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Abstract: In this paper an architecture based on the anatomical structure of the emotional 
network in the brain of mammalians is applied as a prediction model for chaotic time series 
studies. The architecture is called BELRFS, which stands for: Brain Emotional Learning-
based Recurrent Fuzzy System. It adopts neuro-fuzzy adaptive networksto mimic the 
functionality of brain emotional learning. In particular, the model is investigated to predict 
space storms, since the phenomenon has been recognized as a threat to critical 
infrastructure in modern society. To evaluate the performance of BELRFS, three 
benchmark time series: Lorenz time series, sunspot number time series and Auroral 
Electrojet (AE) index. The obtained results of BELRFS are compared with Linear Neuro-
Fuzzy (LNF) with the Locally Linear Model Tree algorithm (LoLiMoT). The results 
indicate that the suggested model outperforms most of data driven models in terms of 
prediction accuracy.  
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1 INTRODUCTION 

An accurate prediction of space weather is crucial to 

mitigate the harmful effects on critical infrastructure such 

as: satellites, telecommunication and power grid systems 

[Thompson, 1993; Schatten et al., 1993; Izeman et al., 1998; 

Golipour et al., 2004; 2006a; 2006b]. This can be done by 

providing early warning of super storms on the Sun 

[Kappenman 2012]. Space weather forecasting is conducted 

by quantitative-predictive measures and providing early 

warnings of extreme space weather events. This paper will 

focus upon the prediction of solar activity and geomagnetic 

storms, by using the Brain Emotional Learning-based 

Recurrent Fuzzy System (BELRFS). 

  Data driven methods have long been used for the 

prediction and identification of chaotic systems, in 

particular, the biologically inspired methods, e.g. neural 

network models and neuro-fuzzy methods. These 

approaches have a high generalization capability, which 

make them popular for predicting chaotic time series. 

However, to achieve high accuracy in the predictions, these 

methods often require a very large set of training data. Thus, 

they are not desirable for chaotic time series prediction with 

a limited training data samples. Another significant issue of 

these methods is the computational complexity.   

  Brain emotional learning-based methodologies [Lucas et 

al., 2003; Lucas et al., 2004; Parsapoor et al., 2008; 2012a; 

2012b] have been developed to address the above 

mentioned issues. They have simple structure with a lower 

computational complexity if compared with neural network 



and neuro-fuzzy methods [Babaei et al., 2008; Lucas et al., 

2003; Parsapoor et al., 2008; 2012a; 2012b].  

  The organization of this paper is as follows: first, a brief 

review of related works in modelling of brain emotional 

learning is given in Section 2. The suggested BELRFS 

model is described in more detail in Section 3. Solar activity 

and geomagnetic storm forecasting are examined using the 

BELRFS and the result is compared to LoLiMoT, in Section 

4. Finally, we conclude this paper by reviewing the main 

results and adding some remarks about the performance of 

BELRFS and also we suggest some ideas for future 

extension of BELRFS in Section 5.  

2 BACKGROUND 

For a long time, emotion was not assumed to be related to 
intelligence in human beings [Custodio et al., 1999]. Hence, 
the emotional aspect of human behaviour has so far received 
somewhat limited attention in the artificial intelligence 
research fields. In 1988 emotion was first proposed to be a 
principle part in human reaction [Fellous et al., 2003]. Since 
that time, neuroscientists have started to conduct 
experimental studies to explore emotion-based behaviours 
and analyze emotional processing.   The studies have led to 
the explanation of emotional reactions by the application of 
different psychological theories, e.g., central theory and 
cognitive theory [Fellous et al., 2003]. Another contribution 
of these studies was the development of computational 
models of emotional learning that have been used to 
develop artificial intelligence (AI) tools, intelligent 
controller [Lucas et al., 2004; Zadeh et al., 2006 Custodio et 
al., 1999] and data driven prediction methodologies [Babaei 
et al., 2008; Lucas et al., 2003; Parsapoor et al., 2008; 
2012a; 2012b]. A good example of the computational 
models is a model that has been proposed on the basis of 
central theory and aims to model emotional learning and 
memory [Fellous et al., 2003]. The amygdala-orbitofrontal 
subsystem that was proposed, based on the internal structure 
of emotional system and central theory is another 
computational model [Moren et al.,2000;2002; Balkenius, et 
al., 2001].  

2.1 Anatomical Aspects of Emotional Learning  

Numerous studies have been conducted to reveal the 

anatomical, hormonal and behavioral aspects of emotional 

learning. These studies have proven that the limbic system 

in mammalian brains has the main responsibility for 

emotional learning [Reisbetg et al., 2009; Gazzaniga et al., 

2009; Arbib 2002; Fellous et al., 2003]. The limbic system 

contains several regions, these regions are: the 

hippocampus, the amygdala, the thalamus and the sensory 

cortex. The role of each region in the context of emotional 

learning (fear conditioning and classical conditioning) is 

summarized as follows: 

  

1) Thalamus is responsible for the provisioning of high-

level information about the received emotional stimuli 

[Moren et al., 2000; Balkenius, et al., 2001; 2002].  
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Figure 1 The pathways between the parts of the limbic system have a role 

in emotional learning. 

 

2) Sensory cortex is responsible to analyze the received 

signal from the thalamus and distribute the signal between 

the amygdala and the orbitofrontal regions [Moren et al., 

2000; Balkenius, et al., 2001; 2002]. 

 
3) Amygdala is the central part of the limbic system and 

has a main role in emotional learning [Moren et al., 2000; 

Balkenius, et al., 2001; 2002]; it has direct connections with 

thalamus, sensory cortex and orbitofrontal (that is located at 

the front of the brain) (see Figure 1) [Jenkins et al., 1998; 

Ferry et al., 1999;Moren et al., 2000; Balkenius, et al., 2001; 

2002; Hooker et al., 2006]. It participates in storing 

emotional experiences and emotional responses [Hooker et 

al., 2006], evaluating positive and negative reinforcement 

and emotional reactions [Ferry et al., 1999], learning and 

predicting the association between unconditioned and 

conditioned stimuli [Ferry et al., 1999]. It encompasses two 

main parts:  basolateral complex and centromedial nucleus 

[Best 1992; Kandel et al., 2003]. The basolateral complex is 

the largest part of the amygdala and performs the role of 

mediating memory consolidation [Reisbetg et al., 2009]. It 

not only passes stimuli to other parts of the amygdala, but 

also forms the stimulus-response association [Ferry et al., 

1999]. The second part centromedial nucleus that 

encompasses the medial nucleus and the central nucleus has 

a role in mediating the expression of emotional responses 

[Kandel et al., 2003; Reisbetg et al., 2009]. 

 
4) Orbitofrontal cortex is located close to the amygdala 

and has a bidirectional connection to the amygdala. This 

part is involved in processing the stimuli, learning the 

stimulus–reinforcement association. It also evaluates the 

reinforcement signal to prevent the amygdala from 

providing an inappropriate response [Moren et al., 2000; 

Balkenius, et al., 2001; 2002]. 

2.2 Mathematical Aspects of Emotional Learning 

An essential step in developing a computational model of 

emotional learning is representing emotional processing, 

using mathematical equations. One well-known 

computational model of emotional learning is the 

Amygdala-orbitofrontal subsystem model [Moren et al., 

http://en.wikipedia.org/wiki/Hippocampus
http://en.wikipedia.org/wiki/Amygdala


2000; Balkenius, et al., 2001; 2002]. It was developed on 

the basis of the internal structure of the limbic system, 

specifically the amygdala and its connections. The Cathexis 

model [Velásquez 1998] was inspired by human decision-

making process; it was essentially based on a combination 

of basic neuropsychological and ethological theories and 

imitates the internal structure of emotional processing, 

specifically the prefrontal lobe and its connections. The 

hippocampus-neocortex model [Kuremoto et al., 2009a] was 

a modified model of the conventional model of the 

hippocampus; it aims at increasing the capability of 

processing plural time-series by adopting a multilayer 

chaotic neural network. The amygdala hippocampus model 

[Kuremoto et al., 2009a] proposed a combination between 

associative memory and emotional learning to improve the 

hippocampus-neocortex model [Kuremoto et al., 2009b]. 

Later, a model of the limbic system [Kuremoto et al., 

2009b] was proposed as an enhancement of the two 

previous models. Reversal emotional learning [Hattan et al., 

2012] was developed on the basis of the hormonal aspects 

of emotional learning to simulate food seeking behavior. 

Model of mind [Zadeh et al., 2006] was introduced as a 

modular model to imitate emotional behavior; a goal based 

agent was implemented on the basis of this model. This 

agent has an efficient ability to react to changes in the 

environment.  

The amygdala-orbitofrontal subsystem model has 

inherited its structure from the limbic system. It structure 

imitates the connection between those parts of the limbic 

system that have a role in emotional learning. The 

amygdala-orbitofrontal subsystem consists of four parts 

which interact with each other to form the association 

between the conditioned and the unconditioned stimuli (see 

fig. 2). [Moren et al., 2000; Balkenius, et al., 2001; 2002]. 

In this model, the orbitofrontal and amygdala are 

represented by several nodes with linear functions. The 

nodes’ output of the amygdala and the orbitofrontal cortex 

are referred to as A and O , respectively. The output of the 

model is represented as E and is formulated as equation (1). 

i i

i i

A OE                                                               (1) 

The updating rules of the model are based on A , O and 

the reinforcement signal REW .The updating rules are 

formalized as equations (2) and (3) and are utilized to adjust 

the weights.  These weights
iV and

iW  are associated to the 

nodes of the amygdala and orbitofrontal subsystem, 

respectively [Moren et al., 2000; 2002; Balkenius, et al., 

2001]. Here 
iS   is the input of i  

th 
node of amygdala and 

orbitofrontal.  

( max(0, ))i i j

j

V S AREW                               (2) 

( ( ))i i j

j

W S O REW                                      (3) 

The basic amygdala-orbitofrontal subsystem model has a 

simple structure and can be used as a foundation for new 

computational-models. Furthermore, machine learning 

techniques can be developed based on such models. In the 

next subsection, some emotionally-based machine learning 

methods based on the amygdala-orbitofrontal subsystem are 

described.  

 
Figure 2 The graphical description of amygdala-orbitofrontal 

subsystem. 

2.3 Brain Emotional Learning-based Methodologies  

The Brain Emotional Learning Based Intelligent Controller 

(BELBIC) [Lucas et al., 2004] can be considered as the first 

practical implementation of an emotionally-inspired 

controller. BELBIC was developed on the basis of Moren 

and Balkenius’ computational model [Lucas et al., 2004;]; it 

has been successfully applied for a number of applications: 

controlling heating and air conditioning [Sheikholeslami, et 

al., 2005], aerospace launch vehicles [Mehrabian, et al., 

2006], and intelligent washing machines [Milasi, et al., 

2005]. BELBIC, that is an emotionally-inspired controller, 

has the ability to overcome the uncertainty and complexity 

issues of classic controller models. Studies [Lucas et al., 

2004; Sheikholeslami et al., 2005; Milasi et al., 2005; 

Mehrabian et al., 2006] have also proved that the BELBIC 

outperforms many other models such as PID controllers and 

linear controllers in terms of simplicity, reliability and 

stability.   

Other types of brain emotional learning-based model are 

Emotional Learning based Fuzzy Inference System (ELFIS) 

[Lucas et al., 2004], Brain Emotional Learning (BEL) 

[Babaei et al., 2008], Recurrent Reinforcement Fuzzy 

inference system based Brain Emotional Learning 

(RRFBEL), BELRFS and Brain Emotional Learning based 

Fuzzy Inference System (BELFIS) [Parsapoor et al., 2008; 

2012a, 2012b]; they have also been developed for prediction 

applications. The mentioned models are based on different 

structures and functions than the amygdala-orbitofrontal 

subsystem and have been shown to enhance the prediction 

accuracy, particularly for chaotic prediction applications 

[Lucas et al., 2003; Golipour et al., 2004; Parsapoor et al., 

2008; Parsapoor et al., 2012].  

 

3 BRAIN EMOTIONAL LEARNING BASED RECURRENT 

FUZZY SYSTEM (BELRFS)  

In this section, we explain the structure, function and the 

learning algorithm of BELRFS. We illustrate how the model 

is divided into different parts trying to mimic the structure 

of the emotional network.  We also explain the functionality 

of the model using adaptive neuro-fuzzy networks. Finally, 

the learning algorithm and the updating rules of BELRFS 

are given.  
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Figure 3 The connection between the parts of BELRFS. 

 

3.1 Model Description  

Similar to the amygdala-orbitofrontal model, BELRFS 

model consists of four main parts, which are referred to as 

THalamous, sensory CorteX,  AMYGdala and 

ORBItofrontal cortex, and are named as TH, CX,  AMYG 

and ORBI, respectively. Figure 3 describes the structure of 

BELRFS when it is faced with an input vector from the 

training data samples. Assuming ,u ji  is an input vector of 

the set of training samples, ,1 ,2 ,{ , ,..., }u u u u N
u

I i i i where 

the subscripts u and j indicate that the sample is j
th 

vector 

of training samples; while, uN determines the number of 

training samples, the structure and the function of each part 

are illustrated as follows:   

1)  TH has connections with the CX and the AMYG and it is 
subdivided into two units: the MAX (MAXimum unit) and 
the AGG (AGGregation unit). The TH is where that the 
input vector, ,u ji , enters to the BELRFS. The function of the 
MAX is described by the competitive neural network as 
equation (4). Assuming ,u ji is a vector with m

 
dimensions 

, , ,1 , ,2 , ,[ , ,..., ]u j u j u j u j mi i ii , equation (4) determines the 
maximum value of ,u ji . The AGG unit consists of a pre-
trained neural network with linear nodes; it receives ,u ji and 
passes to the CX.    

,[max( )]u, j u jth i                                                               (4) 

 2) CX has connections with AMYG, ORBI and TH. The 
CX imitates the function of the sensory cortex using a pre-
trained single layer linear neural network. The CX 
provides, ,u js that is sent to both AMYG and ORBI. It 
should be noted that ,u ji and ,u js have the same entity; 
however they are originated at different parts. 
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Figure 4. The structure of BELRFS and its connections. 

 

 

 

3) AMYG has connections with all other parts. It receives 

two inputs, 
u, jth and ,u js , which are originated from TH and 

the CX, respectively. As Figure 4 depicts, the AMYG is 

divided into two units:  BasoLateral (BL) and CentroMedial 

(CM); they imitate the functionality of the basolateral 

complex and the centromedial nucleus, respectively. Using 

an adaptive neuro-fuzzy network, the function of BL can be 

described as equation (5). Here, F  is a fuzzy function 

according to equation (20). The provided output of BL,
,a jr , 

is considered as the primary response of the BELRFS.   

Fa, j u, j u, j
r = ( s ,th )                                                          (5) 

The primary response,
,a jr ,is sent to CM, where the final 

output of BELRFS,
jr , is produced in accordance with 

equation (6). In CM, the output of the recurrent adaptive 

neuro-fuzzy network, which is the main part of CM, is the 

final output of the BELRFS.  Here,
jREW indicates the 

recurrent signal that can be defined as equation (7). 

  

F
j

,j a, j o, j
REWr = ( r ,r )                                                     (6) 

,1 G( , )j j u jREW r r                                               (7)       

The function G  is calculated as (8). 

, ,

2 2

, ,

1 1

2

, ,

1

G( , ) ( ( 1) ( 1))

( ( 2) ( 2)) ( ( 1) ( 1))

( )

j u j j u j

N N

j u j j u j

j j

N

u j u j

j

r r r t r t

r t r t r t r t

r r

(8)   

   

Other components of CM are two square nodes with the 

summation functions to provide the reinforcement signals, 

,

e

a jp  and
,a jp . The former,

,

e

a jp , represents the expected 

reinforcement signal and is formulated by equation (9).  

, , ,

e

a j a a j u u jp r r                                                (9) 

Where 
,u jr ( ,1 ,2{ , ,...}u uu r rr ) is the correspondent output 

value to
,u ji . The a  and u  are two values 

from , , ,a o b uλ  that is the set of weights. The 

parameter
,a jp is the reinforcement signal that is provided by 

the CM as an estimation of the ORBI’s response. When CM 

receives the provided response from ORBI, it evaluates it 

(
,o jr ) and provides a reinforcement signal as 

,a jp and sends 

it to the ORBI.   

4) ORBI receives ,u js from CX and
,

e

a jp from CM and 

sends the response,
,o jr

 
back to the CM. This response is 

considered as the secondary response. In fact, the ORBI, 

forms the input-reinforcement mapping using a feed 

forward adaptive neuro-fuzzy network. The function of the 

ORBI is defined by equation (9). Here, F is a fuzzy function 

according to equation (10). 

, ,
F( )o j c j

r s                                                                 (10) 
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Figure 5  A simple adaptive network with two input and two membership 

function for each inputs. 

It should be noted that the structure of CM differs during the 

training phase and the test phase. When it is faced by inputs 

from the training set, a recurrent signal is returned to the 

CM. However, during the test phase, the recurrent signal is 

removed and the
jREW is calculated using weighted k-

nearest neighbor method.  

 As mentioned earlier, the BELRFS mimics the emotional 

conditioning process and learns the input-output mapping 

according to the stimulus-emotional response association.. 

The TH and the CX are defined by using very simple neural 

networks. In contrast, we adapt feed forward and recurrent 

adaptive neuro-fuzzy networksfor the AMYG and ORBI. In 

the next subsection, we explain the structure and function of 

an adaptive neuro-fuzzy network emphasizing the recurrent 

adaptive network.    

3.2 Recurrent Adaptive Neuro-fuzzy Network  

An adaptive neuro-fuzzy network is a type of fuzzy 

inference system which is structurally defined by an 

adaptive network.  This type of network consists of five 

layers where each layer has some adaptive nodes (circular 

and square nodes). The circular nodes are fixed nodes and 

have no parameters. The square nodes, fully adaptive nodes, 

might have different functions and different parameters.  

The main characteristic of the adaptive network is that the 

feed forward links only show the direction of inputs to 

nodes and outputs of nodes, these links do not have any 

associated weights [Jang et al., 1997]. Figure 5 displays  an 

adaptive neuro-fuzzy network with a two dimensional input 

vector.  Using the Sugeno fuzzy inference system, it can be 

defined as equations (10) and (11). 
 

If 1x is 11 and 2x is 12 then 1 11 1 12 2 13f = q x +q x +q
         

 (10) 

If
1x is

21
and

2x is
22

then 1 11 1 12 2 13f = q x +q x +q
          (11) 
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Figure 6   Recurrent adaptive network. 

  

If there is a feedback link, then the adaptive network is 

recurrent. As a matter of fact,  a recurrent adaptive network  

consists of feed forward layers with circular and square 

nodesand a recurrent layer with some delay nodes and 

square nodes to produce the recurrent signal (see Figure 6). 

Figure 6 depicts the recurrent adaptive network that can be 

expressed using Sugeno and Tsukomoto fuzzy inference as 

equations (12) and (13). These equations explain a very 

simple Sugeno fuzzy inference system with two rules.  

If
1x is

11
and

2x is
12

and
3x is

13
then

3 3 41 11 1 12 2 1 1f = q x +q x +q x +q
         

                             (12) 

If
1x is

12
and

2x is
22

and
3x is

23
then

2 2 2 23 3 241 1 2 2f = q x +q x +q x +q                                       (13)                      

 

The following steps explain the function of each layer of 

this network considering two membership functions for 

each input. The input vector consists of
1 2 3, ,x x xx . 

Where 
3x  is equal to the recurrent signal.  

 

Layer 1: It consists of square nodes with Gaussian or Bell-

shaped functions which can be defined by equations (14) 

and (15), respectively.  
2

2

( )1
( )

2

j j

j j

j

x c
x exp( )                                           (14) 

2

1
( )

1

lj j b
lj

j lj

lj

x
x c

a

                                                     (15) 

 

Where jx is the j th 
dimension of an n dimensional input 

vector. And , ,{ }lj lj lja b c  is the set of parameters of the 

membership function. Here l specifies that this membership 

function is l th   
membership function of  jx .   

  

Layer 2: It consists of the circular nodes which are labeled 

with and calculates the multiplication of the inputs as 

equation (17).  

1

( )
n

l lj j
j

w x                                                 (17) 



 

Layer 3: It consists of circular nodes which are labeled 

withN ; the output of the N  node is defined as equation 

(18), where m determines the number of fuzzy rules that is 

equal to the number of circular nodes of layer 2.  

1

l

l m

l
l

w
w

w
                                                        (18) 

Layer 4: It consists of square nodes to provide the then part 

of the Sugeno fuzzy rules using (19).  

f
n

l lj j l(j+1)

j=1

= q x +q                                                (19) 

Layer 5:  It consists of  a summation node and provides the 

final output of adaptive network as (20) [29].  

1

F( ) f ( )
m

l l

l

wx x                                                  (20) 

The subscript l shows the output of l th
 fuzzy rules of fuzzy 

rules, X indicates an input vector and lw is calculated using 

equation (18). 

 

Layer 6: It consists of  a recurrent layer and includes a set 

of unit-delay nodes (in this case are two unit-delay nodes 

included) to provide a feedback of the final output. This 

layer also has a square node with G function to feed the 

provided feed back to the first layer( see 
3x in Figure 6).    

It should be noted that the described recurrent adaptive 

network is similar to the feed forward type; however we 

have defined the 6
th

 layer with a set of unit-delay nodes and 

feedback signal.   

3.2 Weighted KK Nearest-Neighbour  

As was mentioned earlier, for unseen input from the test 

set, the value of 
testREW is estimated using the weighted k 

nearest neighbor (W-kNN). The following steps explain 

how 
testREW  is calculated using WKNN:  

1) For each 
tseti , the Euclidean 

distance
2

, jutestjd ii  is calculated, where ju ,i is a 

member of the training data set  
uNuuu ,2,1, ,...,, iii .   

 

2) For each test sample, e.g., 
tseti , a subset of k minimum 

values of 
1 2 N

u
d d dd { , , ..., } is selected and referred to as 

as 
mind . It is a set that is corresponding to the k nearest 

neighbors of the test sample.  

 

3) For these neighbors, a subset of 

1 uNREW REWREW { ,..., } is selected and this subset is 

referred to as minREW .    

 

4) For the test sample,
tseti , the value of 

testREW is  

determined  as  equation (21).  

,
1 1

( / )
k k

test j u j j
j j

REW REWv v                                 (21)                                                   

Where, jw , is calculated as the kernel equation (22).  

K( )j jv d                                                                       (22) 

 The kernel function K(.)  converts Euclidian distances to 

the weights according to equation (23).  

 
max( ) ( min( ))

K( )
max( )

jd
d

d d

d
                                     (23) 

  

3.3 Learning Algorithm  

The BELRFS model learns the input-output mapping 
using local learning algorithms were the learning parameters 
of the adaptive networks are independently adjust. In other 
words, the linear and nonlinear parameters of each adaptive 
network are updated using the hybrid learning algorithm 
that was given by [Jang et al., 1997].  

For updating the nonlinear parameters, each adaptive 
network uses the steepest descent (SD) algorithm to 
minimize its loss function. The loss functions are converged 
to minimum values using the SD for updating all nonlinear 
learning parameters.  

The overall loss function can be defined as equation (13); 
choosing appropriate values for λ ( , , ,a o b uλ ), the 
loss function, lossfun , of each adaptive network can be 
derived by equation (24)  

2( )a a, j o o, j b j u u, jlossfun r + r + r + r                            (24)             

 

For the adaptive network of BL, the λ vector is defined as 

,0,0,a uλ  and the loss function is defined as equation 

(25). While, the loss function for updating the nonlinear 

parameters of ORBI is defined as equation (26). 

 
2

, ,( )BL a a j u u jlossfun r r                                      (25) 

2

, , ,( )ORBI a a j o o j u u jlossfun r r r                               (26) 

For updating the linear parameters, an offline version of 

Least Squares Estimate (LSE) is used under the assumption 

that the nonlinear parameters have been updated and their 

values are fixed.   

Let us assume 1{ } uN

j jx as inputs of the adaptive network of 

BL, the output can be represented as  1{ } uN

a aj jrr . 

Equation (27) formulates the output of the BL.   

)1 1 2 2 3

1

(
m

aj l j l j l l

l

r w x q x q q
                                (27)

 



Consideringthat each pair of the set 
,( , ) , 1,...j a j ur j Nx  

is substituted into equation (27), then, uN linear equations  

are provided; these equations can be rewritten in a matrix-

form as equation (28).  

     
11 1 11 2 11 1 1 1 2 1 1

, , ,..., , ,
uN

j j m j m j m j
w x w x w w x w x wA             

(28) 

 

Thus, the linear parameter can be calculated as equation 

(29).   

 

a a

T 1 T
(A A) A rq                                                           (29) 

 

The linear parameters of CM and ORBI is calculated 

repeating the above steps. During the learning phase, the 

learning parameters, linear and nonlinear, can be updated by 

using one of the methods below: 

1. All parameters can be updated using the steepest 

descent. 

2. The nonlinear parameters are updated using 

steepest descent and LSE are applied to update the 

linear parameters.  

Certainly, these methods differ in terms of time complexity 

and prediction accuracy and a trade-off between high 

accuracy and low computational time must be considered to 

choose a feasible method.  

4 PREDICTION CHAOTIC TIME SERIS   

In [Parsapoor et al., 2012], the long term prediction of two 

chaotic time series, Lorenz and Ikeda were investigated by 

applying BELRFS and LoLiMoT. The obtained results 

showed a fairly good performance of BELRFS in long term 

prediction. In this paper, BELRFS is applied both for long 

term and short term prediction of three benchmark time 

series: Lorenz, sunspot time series and Auroral Electrojet 

(AE) index. The result of applying BELRFS is compared 

with previous results using local linear neuro-fuzzy models 

with linear model tree algorithm (LoLiMoT), which is a 

well-known neuro-fuzzy method. To evaluate the prediction 

performance, we use the Normalized Mean Square Error 

index (NMSE) and Normalized Root Mean Square Error 

(NRMSE) that are calculated according to equations (30) 

and (31), respectively. 

2

2

ˆ
N

j j

j=1

N

j j

j=1

(Y -Y )

NMSE

(Y -Y )

                                                   (30) 

    

2

2

ˆ
N

j j
j=1

N

j j
j=1

(Y -Y )

NRMSE =

(Y -Y )

                                                    (31)           

Where Ŷ and  Y refer to the observed values and the desired 

targets, respectively; and Y is the average of desired targets. 

4.1 Prediction of Lorenz Chaotic Time series    

Lorenz time series is a well-known benchmark chaotic time 

series and has been tested for long-term and short term 

prediction by different methods, e.g., neural network and 

neuro-fuzzy methods [Golipour et al., 2006a; 2006b], 

[Chandra et al., 2012]. In this section, both long-term and 

short term predictions of Lorenz time series are examined 

for BELRFS and LoLiMoT.  The Lorenz time series is 

reconstructed by equation (32). Using equation (33), we 

assigned the standard values that has been defined by 

Lorenz [Rasband 1990]. The ratio of sampling to 

reconstruct the time series is considered as 0.01 seconds. 

The initial values are considered as 

15, 0, 0x y z [Golipour et al., 2006a; 

2006b]. 

 
.
x = a(y - x)

.
y = bx - y - xz

.
z = xy - cz

                                                           (32) 

a = 10,b= 28,c = 8 / 3,T = 0.01s                                     (33) 

 

As a first experiment, short term and long term prediction of 

the Lorenz time series aretested by BELRFS. For this 

purpose, the data samples from the 30
th

 second to 55
th
 

second are selected; the first 1500 samples are considered as 

the training data samples and the remaining samples are 

chosen as the test samples. It should be noted that the 

embedded dimension of reconstructed time series is selected 

as three. Table I presents the obtained NMSEs by applying 

BELRFS and LoLiMoT for predicting one step ahead, ten 

and twenty steps ahead of the Lorenz time series. The 

predicted values versus the observed values are depicted in 

Figure 7. 
 

BELRFS is also employed for multi-step prediction (ten 

steps ahead and twenty steps ahead) for the similar data set 

of Lorenz. Table I lists the NMSEs for multi-step ahead 

predictions which are achieved by LoLiMoT and BELRFS. 

As Table I indicates, the BELRFS has the capability to 

achieve highly accurate results for both short and long term 

prediction of chaotic time series.  
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Figure 7. The predicted value of one step ahead prediction of Lorenz 

time series by applying BELRFS.   

 

 



TABLE I.  THE NMSES OF BELRFS  AND LOLIMOT  TO PREDICT 

MULTI-STEP AHEAD OF LORENZ TIME SERIS  

Learning 

Model  

NMSE index for multi-step ahead prediction  

1 step ahead  10 step ahead  20 step ahead  

BELRFS 4.85e-10 2.72e-6 0.0017 

LoLiMoT 
9.81e-10[Golipour 

et al., 2006a] 
0.0011 0.0442 
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Figure 8. The NMRSE of BELRFS and LoLiMoT  for multi-step ahead 

prediction. 

 

Figure 8 shows the NRMSEs that are obtained from using 

BELRFS and LoLiMoT for multi-step ahead prediction of 

Lorenz time series. For short term prediction the NRMSE of 

BELRFS and LoLiMoT are approximately equal; while for 

long term prediction, the NRMSE of BELRFS is much 

lower than for LoLiMoT(see Figure 8. (a) ).  Figure 8. (b) 

Indicates how NRMSEs increase with the raise in prediction 

steps.  

As mentioned earlier, the Lorenz chaotic time series is a 

well-known benchmark time series and has been tested with 

a numerous data-driven models to evaluate its performance. 

 Table II includes the obtained NMSEs of several data-

driven methods: Nonlinear Autoregressive model with 

eXogenous input (Hybrid NARX-Elman RNN) [Chandra et 

al., 2012], Evolving Recurrent Neural Networks(ERNN) 

[Ma et al., 2007], Radial Basis Function (RBF), multilayer 

perceptron (MLP) [Golipour et al., 2006a], Support Vector 

Regression(SVR),Tapped Delay Line Multilayer 

Perceptron(TDL_MLP),Distrbuted Local Experts based on 

Vector_Quantization using Information Theoretic learning 

(DLE_VQIT) )[Martinez et al.,2008], Cooperative 

Coevolution of Elman Recurrent Neural Networks 

(CCRNN) [Chandra et al., 2012]. Table II indicates that for 

short-term prediction of chaotic time series, the BELRFS 

outperforms most of the data driven models in term of 

prediction accuracy. Only Hybrid NARX-Elman RNN 

methodhas less NMSE than BELRFS. The NMSE of this 

method is equal to 1.98e-10 that is less than the NMSE of 

BELRFS, see Table II.   

To further evaluate the performance of the BELRFS and 

verify its robustness, white noise with standard deviation 0.1 

is added to the first data set. Table III lists the obtained 

results of applying BELRFS and the results of other 

methods: Recurrent Neural Network trained with Real-time 

Recurrent Learning (RNN_RTRL), Recurrent Neural 

Network trained with the second-order extended Kalman 

filter (RNN_EKF), Recurrent Neural Network trained with 

the algorithm and backpropagation through time (BPTT) , 

feedforward Multi layer Perceptron trained with the 

Bayesian Levenberg–Marquardt (MLP-BLM),  recursive 

second-order training of recurrent networks via a recursive 

Bayesian Levenberg–Marquardt (RBLM-RNN) algorithm. 

It is noticeable that the NMSE of BELRFS for predicting 

noisy data samples with 0.1standared variation  is lower 

than most of listed methods.     

 

TABLE II.  THE NMSES OF DIFFERENT METHODS TO PREDICT MULTI-
STEP AHEAD OF LORENZ TIME SERIS  

Learning Model 

Specification 

NMSE Time series 
No. Training 

Test  data 

NARX 

[Ardalani et al.,2010] 
1.9e-10 

One step 

ahead 
1500,1000 

BELRFS 4.9e-10 
One step 

ahead 
1500,1000 

ERNN 

[Ma et al., 2007] 
9.9e-10 

One step 
ahead 

1400,1000 

RBF 

 [Golipour et al., 2006a] 
1.4e-9 

One step 

ahead 
1500,1000 

MLP 

[Golipour et al., 2006a] 
5.2e-8 

One step 

ahead 
1500,1000 

CCRNN 7.7e-4 
Two steps 

ahead 
500,500 

SVR  
[Martinez et al., 2008] 

1.5e-2 
One step 

ahead 
---- 

TDL_MLP 

[Martinez et al., 2008] 
1.6e-4 

One step 

ahead 
---- 

DLE_VQIT 

[Martinez et al., 2008] 
2.6e-4 

One step 

ahead 
---- 

 

     

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 



TABLE III.  DIFFERENT METHODS FOR MULTI_STEP AHEAD 

OF NOISY LORENZ DATA. 

Method 

Specifications 

NMSE Time series 

 No. 

Training 

Test  data 

BELRFS 5.7e-4 

One step ahead 

of noisy data 

(STD 0.1) 

1500,1000 

LNF-LSSVMs 

[Miranian et al., 2013] 
4.4e-4 

One step ahead 
of noisy data 

(STD 0.05) 

1000,250 

RBLM-RNN 

[Mirikitani et al 2010] 
6.8e-4 

One step ahead 
of noisy data 

(STD 0.05) 

1000,250 

RNN-EKF 

[Mirikitani et al 2010] 
7.2e-4 

One step ahead 
of noisy data 

(STD 0.05) 

1000,250 

LLNF with LoLiMoT 
algorithm 

[Miranian et al., 2013] 

7.7e-4 
One step ahead 
of noisy data 

(STD 0.05) 

1000,250 

MLP_BLM 

[Mirikitani et al 2010] 
8.1e-4 

One step ahead 

of noisy data 
(STD 0.05) 

1000,250 

RNN_BPTT 

[Mirikitani et al 2010] 
1.1e-3 

One step ahead 

of noisy data 
(STD 0.05) 

1000,250 

RNN_RTRL 

[Mirikitani et al 2010] 
1.0e-3 

One step ahead 

of noisy data 
(STD 0.05) 

1000,250 

 

4.3 Forecasting Space Weather Storms 

Recently, monitoring and forecasting of space weather 

storms with AI algorithms have received a lot of attention. 

As an example, ‘Lund Space Weather Model’ [Lundstedt et 

al., 2002] was a type of AI-based models that has been 

applied to predict the space weather and its harmful impacts 

on space-based equipment [Lundstedt et al., 2002].  Space 

weather storms and short-term variations in the Earth’s 

external magnetic field have harmful effects on various 

systems, e.g. Global Positioning System (GPS), space-

ground communications and electrical power networks. One 

of the objectives of forecasting space weather is to reduce or 

prevent the damaging effects of space storms on electrical 

and telecommunication equipment.  

  The Sun and the solar wind have been known as the main 

sources of space weather storms.  Powerful magnetic forces 

on the Sun’s surface induce  regional temperature variations 

on the Sun’s surface. These spatial temperature variations 

are the main origin of solar activity, which has a periodic 

characteristic named the solar cycle. One cycle consists of a 

solar maximum and a solar minimum. Both of them are 

determined based on the number of sunspots on the Sun’s 

surface.  During the solar maximum, the number of sunspots 

increases; it shows a rise in solar activity. Thus, the number 

of sunspots and the time series driven by sunspots can be 

utilized to forecast solar activity and its harmful effects 

(solar storms) [Lundstedt et al., 2002; Golipour et al., 2004; 

2006a; 2006b]. So far, MLP, RBF and recurrent neural 

networks (RRN) have been applied to predict sunspot 

number time series in order to forecast space storms 

[Lundstedt et al., 2002].  

Other sources of space weather storms are the solar wind 

and the Earth’s magnetosphere that have a major effect on  

geomagnetic activities. It has been shown that the expansion 

and the strength of the auroral electrojet is influenced by 

geomagnetic activities. Hence, the Auroral Elecrtrojet index 

(AE index) is suggested as one of quantitative measures of 

geomagnetic activities [Davis et al., 1965].  Its driven time 

series is a reliable time series for space storm 

prediction[Golipour et al., 2006a; Babaie et al., 2008] Due 

to the complex dynamic nature of auroral electrojet activity, 

the nature of AE index and its driven time series are also 

chaotic . Thus, the accurate prediction of the AE index, 

which is crucial in order to predict geomagnetic storms, is 

not easily achievable. The chaos degree of AE time series 

[Golipour et al., 2006a ] indicate that it is predictable for 

short-term prediction, e.g. one minute ahead prediction 

[Golipour et al., 2006a; Babaie et al., 2008]; while 

achieving highly accurate results for long-term prediction of 

the AE is almost impossible. In light of this fact, data 

approach methods such as neural networks and neuro- fuzzy 

methods, [Babaie et al., 2008] even emotion-learning 

methods, have been applied for short-term and long-term 

prediction of the AE index.  

4.3.1 Forecasting Solar Activity  

 As was mentioned earlier, sunspot time series is a good 

measure of solar activity.  Different techniques have been 

utilized for forecasting solar activity using the sunspot 

numbers. Data driven approaches, e.g., linear and nonlinear 

autoregressive methods,, neural networks (MPL and RFB) 

and neuro-fuzzy methods (ANFIS and LoLiMoT) and even 

emotionally-based machine learning methods (ELFIS, 

RRFBEL, BEL, BELFIS,BELRFS) have been applied to 

predict solar activity [Lundstedt et al., 2002; Golipour et al., 

2004; 2006a; 2006b; Parsapoor et al., 2008]. The conducted 

studies have verified that neural networks and neuro-fuzzy 

methods have the high capability to  model (predict) the 

dynamic behavior of sunspots. The issue of neural networks 

is that they require a large number of data samples to learn 

the chaotic and nonlinearity behavior of   dynamic time 

series [Lucas et al., 2003; Golipour et al., 2004;2006 a; 2006 

b] andneuro-fuzzy methods suffer from the curse of 

dimensionality. The results of performed  studies based on 

emotional learning [Golipour et al., 2004; Parsapoor et al., 

2008; Lucas et al., 2003] indicate that these models have the 

capability to achieve more accurate results than neuro-fuzzy 

and neural networks [Golipour et al., 2004; Parsapoor et al., 

2008; Lucas et al., 2003]. Thus, it is still interesting to apply 

new emotional based learning models for solar activity 

forecasting. For this purpose, BELRFS is applied to predict 

sunspot number time series. As a first experiment a non-

smoothed monthly sunspots time series, a part of solar cycle 

19, is selected to be  as an experiment comparing the 

prediction abilities of BELRFS and LOLIMOT. The solar 

cycle 19 started in 1954 and ended in 1964; we test the set 

containing the sunspots from 1950 to 1965. This set 

includes the peak sunspot number of solar cycle 19, which 

occurred in 1957. The obtained results of applying 

BELRFS, LOLIMOT and their specifications are listed in 

Table IV. Figure 9 shows the predicted value by BELRFS. 



It can be seen that BELRFS predicts the peak value as 238 

that is close to the observed value of the peak point, in 1957. 

In comparison with LoLiMoT, BELRFS has a little bit 

higher NMSE than LoLiMoT.  
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Figure 9. The Predicted values of  monthly sunspots number time series 

using BELRFS.   

 

TABLE IV.  DIFFERENT METHODS FOR ONE STEP AHEAD 

PREDICTION OF  MONTLY SUNSPOTS  FOR SOLARCYCLE 19. 

Method 
Specifications 

NMSE 
Structure  

and Epochs 
Predicted Values 

BELRFS 0.1029 
20rules 
(160) 

238 (two months 
later) 

LoLiMoT 0.0885 50rule(50) 
  228.8464 (One 

month later ) 

ELFIS[Lucas et 

al., 2003] 
0.1386 3rules(--) 

Between 230 and 

240 (one or two 

months in 
advance) 
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Figure 10. The Predicted values of smoothed monthly sunspots from 

1976 to 1996 using BELRFS and LoLiMoT.   

 

In the next experiments, the sunspots from January 1999 

to January 2001 are tested for recursive prediction. First, the 

monthly sunspots time series from January 1986 to 

December 1998 is predicted by BELRFS. Then the obtained 

results (see Figure 10.) without any correction are used to 

predict the sunspots of January 1999 to January 2011. The 

test data includes the peak of solar cycle 23; it has 120.8 

sunspots and it occurred in April 2001. The predicted values 

by the BELRFS are depicted in Figure 11.  It is noticeable 

that BELRFS has the capability to accurately predict the 

occurrence of solar cycle 23. Table V compares the NMSE 

of BELRFS when applied for recursive prediction with the 

obtained results from the studies in [Gholipour et al., 

2006b]. It shows that BELRFS can be used as a reliable 

prediction model.  

TABLE V.  COMPARISON BETWEEN DIFFERENT DATA 

DRIVEN METHODS FOR RECURSIVE PREDICTION OF SOLAR CYCLE 23. 

Method 

Specifications 

 

NMSE Month 

Predicted  

peak 

value 

BELRFS(Recursive 

predction) 

0.0313 
April 122.8 

LoLiMoT 
[Gholipour et al., 

2006b] 

0.046 
March 120.9 

RBF-OLS[Gholipour 
et al., 2006b] 

0.032 
June 120.3 
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Figure 11   Recursive prediction of sunspots using BELRFS.  
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Figure 12. The predicted value of smoothed monthly sunspots from 

March 1918 to June 2001 using BELRFS.  
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Figure 13. Using  BELRFS for recursive prediction of smoothed 

monthly sunspots for the test data from January 2013 to January 2014 

 

As further investigating the performance of BELRFS, the 

model is applied  for the smoothed sunspot number from 

November 18344 to June 2001. The first 1000 samples are 

chosen as training data and the next samples are considered 



as test data. In this case, BELRFS is tested on the set to 

obtain comparable results with the studies in [Chandra et 

al., 2012; Inoussa et al., 2012]. The obtained NMSE from 

using BELRFS to predict this sunspot time series 

(November 1834 to June 2001) is equal to 6.64e-4; it is 

slightly less than the other methods that are mentioned in 

[Chandra et al., 2012; Inoussa et al., 2012]. However, the 

Hybrid NARX-Elman RNN [Chandra et al., 2012] and the 

model that is referred to as Functional Weights Wavelet 

Neural Network-based state-dependent AuoRegressive 

(FWWNN-AR) [Inoussa et al., 2012] have predicted this 

time series more accurately than BELRFS. The reported 

NMSEs of these methods are 5.23e-4 and 5.90e-4 

respectively; which are less than the NMSE of BELRFS. 

The predicted values by BELRFS are depicted in Figure 13. 

It can also be seen that the peak points are very accurately 

predicted by BELRFS.  

As the last experiment, we apply BELRFS to predict the 

sunspot numbers of solar cycle 24, the current solar cycle. 

Solar cycle 24 stared at 2008 and will end at 2019. First, the 

sunspots from January 2008 to December 2012 are 

predicted and then the obtained results without any 

correction are added to the training samples. Finally, the 

BELRFS is tested to predict the sunspot from January 2013 

to December 2014. The predicted values by BELRFS versus 

the predicted values in [NOAA, 2012 a] are depicted in 

Figure 13. Table VI lists the number of sunspots for the 

peak of solar cycle 24.  It has been predicted that the peak of 

this solar cycle occurs in May 2013 and it has 90 sunspots 

[NOAA, 2012 b]. Table VI shows that using BELRFS the 

predicted values are very close to the predicted value in 

[NOAA, 2012 a]. 

 

To evaluate the performance of BELRFS and LoLiMoT, the 

sunspot numbers for the next four months of 2012 are 

recursively predicted.  Table VII presents the predicted 

values by BELRFS and LoLiMoT. It indicates that the 

predicted values of BELRFS are closer to the predicted 

values in [NOAA, 2012 a]. From all the above experiments, 

we can conclude that BELRFS is an accurate prediction 

model for solar activity forecasting.  

 

TABEL VI.  COMPARISON BETWEEN DIFFERENT DATA DRIVEN METHODS 

FOR SOLAR CYCLE 24. 

Method 
Specifications 

Month  
Predicted  

peak value 
NMSE 

BELRFS May 90.17 0.001 

LoLiMoT May 90.33 3.8e-5 

Refrence Model May 90.33 ----- 

 

 

 

 

 

TABLE VI.  COMAPRISON BETWEEN  PREDTRED VALUES OF 

SUNSPOTS FOR NEXT FOUR MONTHS 

Method 

Different Methods 

BELRFS  LoLiMoT 

Predicted 

values 

in[NOAA 

2012a]  

2012   

September 

77.2473 76.92 77.3616 

2012 
October 

81.33 79.5434 80.8367 

2012 

November 
85.01 81.7332 84.4843 

2012 

December 

88.05 

 
83.4272 87.7617 

4.2 Forecasting geomagnetic storm using Auroral 

Electrojet Index 

As already stated, the AE index is a measure of 

geomagnetic storms and it can be used to predict space 

storms. The AE index has been recorded by the World Data 

Center for Geomagnetism and Space Magnetism (Kyoto 

University). The BELRFS is evaluated for one minute-

ahead prediction of the AE index. For this purpose, the 

obtained AE index of the first seven days of March 1992 is 

utilized as training data to predict the AE index of the 9
th

 of 

March 1992 . Table VIII compares the NMSE, correlation 

and epochs for one minute-ahead prediction. It can be seen 

that for short term prediction of the AE index, the prediction 

error of BELRFS is less than the prediction error of 

LoLiMoT. The BELRFS predicts the peak values as 1095; 

while the predicted values by BELRFS is equal to 1105. 

The observed peak value is 1078.  It can be concluded  that 

the BELRFS is more accurate than LoLiMoT in short-term 

prediction of AE time series. The graph in Figure 14 shows 

the predicted  values of AE index vesus the observed values. 

It is noticable that the peak values of the AE index are 

accurately predicted by BELRFS, thus it can be used as a 

short term alert system for gemagnetic storms. 

 

TABLE VII.  COMAPRISON BETWEEN  METHODS PREDICT 

THE AE INDEX.  

Method 
Different Methods 

NMSE  
Peak 

value 
Correlation  

BELRFS 0.0153 1095 0.992 

LoLiMoT 0.0241 1105 
 
0.9881 
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Figure 14.  The predicted AE index  using BELRFS.  



5 CONCLUSION AND FUTURE WORK  

This paper presents an emotionally-inspired architecture for 

chaotic time series prediction. The architecture is referred to 

as BELRFS and consists of one recurrent and two feed 

forward, adaptive neuro-fuzzy networks. The structure of 

the BELRFS has been developed using anatomical aspects 

of emotional learning; while, its function has been 

illustrated using behavioral aspects of emotional learning.  

In other words, structurally, the BELRFS mimics the 

internal interaction of the the limbic system; while, 

functionally, it imitates the classical conditioning of 

emotional learning. 

 The neuro-fuzzy adaptive networks can be constructed 

using a different number of membership functions. This 

characteristic increases the flexibility of models and allows 

one to select the optimal number of membership functions. 

Some characteristics of the BELRFS are as follows:  

1. High prediction accuracy: It has a very good 

capability to address the uncertainty and 

unpredictable issues of chaotic time series 

prediction. It also has the ability to achieve high 

accuracy prediction using a low number of training 

data samples.     

2. High model complexity: the model complexity of 

the BELRFS is high, thus it suffers from the curse 

of dimensionality.  

3. High training speed: BELRFS has a fairly fast 

converge learning algorithm that requires a small 

number of iterations.  

Furthermore, as the obtained results indicate, BELRFS is a 

fairly accurate prediction model for both long term and 

short term prediction. Thus, it would be a reliable prediction 

model for solar activity forecasting, in particular 

considering the prediction of solar cycle 24.  

In the future, the authors would consider adding an 

optimization method, e.g. genetic algorithm, to find the 

optimal values of the fiddle parameters of the BELRFS: the 

initial values of membership functions,  the appropriate 

values for λ , the vector of loss functions, the number of 

neighbors, k , in nearest neighbor algorithm. In addition, the 

BELRFS will be presented using other types of fuzzy 

inference system, e.g. LoLiMoT. We also combine Singular 

Spectrum Analysis (SSA) with the proposed model to 

increase the prediction accuracy for long term prediction. 

We also intend to extend BELRFS with multiple outputs. 

The next prediction applications would be other indices of 

geomagnetic storms, Disturbance storm time (Dst) index 

and global geomagnetic storm index (Kp index). Moreover, 

we intend to examine BELRFS as a nonlinear identification 

method and nonlinear classification model.  
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