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Characterizing the clinical relevance of digital phenotyping

data quality with applications to a cohort with schizophrenia
John Torous1,2, Patrick Staples3, Ian Barnett4, Luis R. Sandoval1,2, Matcheri Keshavan1,2 and Jukka-Pekka Onnela3

Digital phenotyping, or the moment-by-moment quantification of the individual-level human phenotype in situ using data from

personal digital devices and smartphones, in particular, holds great potential for behavioral monitoring of patients. However,

realizing the potential of digital phenotyping requires understanding of the smartphone as a scientific data collection tool. In this

pilot study, we detail a procedure for estimating data quality for phone sensor samples and model the relationship between data

quality and future symptom-related survey responses in a cohort with schizophrenia. We find that measures of empirical coverage

of collected accelerometer and GPS data, as well as survey timing and survey completion metrics, are significantly associated with

future survey scores for a variety of symptom domains. We also find evidence that specific measures of data quality are indicative of

domain-specific future survey outcomes. These results suggest that for smartphone-based digital phenotyping, metadata is not

independent of patient-reported survey scores, and is therefore potentially useful in predicting future clinical outcomes. This work

raises important questions and considerations for future studies; we explore and discuss some of these implications.

npj Digital Medicine  (2018) 1:15 ; doi:10.1038/s41746-018-0022-8

INTRODUCTION

The complexity and heterogeneity of mental disorders, especially
schizophrenia, has challenged psychiatry since the inception of
the field.1 For centuries, physicians recognized that psychotic
disorders were complex multifactorial diseases influenced by both
biological and environmental factors. But despite recognition of
this complexity and heterogeneity, quantifying mental disorders
remains a challenge today.2,3 Advances in genetics, such as
genome-wide association studies (GWAS), and in neuroimaging,
such as functional MRI (fMRI), offer new tools that psychiatry has
embraced to advance understanding of the genetic and neural
basis of psychiatric disorders.4 Even more recently, smartphones
and wearable sensors have been proposed as another set of tools
for advancing understanding of physiological and behavioral
perspectives of these disorders over time.5 Digital phenotyping, or
the moment-by-moment quantification of the individual-level
human phenotype in situ using data from smartphones and other
personal digital devices, holds considerable potential for psychia-
try and the collection of phone-mediated social and behavioral
markers may offer a new target for biological psychiatry.6

However, realizing the potential of digital phenotyping requires
scientific understanding of the smartphone as a scientific data
gathering tool.
While there has recently been much excitement about the

applications of smartphones for psychiatry, there has been
markedly less focus on properties of the data measurements, or
metadata. For example, data gathered from either GWAS or fMRI
studies are not perfect representations of the subjects’ underlying
genomes or brain activity, and ignoring the assumptions and
limitations of these tools and the data they generate can lead to
false interpretations, or as one aptly titled paper notes, “puzzlingly

high correlations in fMRI studies of emotion, personality, and
social cognition”.7 While there is a growing literature on the use of
personal digital devices in psychiatry, few studies have verified
data quality in digital phenotyping, especially in schizophrenia.8

Understanding the quality and properties of smartphone data is
important for its proper interpretation.9 As an example, consider a
smartphone study that monitors GPS in order to determine if
there is an association between distance traveled and worsening
symptoms. It is not possible to sample GPS continuously, as this
would drain any phone’s battery in a few hours. Instead, apps
might ping the GPS sensor at intervals with a specified frequency
and duration. For example, an app might record GPS readings for
60 s once per hour. If even less data is obtained than expected
from a subject, that may reflect (1) the subject turning off GPS, (2)
the phone’s GPS sensor only responding to a subset of the queries
for location data, (3) the GPS sampling for a duration less than
requested, or (4) the GPS sampling at a different frequency than
specified. If two subjects have different smartphone models or
manufacturers, the GPS sensing and sensor data may differ
between them. It is therefore important to understand how data is
collected, not only for accurate interpretation of results but also
for enhancing reproducibility of research. Considering the
smartphone as a scientific measurement tool for psychiatric
research, there is much we do not know at present about the
reliability, sensitivity, and specificity of numerous sensors, such as
GPS, accelerometer, and the microphone.
Another critical aspect of smartphone-based digital phenotyp-

ing is that the metadata generated as part of data collection is
potentially clinically valuable. For example, when a smartphone
pings a patient to take a symptom survey, the exact time the
survey was offered, when it was started and completed can be
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recorded. Other data, such as time taken to answer each question
and possible adjustments to previous answers, can also be
recorded. This metadata may potentially contain clinically relevant
information related to cognition such as attention, processing
speed, and working memory. Survey completion rates that are
implausibly fast or unrealistically slow may also potentially inform
about the validity and quality of survey responses, which might
serve as an early indication of worsening symptoms.
In this pilot study, we detail a procedure for estimating data

quality for smartphone sensor data that is scheduled to be
sampled according to a fixed schedule specified by investigators,
and we explore clinical implications of data quality for a digital
phenotyping study in a schizophrenic cohort. We display how
these and other passive measures vary across subjects and time,
and we model the relationship between data quality and future
survey responses to questions relating to various domains of
schizophrenia.

RESULTS

Sixteen outpatients in a state mental health clinic in active
treatment with confirmed diagnosis of schizophrenia used the
Beiwe smartphone app,10 the front-end of the Beiwe smartphone-
based digital phenotyping platform, for a duration of up to
3 months. The study protocol is explained in detail in ref. 10 and
we briefly review the clinical protocol here. Patients installed the
Beiwe smartphone app onto their personal Android or iOS
smartphones. The app collected two categories of data, active
and passive. The active data collected in this study encompassed
symptom surveys. A variety of surveys queried a total of 23
questions related to mood, anxiety, sleep, psychosis, and
medication adherence, and the app prompted subjects to take
the surveys at 10a.m. on every Monday, Wednesday, and Friday.
Additionally, the app also collected passive data from GPS,
accelerometer, anonymized call and text logs, screen on/off status,
and phone battery charging status. To conserve battery, accel-
erometer and GPS data was collected using an alternating on-
cycle–off-cycle schedule. Accelerometer data was gathered with a
frequency of 10 Hz for 60 s (on-cycle), followed by 60 s of no data
collection (off-cycle). GPS was scheduled to collect data with 1 Hz
frequency for 60 s on-cycle, followed by 600 s off-cycle. Over the
90-day study period that subjects used the Beiwe app, they visited
the clinic every 30 days to complete in-person clinical assessments
of their mood, anxiety, sleep, psychotic symptoms, and general
functioning. Of the 16 subjects, 5 experienced a relapse as defined
by hospitalization for psychiatric reason, or an increase in the level
of care or medications related to psychiatric symptoms. As stated
above, we focus on the quality of passively collected data and its
relationship to outcomes of interest as measured by actively

collected survey data. We have focused on using accelerometer
data to estimate sleep metrics from this patient cohort
elsewhere.11

The coverage of passive data (defined in “Methods”) differs by
each subject and the time since enrollment within the study.
Figure 1 displays accelerometer, GPS, and survey data gathered for
the first 3 weeks for one subject.
To estimate measures of data quality we define a burst as a

period of on-cycle time, during which data is expected to be
gathered according to a fixed sampling schedule. We call a
specific data measurement or observation within a burst a ping.
Our measures of data quality include daily number of bursts and
duration of each burst, as well as the frequency of pings in units of
Hertz within each burst. These quantities are shown schematically
in Fig. 2. In “Methods”, we define the notation and algorithm we
use for estimating these quantities.
Figure 3 shows the estimated number of bursts per day, the

average frequency per burst, the average duration per burst, and
the average duration between bursts for accelerometer and GPS
data for our schizophrenia cohort. The panels in the leftmost
column show accelerometer data, the top panel (1st row)
showing the number of bursts per day. The definition of bursts
given in Algorithm 1 allows for more bursts than is expected,
which is also evident in this panel. The within-burst frequency of
pings (2nd row) for accelerometer varies widely by patient, which
may depend on the make and type of each user’s phone. The
duration per burst (3rd row) is often lower than expected, also
varying widely by patient. The estimated duration between
bursts (4th row) appears to have an inverse relationship to the
number of bursts per day. The second column in the figure
shows these same measures for GPS data. We see that the
number of bursts, frequency within burst, and duration of each
burst are of lower coverage than for accelerometer data. This is
likely because gathering GPS data requires coordination with
GPS satellites, and data collection may fail if GPS is unable to
locate the satellites. This could happen, for example, if the person
is inside a building. GPS can also be easily disabled on the phone
by the subject. In contrast, accelerometer functions as an
independent sensor within the phone and does not require
coordination with external devices. The third column shows the
time between the arrival of a survey and the patient’s first
viewing of the survey (1st row), as well as the time from
beginning the survey to completing the survey (2nd row). The
time to first response for each patient appears to follow a
bimodal distribution, indicating that some subjects initiate their
survey response almost immediately after being prompted to do
so, whereas others take several minutes or hours. In contrast, the
time between observing and completing a survey seems to vary
far less between patients. Finally, most subjects completed most

Fig. 1 A sample of passive and active data gathered for one patient over 3 consecutive weeks. The x-axis shows the number of days since
enrollment in continuous time, and the y-axis shows a sample of passive and active data gathered throughout the study
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of surveys sent to their smartphones throughout the study: of the
14 subjects that completed at least one phone survey, 12/14
(86%) completed more than two of the three surveys adminis-
tered per week on average.
Figure 4 shows these same measures of data quality over

patient time, where Day 1 marks the beginning of data gathering
for each individual patient. These plots show that within this
cohort, data quality generally depends little on length of follow-
up, and tail behavior depends on the few individuals with the
longest duration of follow-up. One exception is the time between
beginning a survey and completing it, which appears to decrease
significantly over time across all patients. This might reflect the
subjects’ familiarity with each survey over time.
Finally, it is possible that the data quality is indicative of clinical

outcomes. This possibility warrants investigation because app
usage patterns may contain clinically relevant and potentially
predictive information about future clinical states. To estimate the
strength of these associations, we created linear mixed models
with data quality measures as predictors lagged by a fixed number
of weeks and clinical survey measures (survey scores) as

outcomes, averaged within each week for each patient. Individual
survey questions presented to patients were measured on a
Likert-type scale, with the following preamble:

In the last week, have you been bothered by the following
problems?

Not at all= 0, Sometimes= 1, Often= 2, Frequently= 3

Covariates included total accelerometer coverage (A), GPS
coverage (G), time to survey viewing (V), time between survey
viewing and completion (C), and total number of surveys
completed (T). For subject i and week j, the average survey
response (Y) was fit according to the regression model specified in

Eq. 1:

Yij ¼ β0 þ μi þ β1Ai;j�l þ β2Gi;j�l þ β3Vi;j�l þ β4Ci;j�l þ β5Ti;j�l þ εij:

(1)

We generally expect higher survey scores to indicate greater
effect within the domain of the survey’s subject matter, typically a
negative clinical outcome. For example, when asked how often a
subject “experiences little interest or pleasure in things”, we
expect them to report “sometimes”, “often”, or “frequently” more
frequently than “not at all” if their surveys in the past few weeks
have been viewed and completed at slower rates. Survey
outcomes include a subset of all questions, detailed in Supple-
mentary Section 1. For tables of the regression coefficients,
significance, and confidence intervals, see Supplementary Section
2. Figure 5 shows p-values and the estimated valence of each
covariate. We report significance both with and without correction
for multiple testing. For a comparison of the expected and
observed number of significant p-values across all survey domains,
see Supplementary Section 3. To correct for multiple testing, we
employed the Benjamini–Hochberg–Yekutieli procedure,12 which
controls the false discovery rate at a user-specified level; we chose
a false discovery date of 0.05.
Across a broad range of survey domains, we find that decreased

accelerometer data coverage and increased GPS data coverage
are weakly associated to higher scores (see Supplementary
Section 2), indicating negative clinical outcomes. Faster viewing
times and slower completion rates are also associated with higher
(worse) scores, particularly in questions probing anxiety. Finally,
lower rates of survey completion are associated with higher
(worse) survey scores, particularly for negative indicators for
schizophrenia and questions probing anhedonia. We did not find
statistically significant relationships between questions related to
cognition or psychosis and any of these features. We find broadly
similar associative patterns between survey scores and passive
data lagged up to 4 weeks in the past, suggesting a stable

Fig. 2 A schematic of data collection for continuous sensor data such as GPS and accelerometer. Data is assumed to be collected in a periodic
fashion: red boxes show contiguous segments of time during which data is collected at a prespecified target frequency (on-cycles), and blue

boxes show periods with no data collection (off-cycles). This diagram displays example data, or pings, as black lines. For day i, b̂i is the

estimated number of bursts, d̂ij is the estimated duration of burst j, and f̂ij is the estimated frequency of burst j. The estimation process for
each of these quantities is given in Algorithm 1
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temporal relationship between these features of data quality and
survey responses.
It is possible that these relationships are confounded by

technological features, such as patients’ smartphone operating
system. We investigated whether the measures of metadata
defined in this paper differ by Android or iOS (see Supplementary
Section 4). We find that data from patients with Android phones
exhibits significantly less GPS coverage recorded compared to
data from patients with iOS phones, yet accelerometer data
coverage did not significantly differ. Survey timings differed
between users of the two operating systems as well: Android users
were more prompt in beginning and completing their surveys.
Given the small number of patients in this study, we cannot make

strong conclusions from these differences, except to note that
phone usage and measures of metadata do differ, and should be
taken into account in future work.
Although we find substantial relationships between metadata

and EMA surveys across a broad range of survey domains, we are
also careful to note that the associations we report here are not
clinical claims but rather hypothesis generating questions. To
illustrate, for one participant who experienced a psychotic relapse
around week 8 of the study, the metadata may hold clinical clues
that the participant’s condition was changing. Unlike this patient’s
initial adherence to smartphone surveys, they ceased responding
to any surveys in the 3 weeks prior to relapse despite nearly
complete passive data coverage as recorded by GPS and

Fig. 3 Metrics of data quality for the dataset. Within each panel, the x-axis shows each unique patient-day sorted and grouped by patient, the
y-axis shows a specific metric of data quality. Colors represent different individuals, with a legend in the bottom right panel. Within each
panel, patients are arranged by descending mean total data coverage, defined in “Methods”. For a–d (first column, or accelerometer) and e–h
(second column, or GPS), each panel from top to bottom gives the estimated number of bursts per day, the daily average frequency of pings
per burst, the daily average duration per burst (in seconds), and the daily average duration or gap between bursts (in seconds), respectively.
The black lines show the expected values for these measurements, which are defined in the “Methods” section. i–l (third column, or surveys)
from top to bottom show the time between subjects first responding to each phone survey after receiving a prompt (in seconds), the time
from first response to survey completion (in seconds), and the total number of surveys taken per day, respectively
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accelerometer. Although making clinical claims regarding this data
will require larger clinical studies, understanding the validity and
reliability of these tools and data they produce is an important first
step.

DISCUSSION

In this study of 16 subjects with schizophrenia using the Beiwe
platform for up to 90 days, we have demonstrated that the total
coverage of passive data is moderately less than expected, that
survey timing metrics vary greatly between subjects, and that total
coverage and latency metrics are associated with self-reported
clinical symptoms. These results suggest that passive data is more
complex and nuanced than often assumed, and they underscore
the importance of data quality in interpreting results. They also
suggest that app usage patterns, irrespective of particular
assessments or tasks, may themselves contain clinically relevant
and potentially predictive information about future states in

schizophrenia and similar disorders. To encourage open science
and replication of these results, our team has released the Beiwe
application into the public domain so others can replicate the
results reported in this pilot study.
The mean coverage of GPS and accelerometer data for patients

within the first month of follow-up was 50.2 and 46.9%,
respectively. While these particular numbers are lower than ideal,
they nevertheless allow for a high-resolution view of patient
behavior. Indeed, traditional approaches to learning about patient
mobility and movement have relied exclusively on self-reported
accounts, mostly surveys, taken weeks or months apart.
Smartphone-based digital phenotyping, in contrast, allows one
to make a large number of daily objective measurements of these
behaviors. In concrete terms, rather than observing patient
location and mobility at, say, 100 bursts throughout the day,
using the numbers from this particular study, we might observe
their location and mobility at, say, 50 bursts. We stress that the
relevant comparison is with 0 bursts, i.e., having no objective

Fig. 4 Metrics of data quality over time for the dataset. Within each panel, the x-axis shows the duration of time spent in the study in days for
each patient, the y-axis shows a specific metric of data quality, sharing the same layout as Fig. 3. Colors represent different individuals, with a
legend in the bottom right panel. The solid red line for each metric shows a LOWESS regression over time
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measurements at all. For clinical purposes of understanding how
sedentary or social those with schizophrenia may be, 100% data
coverage may not be necessary and 50% coverage might be
sufficient to provide clinical insight. Even so, just as the advent of
fMRI and GWAS studies highlight the danger of false discovery
rates in high-dimensional data,13 data quality and the non-random
nature of missingness need careful consideration in digital
phenotyping. New methods to better quantify and account for
data quality enable advances in digital phenotyping through
increasing the reliability, validity, and reproducibility of research.

While our results do not permit a full explanation of why there
were differences from expected values in terms of the count and
duration of bursts and frequency within bursts for GPS and
accelerometer, there are some plausible explanations. For
example, patients might use their phones less as symptoms
worsen, and their phone may enter an inactivity mode, during
which time passive sensors are not recorded. Results unadjusted
for multiple correction shows a weak positive relationship
between GPS coverage and future survey scores, whereas
accelerometer coverage and future survey scores are estimated

Fig. 5 Estimates of the relationship between measures of data quality and smartphone survey domains (see Supplementary Material 1 for
questions included in each domain). The x-axis shows the lag in weeks between the survey score (outcome) and a data quality metric
(covariate). The y-axis shows several data quality metrics: accelerometer total coverage (Acc), GPS total coverage (GPS), the amount of time
between receiving and viewing a survey (View), the time between viewing and submitting a survey (Sub), and the total number of surveys
completed (Comp). Blue panels represent a positive relationship, and red panels represent a negative relationship. Color shade represents the
negative log10 p-value for each model covariate. Significance without multiple correction for p < 0.05 is shown with a black dashed border.
Correcting for multiple testing using the Benjamini–Hochberg–Yekutieli procedure, significant results are shown with a black solid border. For
a numeric table of these values, see Supplementary Material 2
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to exhibit a weak negative association. One possible explanation
for this differential relationship might be the effect of patient
smartphone use on data coverage: for example, if the phone is
still, it might ignore requests to record accelerometer data.
Concurrently, GPS coverage might increase because their home
location is easier for the Global Positioning System to locate. The
phone being still would also indicate that patients interact with
their phone less, which might be related to future worsening of
symptoms. This and similar hypotheses would require analysis of
the relationship between measures of metadata and passive
measures of behavior, an important topic that falls beyond the
scope of this paper.
One potential confounder is the smartphone operating system

(typically Android and iOS), and model, which may react
differently to apps that record and upload large quantities of
data. While it is possible to minimize such differences in a study
where all subjects are given the same study phone, this is
impossible to do at large population scales. Furthermore, this
approach ignores the reality that people use study phones
differently from their own personal phones.14 In Supplementary
Section 4, we show that on average in our sample, iPhones had
less accelerometer coverage and more GPS coverage compared to
Android phones. Whether type of phone itself may be a proxy for
socioeconomic status or another potentially confounding variable
remains an open question. Finally, the use of an app that passively
measures clinically relevant behavioral data might constitute an
intervention, biasing our results. For example, survey adherence in
conjunction with passive monitoring might differ in survey
adherence using apps that deploy phone surveys only. Under-
standing the nature and nuances of passive data in digital
phenotyping will be an important area of research moving
forward, motivating our open release of the Beiwe app in the
public domain.
The relationship between survey responses, completion rates,

and survey response times raises new questions about the validity
of in situ surveys as measurement devices. Specifically, it is not
clear whether this relationship implies that measurements of
survey metadata should be treated as statistical confounders and
adjusted for in the estimation of survey scores, or if the
unadjusted in situ survey score should be considered the best
estimator of true clinical state. Determining which of these is best
for clinical use will require their comparison to other clinically
relevant measures, such as relapse. We leave these analyses for
future investigation.
Our results show a potential new application of passive data

quality, with metrics of passive data coverage, time to first view a
survey, time to complete a survey once viewed, and percentage of
completed surveys, each showing a variety of temporal correla-
tions to numerous symptoms and domains of schizophrenia. For
example, our finding that those subjects reporting more severe
negative symptoms and anhedonia also take longer to complete
surveys on the phone and exhibit lower survey completion rates
overall is intuitive, and provides a new objective measure to
corroborate subjective reports. The findings that those with higher
warning signs scales, suggestive of higher risk of relapse, also took

longer to submit surveys supports a link between cognition,
psychosis, and phone use. We speculate that completing fewer
phone surveys and/or taking a longer time to open them may be
an early indication or proxy for symptoms that those with
schizophrenia are not immediately aware of, which accounts for
the delay between the phone use data and later subject self-
recognition of the deficit. However, verifying this hypothesis will
require further study by both our team and others.
Like all pilot studies, ours has limitations that must be

considered. First, although within the range of other smartphone
mental health studies, our sample size is small. Replicating our
results in more varied samples will be important future work. Since
the Beiwe platform is available to researchers as open source
software, and since all data collection settings of this study are
captured in a Beiwe configuration file that is available from the
authors, replication studies can be carried out in a relatively
straightforward manner. While we minimized confounding vari-
ables that may influence unrealistic phone use, such as payments
tied to use of the app, check-in calls or coaching around the app,
providing subjects with new phones or study phones, and limiting
inclusion criteria to either Apple or Android users, it is still possible
that subjects in this study used their phones differently because
they knew they were enrolled in a study that monitored their
phone. This type of self-awareness would be expected to decline
over time in longer studies, and one might argue that 90 days is
long enough for such awareness to diminish. We also only studied
a single group of patients: those in ongoing care at a state
hospital, and this study does not include a healthy control group.
Additionally, our sample was primarily male, and while to date
there is no evidence that sex influences how those with mental
illness use technology, it will be important to explore our results in
the context of more diverse subject samples.

METHODS

Patients gave informed consent in writing, and methods were performed
in accordance with relevant regulations and guidelines.
Let f be the anticipated frequency of pings within a burst, measured in

pings per second. Let d be the expected duration of a burst, and r the
expected rest period or gap between bursts, both measured in seconds.
With S= 24 × 60 × 60 s within a day, the expected number of bursts per day
is b= S/(d+ r). The expected number of pings per day is p≡ f × d × b.
We now specify our method to estimate the length and duration

of bursts, as well as the frequency of pings within bursts. Let D be
the number of days in the study, with indices i= 1,...,D for each day. Let Ki

be the number of pings per day, with indices k= 1,...,Ki. We write p
ðkÞ
i

for ping k on day i, and tðp
ðkÞ
i Þ for the time of ping p

ðkÞ
i . We seek to

estimate the number of bursts for each day, b̂i , with Eðb̂iÞ ¼ b. Let j be the

index for each burst for day i, with j ¼ 1; :::; b̂i . Let p̂ij and d̂ij be
the estimates of the number of pings for burst j and the duration
for burst j on day i. To estimate the coverage of data for each day, we

require estimates b̂i , p̂ij , and d̂ij . A visual schematic of these components
is shown in Fig. 2, and our method for accomplishing this is given in
Algorithm 1. In brief, we fix a duration of time THRESHOLD, and define
a burst to be the duration of time for which the time between pings
is no greater than THRESHOLD. When this condition is first
violated, the duration and number of pings within the burst is calculated.
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Algorithm 1 Estimation process for the duration and length of bursts, as well as the number of pings per burst

Once b̂i , p̂ij , and d̂ij are estimated, we can define the coverage of burst

count, length, and duration. Let p̂i �
Pb̂i

j¼1

p̂ij be the total estimated number

of pings for day i. The estimated average duration of bursts on day i is

d̂i �
1

b̂i

Pb̂i

j¼1

d̂ij . The estimated frequency within bursts for day i is f̂i �
p̂i

p̂i �d̂i
.

The total estimated coverage for day i is Ĉi �
p̂i
p
¼ b̂i

b
� d̂i
d
� f̂i
f
.

Values for b, d, and f are specified at the beginning of the study as part
of the study design. In this study, Beiwe was configured to collect
accelerometer and GPS data according to the following specifications. For
accelerometer data, the number of bursts, within burst duration, and
frequency within bursts were set to dacc= 60, racc= 60, and facc= 10,
respectively. The rule used in this paper for dividing the collected data
into bursts was defined as THRESHOLDacc= 30. For GPS, these values
were set to dGPS= 60, rGPS= 600, and fGPS= 1, respectively, with a rule for
dividing GPS bursts defined as THRESHOLDGPS= 30. Using these values
and Algorithm 1, we estimate the coverage of data for each patient over
time.

Data availability

Data for this study will be kept on file per local IRB regulations. Although
access to data in this study is restricted per study protocol10 due to
subject identifiability, the Beiwe data collection and analysis platform are
now available as open source software, affording similar external
validation by research teams. In addition, the configuration files specifying
the data collection schedule for subjects in this study and the R code used
for analysis are made available as supplementary files to this article.
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