
Characterizing the Robustness of Complex Networks

Ali Sydney, Caterina Scoglio, Mina Youssef, and Phillip Schumm
Electrical and Computer Engineering Department

Kansas State University

Manhattan, KS USA

Email:{asydney,caterina,mkamel,pbschumm}@ksu.edu

Abstract

With increasingly ambitious initiatives such as GENI and FIND that seek to design future internets, it becomes imperative to define the

characteristics of robust topologies, and build future networks optimized for robustness. This paper investigates the characteristics of network

topologies that maintain a high level of throughput in spite of multiple attacks. To this end, we select network topologies belonging to the

main network models and some real world networks. We consider three types of attacks: removal of random nodes, high degree nodes, and

high betweenness nodes. We use elasticity as our robustness measure and, through our analysis, illustrate that different topologies can have

different degrees of robustness. In particular, elasticity can fall as low as 0.8% of the upper bound based on the attack employed. This result

substantiates the need for optimized network topology design. Furthermore, we implement a tradeoff function that combines elasticity under

the three attack strategies and considers the cost of the network. Our extensive simulations show that, for a given network density, regular and

semi-regular topologies can have higher degrees of robustness than heterogeneous topologies, and that link redundancy is a sufficient but not

necessary condition for robustness.
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1. Introduction

Why study future network topologies? For one, we have ex-

perienced several moderate sized failures and thus, large fail-

ures are inevitable. In particular, the 2006 earthquake in Tai-

wan disrupted undersea fiber optic communication lines and as

a result, banks from South Korea to Australia suffered massive

interruptions [1]. Though this represents a direct network fail-

ure, failures can also occur indirectly. For example Code Red, a

computer virus that incapacitated numerous networks, resulted

in a global loss of 2 billion US dollars [2]. Furthermore, in

2004, Sassar virus disruptions accounted for the halt on mar-

itime operations in the UK, the halt on railway operations in

Australia, and interruptions in hospital facilities in Hong Kong

[3]. The US General Accounting Office estimated 250,000 an-

nual attacks on Department of Defense networks [4]. Objectives

range from theft to immobilization of entire networks. Another

riveting example stems from a series of cascading failures in

2003 that resulted in a blackout in the Northeastern states [5].

A similar phenomenon occurred the very same year in Italy,

and left 56 million residents without power for 9 hours [6]. Our

daily routines would cease to exist should network topologies

disintegrate. Thus, as failures and attacks increase, it is im-

perative to design future topologies robust against unforeseen

catastrophes for future network initiatives.

Amongst other definitions, a network can be robust if discon-

necting components is difficult. However, we define robustness

as the ability of a network to maintain its total throughput un-

der node and link removal. The former definition is based on

topological characteristics, while the latter also considers flows

within the network such as IP packets.

Approaches for determining the robustness of graphs have

evolved from simple graph theoretic concepts that highlight the

connectivity of a graph [7] to more recent concepts that con-

sider the spectrum of a graph [8]. However, these measures

are unable to capture our definition of robustness. For this rea-

son, we use elasticity as our measure of robustness; it meets

the functional requirements of capturing throughput under node

and link removal.

The importance of this paper stems from our objective to

extract the characteristics of robust networks. With these results,

we seek to produce future robust network topologies. Thus, to

realize our first goal, we 1) use the metric elasticity as a measure

of robustness of a network, 2) establish the upper bound for

elasticity, 3) assess elasticity for diverse network models, 4)

present correlations between elasticity and selected network
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metrics, 5) develop and implement a function that considers

the tradeoff between elasticity and network cost, and 6) extract

characteristics of networks that make them robust.

The rest of this paper is structured as follows. Section 2 re-

views measures of robustness based on the structure and be-

havior of the network. Section 3 presents the network models

from which networks will be selected to assess their elastic-

ity. In Section 4, we review elasticity, our robustness measure,

and provide analytical and numerical approaches to obtain the

upper bound. In Section 5, we assess the elasticity of each net-

work, implement a tradeoff function that considers elasticity

under the three removal strategies and discuss the character-

istics which make a network robust. Finally, we discuss the

benefits and shortcomings of elasticity and highlight our future

initiatives to characterize the robustness of complex networks

in Section 6.

2. Background and Related Work

The classical approach for determining robustness of net-

works entails the use of basic concepts from graph theory. For

instance, the connectivity of a graph is an important, and prob-

ably the earliest, measure of robustness of a network [7]. Node

(link) connectivity, defined as the size of the smallest node

(link) cut, determines in a certain sense the robustness of a

graph to the deletion of nodes (links). However, the node or

link connectivity only partly reflects the ability of graphs to

retain certain degrees of connectedness after deletion. Other

improved measures were introduced and studied, including su-

per connectivity [9], conditional connectivity [10], restricted

connectivity [11], fault diameter [12], toughness [13], scatter-

ing number [14], tenacity [15], expansion parameter [16], and

isoperimetric number [17]. In contrast to node (link) connec-

tivity, these new measures consider both the cost to damage a

network and how badly the network is damaged.

Subsequent measures consider the size of the largest con-

nected component as nodes are attacked [18]. Furthermore, per-

colation models were used to assess the damage incurred by

random graphs [19]. From spectral analysis, experimentalists

consider the second smallest Laplacian eigenvalue as a measure

of how difficult it is to break the network into components [8].

The measures reviewed thus far consider the network struc-

ture to assess robustness. However, more recent efforts have in-

corporated the behavior of the network [20,21]. More precisely,

the authors maximized flows in the network while imposing

constraints on routers and links.

Other metrics in networking literature include the average

node degree [22], betweenness [23], heterogeneity [24], and

characteristic path length [25]. In this paper, our results show

significant corelations between elasticity and some of these

metrics which will be used to characterize the robustness of

networks.

3. Network Models

This section reviews the six models from which 18 topologies

were selected. They include networks from random models,

Watts-Strogatz models, preferential attachment models, near-

regular models, trade-off and optimization models, and real-

world models. For each topology, some of the more common

properties are shown in Table 1.

Table 1

Network characteristics where ASP is the average shortest path and Het is

heterogeneity

Networks ♯ Nodes ♯ Links Density Diameter ASP Het

Gi-dense 1000 4505 0.00902 7 3.391 0.331

MySpace 955 10976 0.02409 4 2.013 2.027

Watts-Strogatz 1 1000 3000 0.00601 7 4.14 0.301

PA 2 1000 2964 0.00593 6 3.534 1.109

Gi-sparse 1000 2009 0.00402 12 5.154 0.491

PA 1 1000 1981 0.00397 8 4.177 1.185

Watts-Strogatz 2 1000 2000 0.004 9 5.294 0.37

YouTube 1089 1576 0.00266 12 5.096 1.319

Flickr 967 1515 0.0032 12 4.624 1.394

meshcore 1000 1275 0.00255 3 2.911 3.796

near-regular 2 992 3781 0.00769 31 14.706 0.133

HOT 2 1000 1049 0.0021 12 7.144 1.892

ringcore 1000 1000 0.002 14 8.196 3.122

HOT 1 939 988 0.00224 10 6.812 2.032

PA-sparse 1000 1049 0.0021 14 5.793 1.892

Abilene 886 896 0.00229 10 6.95 2.09

near-regular 1 992 1921 0.00391 61 21 0.089

3.1. Random models

A random graph is obtained by random addition of links

between n vertices. Two notable properties are 1) the average

node degree determines the connectivity of the graph and 2) the

node degree can be approximated using a Poisson distribution.

Erdos-Renyi’s (ER) stochastic model is one of the most studied

of these models. In the construction of an ER graph G(N, E),
E edges are connected at random to N nodes [19]. However,

this paper considers the Gilbert (Gi) model G(N, p), a modified

version of the ER model where edges are connected to vertices

with a probability of p. For the Gi-dense and Gi-sparse networks

used in this paper, p = 0.0091 and 0.004094 respectively [26].

Figure 1 shows the Gi-sparse network.

3.2. Watts-Strogatz Models

The Watts-Strogatz model is constructed by interpolating

between a regular ring lattice and a random network [19].

Each node is connected to its k nearest neighbors and random
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Fig. 1. The Gi-sparse network with size N = 1000 and average degree

k̄ = 4.018

rewiring occurs with a probability of p. For intermediate values

of p, Watts-Strogatz models produces a Small-world network

which captures the high clustering properties of regular graphs

and the small characteristic path length of random graph mod-

els. For the Watts-Strogatz (W-S) 1 and 2 networks used, the

rewiring probability was 0.3 and 0.5 [26]. Figure 2 shows the

W-S 1 network.

Fig. 2. The W-S 1 network with N = 1000 and k̄ = 4

3.3. Preferential Attachment Models

From their origin, preferential attachment (PA) models have

been considered vulnerable to targeted attacks while robust to

random failures and have a heavy tail distribution [27]. This

model constitutes popular nodes called “hubs” that have a large

number of neighbors compared to other nodes with few neigh-

bors. At each time step, nodes with a higher degree have a

higher probability of attracting new nodes than nodes with a

lower degree. For this work, the PA 1, PA 2, and PA-sparse net-

works were constructed using the Barabasi-Albert Scale-free

model [26,20]. Figure 3 shows the PA-sparse network.

3.4. Near-Regular Models

The near-regular (n-r) networks are best visualized in a pla-

nar, grid-like fashion. The n-r 1 network is composed of a 31

by 32 grid where node i is connected to node j if j is a distance

Fig. 3. The PA-sparse network with N = 1000 and k̄ = 2.098

d = 1 unit: 1 unit is the regular distance among nodes in the

grid. The structure of n-r 2 is similar to that of the regular. How-

ever, in addition to d = 1 unit, all nodes within a distance of

d =
√

2units are connected. Figure 4 shows the n-r 1 network.

Fig. 4. The n-r 1 network with N = 992 and k̄ = 3.87

3.5. Trade-off and Optimization Models

The authors of [28] introduce networks with bimodal de-

gree distributions optimized to minimize the impact of random

attacks. The meshcore and ringcore topologies shown in Fig-

ures 5 and 6 represent this model. The Heuristically Optimized

Trade-off (HOT) network presents a simple model for Inter-

net growth [29,20]. The HOT 1 and 2 networks represent this

model. Figure 7 shows the HOT 2 network.

3.6. Real-World Models

Online social networking connects individuals with common

interests. This paper features the MySpace, YouTube, and Flickr

networks. These networks were obtained via snowball sampling

and have been rescaled [30]. The Abilene network in Figure

8 was built using the Abilene core while customers and peer

networks were each replaced with a gateway router [20].
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Fig. 5. The meshcore network with N = 1000 and k̄ = 2.55

Fig. 6. The ringcore network with N = 1000 and k̄ = 2

Fig. 7. The HOT 2 network with N = 1000 and k̄ = 2.098

4. Robustness Metric

The study of robustness is fundamental to numerous network

research problems using approaches that amplify internal be-

haviors of a network. To this end, we use elasticity as our mea-

sure of robustness, obtain its upper bound and finally, select the

most feasible routing algorithm for elasticity.

4.1. Elasticity

For a network G, having no loops or parallel links, elasticity

E(G) is a measure of the overall robustness. As shown in Figure

9, elasticity is the area under the curve of throughput versus the

Fig. 8. The Abilene network with N = 1000 and k̄ = 2.022

Fig. 9. The evaluation of elasticity

percentage of nodes removed. The throughput is normalized to

compare networks of different magnitudes and at each iteration,

it is recalculated at the removal of each node. Initially, TG (0) =
1 which accounts for the normalized throughput. This value

decreases as k
N

% of nodes are removed and therefore, elasticity

(E) provides a measure of robustness at any point of node

removal.

Therefore, when ζ nodes have been removed, elasticity can

be computed as

E

(

ζ

N

)

=
1

2N

ζ
∑

k=0

(

TG

(

k

N

)

+ TG

(

k + 1

N

))

(1)

where TG( k
N

) is the throughput at each interval when k nodes

are removed. N is the total number of nodes in the network

and 0 ≤ ( zeta, k) ≤ N . At each iteration, the throughput is

computed as

TG (t) =
maxρ

∑

i,j Xi,j (t)

α
s.t. LX ≤ B (t) (2)

where t = k
N

and ρ is a constant used to vary the proportion

of flows in network. α is the unnormalized initial throughput

and Xi,j (t) is the traffic flow between source node i and

destination node j. L is the routing matrix, X is a vector of

all Xi,j (t) flows, and B (t) is a vector of all link bandwidth

capacities.
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4.2. Upper bound for Elasticity

4.2.1. Analytical results

In this section, we consider the mesh network as the topology

which provides the highest elasticity under all attack strategies

for any given network. We assume homogeneous flows where

each flow has a value of 1. Additionally, each link has a capacity

of 1 and Xij (t) can be 1 or 0 depending on whether or not a

flow exists between nodes i and j. With these assumptions, we

proceed to determine the upper bound for elasticity.

Theorem. Given a mesh network with N nodes, and as-

suming homogeneous flows and link capacities of 1, then

limN→∞ E(N) = 1
3 .

Proof. Elasticity can be formulated using both discrete and

continuous approaches. At each iteration when a node is

removed, the throughput is given by

TG (t) =
(N − k) (N − k − 1)

N (N − 1)
(3)

where t = k
N

.

Discrete Elasticity (trapezoidal integration). For a given net-

work of size N , Equation 4 computes elasticity when ζ nodes

have been attacked.

E (ζ) =
1

N

(

1

2
+

ζ−1
∑

k=1

β + δ

)

(4)

where β = (N−k)(N−k−1)
N(N−1) , δ = (N−ζ)(N−ζ−1)

2N(N−1) , and

ζ ≤ N − 1. Equation 5 computes the total elasticity for a

network with N nodes when all N nodes are progressively

removed.

E (N) =
1

N

(

1

2
+

ζ−1
∑

k=1

(N − k) (N − k − 1)

N (N − 1)

)

(5)

Continuous Elasticity Equation 6 gives the formulation of

elasticity for the continuous case. Similar to the discrete case,

Equation 7 computes elasticity for a given mesh network with

size of N where ζ nodes have been removed and Equation 8

computes the total elasticity for a mesh network with N nodes.

As the size of the network grows, Equation 9 then provides the

upper bound on elasticity when all N nodes are removed.

E (t) =

∫ t

0

TG (τ) dτ, 0 ≤ t ≤ 1 (6)

E (ζ) =
N (N − 1) ζ + 1

2 (1 − 2ζ) ζ2 + 1
3ζ3

N2 (N − 1)
(7)

E (N) =
1

3
− 1

6N
− 1

6N2
(8)

Therefore,

lim
N→∞

E(N) =
1

3
(9)

Q.E.D.

4.2.2. Numerical Results

Figure 10 compares the convergence rate of the discrete and

continuous cases when ζ nodes have been attacked from a net-

work where N = 20. As depicted, both approaches converge

at the onset of node removal.

Fig. 10. Comparison of the convergence rates of elasticity, from Equations 4

and 7, where ζ nodes have been attacked.

Figure 11 compares the convergence rate of elasticity for the

discrete case in Equation 5 to the continuous case in Equation

8. As shown, both cases converge for a network with 10 nodes.

Fig. 11. Comparison of the convergence rates of elasticity, from Equations 5

and 8, for a network of size N

These convergence rates are significant because they neces-

sitate few iterations. More importantly, the discrete approaches

can be abandoned for the continuous approaches to simplify

calculations without compromising accuracy.

4.3. Routing Algorithm for Elasticity

Elasticity depends on the routing algorithm selected. For this

reason, three routing approaches are explored: 1) Optimization

(heterogeneous traffic matrix), 2) Dijkstra’s Algorithm (hetero-

geneous traffic matrix), and 3) Dijkstra’s Algorithm (homoge-

neous traffic matrix). All approaches assumed homogeneous

link capacities of 1.

4.3.1. Optimization (Heterogeneous traffic matrix)

The Objective Function (Function 10) of the optimization

problem maximizes the individual flow between any pair of
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nodes. Equations 11-14 are the main constraints to the opti-

mization problem. Equation 11 ensures that each node sends δ

unit of traffic to every node, while Equation 12 represents the

balance of the incoming and outgoing traffic demands through

any node in the network. Inequality 13 represents the capacity

constraint on each link, and Equation 14 computes the utiliza-

tion of each link.

Maximize δ (10)

Subject to

∑

j∈N

flows,j,s = δ(N − 1) ∀s (11)

∑

i∈N

(flowi,j,s − flowj,i,s) = δ ∀s, j, j 6= s (12)

∑

s∈N

flowi,j,s ≤ capacityi,j ∀i, j, i 6= j (13)

utilizationi,j =
∑

s∈N

flowi,j,s ∀i, j (14)

Algorithm 1 provides elasticity using the optimization ap-

proach discussed previously.

Algorithm 1 Optimization

while Connected := True do

capacityi,j := 1
demandi,j := 0
while

∑

i,j capacityi,j 6= 0 do

Solve the optimization problem

Update the demand between nodes that are connected

with non-zero capacity links

demandi,j := demandi,j + δ

capacityi,j := capacityi,j − utilizationi,j

end while

Remove one node (or a group of nodes)

end while

4.3.2. Dijkstra’s algorithm (heterogeneous traffic matrix)

The second approach realizes Dijkstra’s algorithm. As shown

in Algorithm 2, flows traverse the shortest path from source to

destination. This algorithm has a running time O(n2). However,

when the heterogeneous traffic matrix is considered, the running

time increases to O(n3).

4.3.3. Dijkstra’s algorithm (homogeneous traffic matrix)

This approach also revolves around Algorithm 2 and like-

wise, has a running time O(n2). However, a homogeneous traf-

fic matrix was implemented. Given these three models, Sub-

section 4.4 evaluates each and selects the most feasible.

4.4. Evaluation of Routing Models

Figure 12 shows the three networks for which elasticity was

computed: Net 1, Net 2, and Net 3. For these three networks,

Algorithm 2 Dijkstra’s algorithm

begin

S := 0; S̄ := N

d(i) := ∞ for each node i ∈ N

d(s) := 0 and pred(s) := 0
while |S| < n do

begin

let i ∈ S̄ be a node for which d (i) = min {d (j) : j ∈ s̄}
S := S ∪ {i} ;
S̄ := S̄ − {i} ;
for each (i, j) ∈ A (i) do

if d (j) > d (i)+ cij then d (j) := d (j)+ cij and pred(j)

:= i

end for

end

we compare the results of elasticity provided by each routing

algorithm targeting first, nodes with the highest degree and

second, nodes with highest betweenness.

Fig. 12. Three networks for which elasticity was evaluated

Figure 13 shows the throughput degradation as nodes with

highest degree are attacked in Net 1. As depicted, the optimiza-

tion approach produces the highest elasticity, followed by Di-

jkstra’s heterogeneous approach and finally, Dijkstra’s homo-

geneous approach. This trend was observed for each network

under both attack strategies. However, under certain circum-

stances where the network has low connectivity, the elasticity

results were identical for both Dijkstra’s “heterogeneous” and

optimization approach.

Fig. 13. Throughput degradation as nodes with highest degree are attacked for

Net 1. “Het” represents a heterogeneous traffic matrix and “Hom” represents

homogeneous traffic matrix.

For each of the three routing approaches, each network was

given a rank of 1, 2 or 3, based on its value for elasticity: 1 as
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the highest and 3 as the lowest. Table 2 displays the rankings

for each network under highest node degree attack. As shown,

elasticity was highest for Net 1, followed by Net 2, and finally,

Net 3, for each approach. Though the values were different

for the highest betweenness attack strategy (not shown), the

rankings were similar to that of Table 2.

Table 2

Elasticity comparison for all networks under highest node degree attack

Algorithm Rank 1 Rank 2 Rank 3

1 Net 1 Net 2 Net 3

2 Net 1 Net 2 Net 3

3 Net 1 Net 2 Net 3

Furthermore, we observed that the criteria for node addition

to the shortest path could potentially affect the results of elas-

ticity. More specifically, in Algorithm 2, nodes are added to the

shortest path if the following optimality condition is satisfied:

d (j) > d (i) + cij (15)

where d(j) is the distance label at node j and cij is the cost

of moving from node i to j.

However, if there are several nodes j, such that each node

satisfies this condition, the next node added to the shortest

path is selected sequentially. To investigate the impact of this

constraint on elasticity, we modify Algorithm 2 to relax the

sequential constraint by randomly selecting the next node j that

will be added to the shortest path. Algorithm 3 reflects these

changes.

Algorithm 3 Dijkstra’s “Modified” algorithm

begin

S := 0; S̄ := N ;X = 0
d(i) := ∞ for each node i ∈ N

d(s) := 0 and pred(s) := 0
while |S| < n do

begin

let i ∈ S̄ be a node for which d (i) = min {d (j) : j ∈ s̄}
S := S ∪ {i} ;
S̄ := S̄ − {i} ;
for each (i, j) ∈ A (i) do

Xi = j,∀j ∈ N which satisfy the optimality condition

jselected = rand (Xi)
then d (j) := d (j) + cij and pred(j) := i

end for

end

We conducted 100 sample runs and averaged elasticity for

each network under highest degree and highest betweenness

attacks. Our results show a negligible difference between the

elasticity results for Algorithm 2 and 3. Hence, the rankings

shown in Table 2 remain the same.

From the three algorithms, we select Dijkstra’s algorithm,

using a homogeneous traffic matrix, as the most feasible be-

cause it produces qualitatively comparable results to the other

two algorithms and has the least costly running time: O(n2).

5. Experimental Results

In this Section, we evaluate elasticity for a set of selected

topologies. First, we compute the elasticity of all networks un-

der each attack strategy and second, we implement a tradeoff

function that combines the elasticity obtained for each attack

strategy and penalizes networks for having excess links.

5.1. Elasticity of Networks Under Three Attack Strategies

In the subsequent sections, Elasticity R, Elasticity D, and

Elasticity B refer to elasticity under the following three attack

strategies:

(i) removal of random nodes (Elasticity R)

(ii) removal of highest degree nodes (Elasticity D)

(iii) removal of highest betweenness nodes (Elasticity B)

Table 3 ranks all networks in descending order of magnitude

based on the number of links and the scores for elasticity under

the three strategies. As shown, the mesh network is the most

robust under all strategies. This is expected, as it sets the upper

bound on elasticity. Under random attacks, the elasticity for the

Gi-dense and MySpace networks are in proximity to that of the

mesh network. As cost is a critical factor in network design,

it is financially sensible to implement the latter two topologies

rather than the mesh because Table 3 shows that the MySpace

and Gi-dense networks can provide about 94% of the elasticity

that the mesh provides while only using about 1% of the links.

Table 3

Networks sorted in descending order for number of links, Elasticity R (Elas.

R), Elasticity D (Elas. D), and Elasticity B (Elas. B)

Nets. links Nets. Elas. R Nets. Elas. D Nets. Elas. B

mesh 499500 mesh 0.3333 mesh 0.3333 mesh 0.3333

MySpace 10976 MySpace 0.3119 n-r 2 0.2426 Gi-dense 0.2390

Gi-dense 4505 Gi-dense 0.3111 Gi-dense 0.2082 W-S 2 0.1770

n-r 2 3781 PA 2 0.2743 MySpace 0.1721 MySpace 0.1719

W-S 2 3000 W-S 2 0.2703 W-S 2 0.1640 W-S 1 0.1260

PA 2 2964 PA 1 0.2677 n-r 1 0.1342 Gi-sparse 0.1010

Gi-sparse 2009 Gi-sparse 0.2520 W-S 1 0.1170 PA 2 0.0719

W-S 1 2000 W-S 1 0.2490 Gi-sparse 0.1143 PA 1 0.0558

PA 1 1981 n-r 2 0.2316 PA 2 0.0644 YouTube 0.0332

n-r 1 1921 Flickr 0.2211 PA 1 0.0535 Flickr 0.0315

YouTube 1576 YouTube 0.2132 YouTube 0.0371 n-r 2 0.0246

Flickr 1515 meshcore 0.1997 Flickr 0.0285 n-r 1 0.0178

meshcore 1275 HOT 2 0.1623 HOT 1 0.0129 meshcore 0.0083

HOT 2 1049 PA-sparse 0.1537 HOT 2 0.0095 HOT 1 0.0059

PA-sparse 1049 HOT 1 0.1405 Abilene 0.0093 HOT 2 0.0048

ringcore 1000 ringcore 0.1290 meshcore 0.0083 PA-sparse 0.0039

HOT 1 988 Abilene 0.1280 PA-sparse 0.0045 Abilene 0.0031

Abilene 896 n-r 1 0.1016 ringcore 0.0040 ringcore 0.0026
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The subsequent Subsections show correlations for elasticity

under the specified attack strategy.

5.1.1. Correlation Between Elasticity and Number of Links

From Table 3 it is notable that for all removal strategies the

MySpace, Gi, PA, and Watts-Strogatz networks all vie for the

highest elasticity. This phenomenon can be explained by con-

sidering the large number of links of these networks. Figures

14, 15, and 16 confirm this propensity and depict elasticity un-

der random, targeted, and highest betweenness attacks respec-

tively. In these figures, each network is assigned a symbol rep-

resentative of two classes of networks: 1) The heterogeneous

class with graphic or unshaded symbols represents networks

with a power-law distribution, and 2) the semi-regular class,

further broken down into deterministic and random networks,

are the blocked, shaded symbols and is indicative of networks

with a Poisson degree distribution. Furthermore, each symbol

within a class can be one of two sizes: The large symbols cor-

respond to the networks shown in “Full caps” in the legend and

the small symbols correspond to networks in “Lower caps.”

These Figures show that the tendency for elasticity to increase

as the number of links increase is not always the case. Thus, a

large number of links is not a necessary condition even if it is

a sufficient condition for high elasticity.

Fig. 14. Elasticity R vs number of links for each network in Table 3

Fig. 15. Elasticity D vs number of links for each network in Table 3

Table 3 shows that under random attack, elasticity can be

as low as 30.5% of the upper bound. This sharply declines to

Fig. 16. Elasticity B vs number of links for each network in Table 3

1.2% for highest degree attacks and 0.8% for highest between-

ness attacks. For this reason, the design of a robust topology

is of utmost importance to obtain high elasticity. For example,

the HOT 1 and PA-sparse networks have the same number of

links, the same number of nodes, and almost identical degree

distributions. However, their response to attacks differ [20]. Un-

der random attacks, the PA-sparse provides 9.76% more elas-

ticity than the HOT 1 network. In the PA-sparse network, low

degree nodes outnumber high degree nodes (hubs) and hence,

the probability of attacking hubs is lower than that of attack-

ing other nodes. This is also the case for the HOT 1 network.

However, the ratio of low degree nodes to hubs is higher in

the PA-sparse network than in the HOT 1 network. As a result,

Elasticity R for the PA-sparse network is higher than the HOT

1 network. For highest degree attack the elasticity provided by

both networks decreases. However, the HOT 1 topology pro-

vides about three times Elasticity D as the PA-sparse network.

The PA-sparse network is more susceptible to this attack be-

cause the hubs in this network facilitate interconnection and

are vital to the elasticity of the network. However, the hubs in

the HOT 1 network are located on the periphery and are less

critical to interconnections [18].

For highest betweenness attack, the elasticity of both net-

works decreases even more. It is notable that from highest de-

gree to highest betweenness attack, the elasticity provided by

HOT 1 exhibits a 54.3% decrease whereas that provided by PA

1 exhibits a much smaller decrease of 13.3%. This can be in-

terpreted from Figures 17 and 18 that show the betweenness

distribution for the PA-sparse and HOT 1 networks. For the

PA-sparse, nodes with the highest degrees have the highest be-

tweenness. Thus, damage incurred under highest betweenness

attacks is almost similar to that under highest degree attack.

However, for the HOT 1 network there is a large decrease in

elasticity from highest degree attack to highest betweenness

attacks because nodes with highest betweenness tend to have

lower degrees and facilitate interconnection within the network.

Thus, attacks on these nodes are more detrimental than high

degree attacks.

5.1.2. Correlation Between Elasticity and Heterogeneity

Figures 19, 20, and 21 illustrate the effect of heterogeneity on

the elasticity of a network. The interpretation of these Figures is
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Fig. 17. Betweenness distribution for the PA-sparse network

Fig. 18. Betweenness distribution for the HOT 1 network

that homogeneous networks have a proclivity for higher levels

of elasticity. These include the variations of Watts-Strogatz’s

small world models, the random models, and the near-regular

models. The implications of these results are far reaching where

network structure is concerned. For example, the W-S 2 net-

work is a representative of the random, semi-regular class of

topologies where the majority of nodes tend to have a degree

close to the average degree. Therefore, the damage incurred

under highest node degree and highest betweenness attacks is

comparable. For example, from Table 3 W-S 2 has elasticity

scores of 0.164 and 0.177 for highest degree and highest be-

tweenness attacks.

A representative of the deterministic, semi-regular networks,

n-r 1 maintains its elasticity under random and high degree

attacks. This result can be understood by the almost constant

node degree. Thus, random attacks in addition to highest de-

gree attacks, result in similar throughput degradation. However,

as nodes are removed under highest betweenness attacks, core

nodes appear and are destroyed. For n-r 1, elasticity decreases

considerably from highest degree attacks to highest between-

ness attacks by 35%. Thus, although these topologies are suffi-

ciently costly, in addition to the fact that they may fail to capture

the properties of some real world networks, their topological

structures offer remarkable resilience to attacks.

Figures 22 and 23 compare the degree distribution for W-S

2, a representative of the semi-regular class of networks, and

Abilene, a representative of the heterogeneous class of net-

works. As discussed previously, the almost constant degree for

Fig. 19. Elasticity R vs heterogeneity for each network in Table 3

Fig. 20. Elasticity D vs heterogeneity for each network in Table 3

Fig. 21. Elasticity B vs heterogeneity for each network in Table 3

the semi-regular class results in high elasticity scores. How-

ever, heterogeneous networks span a wide range of degrees and

behave differently under attacks. More precisely, based on the

“type” of heterogeneous network under investigation, the im-

pact of highest degree attacks can vary. On the one hand, net-

works like Abilene avoid cataclysmic damage under high de-

gree attack because the hubs are located on the periphery of the

network and thus, highest degree attack has minimal effect on

the overall operation of this network. However, heterogeneous

networks like PA-sparse are severely damaged because the hubs

are critical and hold the network together. Thus, homogeneity

has far reaching implications in the robustness of networks.

9



Fig. 22. Node degree distribution of Watts-Strogatz 2 network

Fig. 23. Node degree distribution of Abilene network

5.1.3. Correlation Between Elasticity and Characteristic Path

Length

The characteristic path length tells the expected distance, in

number of hops, from a given source node s to a destination

node t. Figures 24, 25, and 26 show that the characteristic path

length tends to be negatively correlated with elasticity. This is

not a necessary condition as these Figures provide instances

where a network with high characteristic path length can have

a higher elasticity than a network with a smaller characteris-

tic path length. However, if the number of nodes in a given

network is kept constant as the number of links increase, path

diversity will eventually increase. As a result, network conges-

tion decreases which ultimately increases elasticity.

Fig. 24. Elasticity R vs characteristic path length for each network in Table 3

Fig. 25. Elasticity D vs characteristic path length for each network in Table 3

Fig. 26. Elasticity B vs characteristic path length for each network in Table 3

5.2. Elasticity of Networks with Tradeoff Function Applied

To compensate for the tradeoff between elasticity and number

of links, we introduce a tradeoff function Re (G) that provides

robustness with respect to elasticity. For a given network G,

our robustness measure can be computed as

Re (G) = αA + βB + δC − γdensity′ (16)

where A, B, C, represent Elasticity R, Elasticity D, and

Elasticity B. 0 ≤ (α, β, δ, γ) ≤ 1, 0 ≤ density′ ≤ 1 and

density′ = 1 − e−
1
2

(M−(N−1))
N . The 1

2 factor determines the

rate at which density′ changes. α, β,δ, and γ are tolerance

parameters and as such, represent the tolerance of a network

towards random, targeted, and highest betweenness attacks.

M is the total number of links and M − (N − 1) represents

the number of excess links in a network: these are links which

exceed the threshold necessary to obtain 1 connected

component with N nodes.

This function facilitates independence for constructing net-

works based on a projected need. Thus, a network engineer

who envisions persistent, random attacks would consider a high

value of α. Similarly, β or δ would dominate where targeted

attacks or highest betweenness attacks respectively are pre-

dominant. Moreover, γ could be varied based on financial con-

straints.

Table 4 depicts the rankings of each topology with their

respective number of links and Re scores. For each network,
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Table 4

Ranking of networks after implementing the cost function Re

Networks Number of links Re

HOT 2 1049 0.1519

PA-sparse 1049 0.1374

ringcore 1000 0.1351

Abilene 896 0.1342

HOT 1 988 0.1330

W-S 1 2000 0.0982

meshcore 1275 0.0874

YouTube 1576 0.0828

Gi-sparse 2009 0.0708

Flickr 1515 0.0340

PA 1 1981 -0.0110

W-S 2 3000 -0.0210

Gi-dense 4505 -0.0684

near-regular 1 1921 -0.1206

PA 2 2964 -0.2150

near-regular 2 3781 -0.2561

MySpace 10976 -0.3388

we obtained Re for tolerance values of α = β = γ = δ = 1.

The common tolerance values facilitate an unbiased analysis of

robustness by providing equal likelihood of occurrence to each

attack strategy. In addition, these rankings represent the case

where networks are completely penalized for having excess

links and as a result, the structure of the network plays a more

significant role to determine the robustness of the network.

From this analysis, HOT 2 was the highest ranked network.

This network has only 50 excess links and thus, it virtually

avoids the penalty for the existence of excess links. Further-

more, though it exhibits power-law properties, the hubs are lo-

cated on the periphery of the network and hence, HOT 2 has an

admirable structure against targeted attacks but becomes vul-

nerable under highest betweenness attacks. However, consider-

ing the values for the tolerance parameters and number of links

discussed previously, the HOT 2 network is the most suitable.

5.3. Tradeoff Between Characteristic Path Length and

Heterogeneity

The ideal network to provide high elasticity tends to exhibit

a low score for heterogeneity and a short characteristic path

length. In all networks, the mesh has the shortest characteristic

path and the lowest score for heterogeneity and hence, it fea-

tures the highest elasticity. However, this high elasticity comes

at a very high cost which network designers are unwilling to

consider. For this reason, it is imperative to consider a tradeoff

between a short characteristic path length and a low score for

heterogeneity. Figure 27 shows a plot of heterogeneity against

characteristic path length. The colorbar (to the left) provides the

third dimension to this plot of elasticity. This plot can be inter-

preted as a decrease in the characteristic path length such that

the network becomes more homogeneous increases elasticity.

Fig. 27. Elasticity increases as characteristic path length and network hetero-

geneity decrease

6. Conclusions and Outlook

This paper endeavors to extract the characteristics of robust

complex networks. As our measure for robustness, we used

elasticity, which measures the ability of a network to maintain

its total throughput under increasing removal of nodes with re-

spective links, and theoretically derived its upper bound of 1
3 .

We then illustrated its utility on 18 networks from six differ-

ent network models under random, highest degree, and highest

betweenness attacks and then implemented a tradeoff function

which computes robustness with respect to elasticity.

Elasticity is defined and computed under simple assump-

tions. As an example, it is dependent on the routing algorithm

used, which can perhaps alter current network rankings. How-

ever, elasticity provides benefits which are far-reaching. More

precisely, it identifies key characteristics of robust complex net-

works: A short characteristic path length, low heterogeneity,

and strategically located links to facilitate a “homogeneous”

core such that if hubs should be added, they should be placed

on the periphery of the network to provide added resilience

against targeted attacks.

For our future work, we intend to incorporate expander

graphs in our evaluation and formulate a working definition

of the core and periphery to include details about the size and

characteristics. Armed with this knowledge, we seek to com-

bine particular graphs to determine the essential components

to increase elasticity. Finally, we will develop heuristics to

build graphs such that elasticity is maximized.
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