ in Proc. IEEE Int. Conf. Syst., Man. Cybern., Oct. 2004,

pp. 635–640.

[27] G. Zhao and M. Pietikäinen, ‘‘Dynamic texture recognition using local

binary patterns with an application to facial expressions,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 915–928, Jun. 2007.

[28] K. Mase, ‘‘Recognition of facial expression from optical flow,’’ IEICE

Trans. Inf. Syst., vol. 74, no. 10, pp. 3474–3483, Oct. 1991.

[29] P. Ekman and W. V. Friesen,Manual for the Facial Action Coding System.

Palo Alto, CA, USA: Consulting Psychologists Press, 1977.

[30] P. Ekman and E. L. Rosenberg,What the Face Reveals: Basic and Applied

Studies of Spontaneous Expression Using the Facial Action Coding Sys-

tem (FACS). Oxford, U.K.: Oxford Univ. Press, 1997.

[31] P. Ekman and W. V. Friesen, Facial Action Coding System: A Technique

for theMeasurement of Facial Movement. Palo Alto, CA, USA: Consulting

Psychologists Press, 1978.

[32] W. Zhang, Y. Zhang, L. Ma, J. Guan, and S. Gong, ‘‘Multimodal learning

for facial expression recognition,’’ Pattern Recognit., vol. 48, no. 10,

pp. 3191–3202, Oct. 2015.

[33] B. Allaert, I. M. Bilasco, and C. Djeraba. (May 2018). ‘‘Advanced local

motion patterns for macro and micro facial expression recognition.’’

[Online]. Available: https://arxiv.org/abs/1805.01951

VOLUME 7, 2019 9857

http://dx.doi.org/10.1109/JIOT.2018.2846359


J. Deng et al.: cGAN-Based FER for HRI

[34] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 770–778.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-

cess. Syst. (NIPS), 2012, pp. 1097–1105.

[36] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[37] O. Russakovsky et al., ‘‘ImageNet large scale visual recognition chal-

lenge,’’ Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[38] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, ‘‘Learning deep

features for scene recognition using places database,’’ in Proc. Adv. Neural

Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2014, pp. 487–495.

[39] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘Facenet: A unified embed-

ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[40] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li, ‘‘High-fidelity pose and

expression normalization for face recognition in the wild,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 787–796.

[41] A. Polyak and L. Wolf, ‘‘Channel-level acceleration of deep face represen-

tations,’’ IEEE Access, vol. 3, pp. 2163–2175, 2015.

[42] B. Yang, J. M. Cao, R. Ni, and Y. Zhang, ‘‘Facial expression recognition

using weighted mixture deep neural network based on double-channel

facial images,’’ IEEE Access, vol. 6, pp. 4630–4640, 2017.

[43] Y. Tang, X. M. Zhang, and H. Wang, ‘‘Geometric-convolutional feature

fusion based on learning propagation for facial expression recognition,’’

IEEE Access, vol. 6, pp. 42532–42540, 2018.

[44] Z. Zheng, C. Cao, X. Chen, and G. Xu. (May 2018). ‘‘Multimodal emotion

recognition for one-minute-gradual emotion challenge.’’ [Online]. Avail-

able: https://arxiv.org/abs/1805.01060

[45] I. Goodfellow et al., ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural

Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2014, pp. 2672–2680.

[46] J. F. Nash, Jr., ‘‘Equilibrium points in n-person games,’’ Proc. Nat. Acad.

Sci. USA, vol. 36, no. 1, pp. 48–49, 1950.

[47] M. Mirza and S. Osindero. (Nov. 2014). ‘‘Conditional generative adversar-

ial nets.’’ [Online]. Available: https://arxiv.org/abs/1411.1784

[48] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. (Sep. 2016). ‘‘Neural

photo editing with introspective adversarial networks.’’ [Online]. Avail-

able: https://arxiv.org/abs/1609.07093

[49] Y.-H. Lai and S.-H. Lai, ‘‘Emotion-preserving representation learning via

generative adversarial network for multi-view facial expression recogni-

tion,’’ in Proc. 13th IEEE Int. Conf. Autom. Face Gesture Recognit. (FG),

May 2018, pp. 263–270.

[50] H. Yang, Z. Zhang, and L. Yin, ‘‘Identity-adaptive facial expression

recognition through expression regeneration using conditional generative

adversarial networks,’’ in Proc. IEEE 13th Conf. Int. Autom. Face Gesture

Recognit. (FG), May 2018, pp. 294–301.

[51] K. Zhang, Z. Zhang, Z. Li, andY. Qiao, ‘‘Joint face detection and alignment

using multitask cascaded convolutional networks,’’ IEEE Signal Process.

Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016.

[52] K. Pu, Z. Lian, and Z. Liu, ‘‘Multiple objects tracking based on multiple

information integration,’’ in Proc. IEEE Int. Conf. Prog. Inform. Com-

put. (PIC), Dec. 2017, pp. 205–208.

[53] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, ‘‘OpenFace 2.0:

Facial behavior analysis toolkit,’’ in Proc. 13th IEEE Int. Conf. Autom.

Face Gesture Recognit. (FG), May 2018, pp. 59–66.

[54] S. Ioffe and C. Szegedy. (Feb. 2015). ‘‘Batch normalization: Accelerating

deep network training by reducing internal covariate shift.’’ [Online].

Available: https://arxiv.org/abs/1502.03167

[55] M. Arjovsky and L. Bottou. (Jan. 2017). ‘‘Towards principled meth-

ods for training generative adversarial networks.’’ [Online]. Available:

https://arxiv.org/abs/1701.04862

[56] M. Arjovsky, S. Chintala, and L. Bottou. (Jan. 2017). ‘‘Wasserstein GAN.’’

[Online]. Available: https://arxiv.org/abs/1701.07875

[57] L. N. Vaserstein, ‘‘Markov processes over denumerable products of spaces,

describing large systems of automata,’’ Problemy Peredachi Informatsii,

vol. 5, no. 3, pp. 64–72, 1969.

[58] J. Chen, J. Konrad, and P. Ishwar. (Mar. 2018). ‘‘VGAN-based image rep-

resentation learning for privacy-preserving facial expression recognition.’’

[Online]. Available: https://arxiv.org/abs/1803.07100

[59] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image

translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.

Conf. Comput. Vis. (ICCV), Venice, Italy, 2017, pp. 2242–2251.

[60] A. Mollahosseini, B. Hasani, and M. H. Mahoor. ‘‘AffectNet: A database

for facial expression, valence, and arousal computing in the wild.’’

[Online]. Available: https://arxiv.org/abs/1708.03985

[61] S. Li, W. Deng, and J. Du, ‘‘Reliable crowdsourcing and deep

locality-preserving learning for expression recognition in the wild,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI,

USA, Jul. 2017, pp. 2584–2593.

[62] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, ‘‘Coding facial

expressions with Gabor wavelets,’’ in Proc. IEEE Int. Conf. Autom. Face

Gesture Recognit., Apr. 1998, pp. 200–205.

[63] P. Adam et al. Pytorch. Accessed: Mar. 5, 2018. [Online]. Available:

https://github.com/pytorch/pytorch

[64] V. Vielzeuf, C. Kervadec, S. Pateux, A. Lechervy, and F. Jurie,

‘‘An occam’s razor view on learning audiovisual emotion recognition with

small training sets,’’ in Proc. ACM Int. Conf. Multimodal Interact. (ICMI),

Boulder, CO, USA, 2018, pp. 589–593.

[65] S. Ghosh, A. Dhall, and N. Sebe, ‘‘Automatic group affect analysis in

images via visual attribute and feature networks,’’ in Proc. 25th IEEE Int.

Conf. Image Process. (ICIP), Athens, Greece, Oct. 2018, pp. 1967–1971.

[66] F. Lin, R. Hong, W. Zhou, and H. Li, ‘‘Facial expression recognition with

data augmentation and compact feature learning,’’ in Proc. 25th Int. Conf.

Image Process. (ICIP), Athens, Greece, Oct. 2018, pp. 1957–1961.

[67] F. Shen, J. Liu, and P.Wu, ‘‘Double complete D-LBPwith extreme learning

machine auto-encoder and cascade forest for facial expression analysis,’’

in Proc. 25th Int. Conf. Image Process. (ICIP), Athens, Greece, Oct. 2018,

pp. 1947–1951.

[68] S. Li and W. Deng, ‘‘Reliable crowdsourcing and deep locality-preserving

learning for unconstrained facial expression recognition,’’ IEEE Trans.

Image Process., vol. 28, no. 1, pp. 356–370, Jan. 2019.

[69] Y. Fan, J. C. K. Lam, and V. O. K. Li, ‘‘Multi-region ensemble convolu-

tional neural network for facial expression recognition,’’ in Proc. ICANN.

Cham, Switzerland: Springer, 2018, pp. 84–94.

[70] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional

networks for large-scale image recognition.’’ [Online]. Available:

https://arxiv.org/abs/1409.1556

[71] J. Zeng, S. Shan, and X. Chen, ‘‘Facial expression recognition with

inconsistently annotated datasets,’’ in Proc. Comput. Vis. ECCV, Munich,

Germany, 2018, pp. 227–243.

[72] Y. Li, J. Zeng, S. Shan, and X. Chen, ‘‘Patch-Gated CNN for

occlusion-aware facial expression recognition,’’ presented at the ICPR,

Beijing, China, Aug. 2018.

[73] A. Gurnani, K. Shah, V. Gajjar, V. Mavani, and Y. Khandhediya.

(Mar. 2018). ‘‘SAF-BAGE: Salient approach for facial soft-biometric

classification–age, gender, and facial expression.’’ [Online]. Available:

https://arxiv.org/abs/1803.05719

[74] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.

Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

JIA DENG received the B.S. degree from the

College of Physics, Northeast Normal University,

Changchun, China, in 2017. She is currently pur-

suing theM.S. degree with the School of Mechani-

cal Engineering, Zhejiang University. Her research

interests include biomedical signal processing

and machine learning for emotional interaction,

and fluid human-robot collaboration/human–robot

interaction.

GAOYANG PANG received the B.S. degree from

the College of Mechanical and Vehicle Engineer-

ing, Hunan University, Changsha, China, in 2017.

He is currently pursuing the M.S. degree with

the School of Mechanical Engineering, Zhejiang

University. His research interests include flexible

sensing electronics, wearable sensors using inkjet

printing technology, and safe human–robot collab-

oration strategies.

9858 VOLUME 7, 2019



J. Deng et al.: cGAN-Based FER for HRI

ZHIYU ZHANG received the B.S. degree from the

College ofMechanical Engineering, ZhejiangUni-

versity of Technology, Hangzhou, China, in 2018.

He is currently pursuing the M.S. degree with the

School of Mechanical Engineering, Zhejiang Uni-

versity. His research interests include health IOT,

bio-patch design, and implementation based on a

low-power system-on-chip.

ZHIBO PANG (M’13–SM’15) received the

B.Eng. degree in electronic engineering from

Zhejiang University, Hangzhou, China, in 2002,

the M.B.A. degree in innovation and growth from

the University of Turku, Turku, Finland, in 2012,

and the Ph.D. degree in electronic and computer

systems from the Royal Institute of Technology

(KTH), Stockholm, Sweden, in 2013. He was

a Co-Founder and a CTO of startups such as

Ambigua Medito AB. He is currently a Principal

Scientist on wireless communications with the ABB Corporate Research

Sweden, Västerås, Sweden, leading research on digitalization solutions for

smart buildings and homes, robotics and factories, and power electronics and

power systems. He is also serving as an Adjunct Professor or similar roles

at universities such as the Royal Institute of Technology (KTH), Tsinghua

University, China, and the Beijing University of Posts and Telecommunica-

tions, China. He is a Senior Member of IEEE. He is a Co-Chair of TC in the

Technical Committee on Industrial Informatics. He is an Associate Editor

of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE JOURNAL OF

BIOMEDICAL AND HEALTH INFORMATICS, and the IEEE REVIEWS IN BIOMEDICAL

ENGINEERING, a Guest Editor of the IEEE ACCESS, an Editorial Board of

the Journal of Management Analytics (Taylor & Francis), the Journal of

Industrial Information Integration (Elsevier), and the International Journal

of Modeling, Simulation, and Scientific Computing (WorldScientific).

HUAYONG YANG received the Ph.D. degree in

philosophy from the University of Bath, in 1988.

He joined the Department of Mechanical Engi-

neering, Zhejiang University, as a Postdoctoral

Researcher, in 1989. He is currently a Professor

and the Director of the State Key Laboratory of

Fluid Power and Mechatronic Systems, Zhejiang

University. His research interests include motion

control and energy saving of mechatronic systems,

the development of fluid power component and

systems, and integration of electro-hydraulic systems and engineering appli-

cation. He has 169 invention patents. He has co-authored three academic

books, over 76 Science Citation Index papers, and 210 Engineering Index

papers published.

GENG YANG received the B.Sc. and M.Sc.

degrees from the College of Biomedical Engi-

neering and Instrument Science, Zhejiang Uni-

versity (ZJU), Hangzhou, China, in 2003 and

2006, respectively, and the Ph.D. degree in elec-

tronic and computer systems from the Royal Insti-

tute of Technology (KTH), Stockholm, Sweden,

in 2013. From 2013 to 2015, he was a Postdoc-

toral Researcher with the iPack VINN Excellence

Center, School of Information and Communica-

tion Technology, Royal Institute of Technology (KTH). He is currently

a Research Professor with the School of Mechanical Engineering, ZJU.

He developed low power and low noise bio-electric SoC sensors for

m-health. His research interests include flexible and stretchable electronics,

mixed-mode IC design, low-power biomedical microsystems, wearable bio-

devices, human–computer interface, human–robot interaction, intelligent

sensors, and the Internet-of-Things for healthcare.

VOLUME 7, 2019 9859


	INTRODUCTION
	RELATED WORK
	FACIAL EXPRESSION RECOGNITION
	FER APPROACHES BASED ON SHALLOW LEARNING
	FER APPROACHES BASED ON DEEP LEARNING

	GENERATIVE ADVERSARIAL NETWORKS (GANS)

	PROPOSED METHOD
	FACIAL IMAGE PRE-PROCESSING
	NETWORK ARCHITECTURE
	OPTIMIZATION STRATEGY
	ADVERSARIAL LOSS (Ladv)
	WASSERSTEIN LOSS (LI)
	CONDITIONAL AUS LOSS (La)
	CYCLE CONSISTENCY LOSS (Lcyc)
	CLASSIFICATION LOSS (Lexp)
	FULL LOSS (L)


	EXPERIMENTS AND DISCUSSION
	IMPLEMENTATION DETAILS
	QUANTITATIVE EVALUATIONS OF THE PROPOSED APPROACH
	QUALITATIVE EVALUATIONS OF THE PROPOSED APPROACH

	CONCLUSION
	REFERENCES
	Biographies
	JIA DENG
	GAOYANG PANG
	ZHIYU ZHANG
	ZHIBO PANG
	HUAYONG YANG
	GENG YANG


