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ABSTRACT

This paper introduces a micro-simulation of urban traffic
flows within a large scale scenario implemented for the Greater
Dublin region in Ireland. Traditionally, the data available
for traffic simulations come from a population census and
dedicated road surveys which only partly cover shopping,
leisure or recreational trips. To account for the latter, the
presented traffic modelling framework exploits the digital
footprints of city inhabitants on services such as Twitter and
Foursquare. We enriched the model with findings from our
previous studies on geographical layout of communities in a
country-wide mobile phone network to account for socially
related journeys. These datasets were used to calibrate a
variant of a radiation model of spatial choice, which we in-
troduced in order to drive individuals’ decisions on trip desti-
nations within an assigned daily activity plan. We observed
that given the distribution of population, the workplace lo-
cations, a comprehensive set of urban facilities and a list of
typical activity sequences of city dwellers collected within
a national road survey, the developed micro-simulation re-
produces not only the journey statistics but also the traffic
volumes at main road segments with surprising accuracy.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
data mining, spatial databases and GIS ; I.6.5 [Simulation
and Modelling]: Model Development—modelling method-
ologies
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urban mobility, spatial choice, location based social net-
works, agent based traffic modelling
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Figure 1: The road network in Greater Dublin re-
gion used for modelling.

1. INTRODUCTION
New opportunities in the study of human mobility arise

from the availability of digital traces of movement such as
the check-in data of location-based social network services
or Call Detail records of cell phone usage. They allow for
uncovering details about urban mobility previously unavail-
able from traditional travel surveys, such as an evidence of a
long-tail in the daily trip distribution indicating that some
individuals cover distances orders of magnitudes larger in
their typical trips than a majority of other users [7]. Check-
in services such as Foursquare [19] or geo-referenced Twit-
ter [21, 20] provide new insights for transportation modelling
by providing quantifiable evidence about the purpose of in-
dividuals’ travel whether for shopping, leisure or recreation,
or meeting friends and visiting family. These activities gen-
erate a considerable amount of road traffic which needs to
be accounted for in transportation models. However, they
are not covered in detail by traditional travel surveys [3] and
rely on perceived rather then measured trip lengths and are
likely to contain biases.



1.1 Contributions of this work
In this paper we investigate the usefulness of digital foot-

prints of individual movement for calibrating human mobil-
ity models within an urban traffic micro-simulation frame-
work. We implemented a large scale realistic working day
scenario for the Greater Dublin region in Ireland. Partic-
ularly, the presented approach includes the following novel
contributions.

• We introduced a spatial choice model of the radiation
type for selecting destinations of individual trips (Sec-
tion 2.1), with interpretable parameters and a simple
calibration scheme (Section 2.3).

• The model is applied for facility choice based on a
dataset of points of interest and transitions statistics
observed via geo-referenced Twitter messages and Four-
square check-ins in Ireland (Section 2.2).

• Geographical layout of a social network observed in
country-wide cell phone data is used as a proxy for
modelling destination choice of the socially related trips
(Section 2.4).

• The developed methodology is applied for destination
choice in shopping, leisure and socially related journeys
which account for major part of the traffic flows but
are not available from traditional surveys.

• These activities are integrated into a realistic traffic
scenario calibrated on the daily plans generated in ac-
cordance with a census of population, workplace loca-
tions, daily activities and departure times (Section 3),
and validated on the measured traffic volume counts
at major roads in Greater Dublin region (Section 4).

The paper is organised as follows. Section 2 gives an overview
of spatial interaction approaches to urban mobility studies
with particular focus on spatial choice modelling. We de-
scribe the developed adaptation of the radiation model in
Section 2.1, which is then applied within a comprehensive
framework of activity-based micro-simulation of traffic flows.
This framework is built on the MatSim platform [4] and is
described in Section 3. It uses a dataset of places of work
locations to model commute flows. The necessary technical
details on the datasets used in model development are given
in Appendix 1. Our experimental results presented in Sec-
tion 4 show that the proposed spatial choice model produces
accurate estimates of the daytime traffic volumes at major
roads. We highlight and interpret some characteristic traffic
volumes patterns and compare this model to a naive base-
line nearest neighbour method where all individuals choose a
closest facility for their destination. We discuss the possible
origins of the surprisingly accurate predictions in Section 5
which concludes the paper.

2. URBAN MOBILITY
Traditional transportation planning and forecasting frame-

works stem from travel surveys on origin-destination flows
and apply gravity laws [28], intervening opportunities [24],
competing destinations [13] or an overarching constrained
entropy maximisation framework [27] to investigate the trip
distribution. A more flexible approach using activity-based
models, focuses on modelling travel demand based on the
activities that people need to perform in the course of a
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Figure 2: A probability of observing a commute trip,
a phone call or a check-in displacement longer than
x kilometers.

day. This framework is usually implemented in a micro-
simulation system where each agent is assigned an activity
chain and performs destination choice in the context of this
agenda. Meanwhile, the mobility of individuals is still rel-
atively unexplored within these frameworks. Empirical evi-
dence confirms that regular commute is a dominating mobil-
ity pattern [23], which also governs occasional fluctuations
as people tend to arrange their travel plans by considering
accessibility and convenience with regard to their primary
locations such as home and work. This rational paradigm
and availability of digital footprints opens new ways to en-
rich activity-based models in transportation modelling and
urban planning. Facility choice thus becomes a key element
of the model performance.

Attempting to predict the locations where people travel
for work, recreation, shopping and to live is a significant
challenge with a long research history. Both professionals
and academics have carried out considerable work over the
last century in dealing with this challenge and many posi-
tive findings have emerged. Factors that are taken into con-
sideration regarding the choice of location include: travel
distance and time, size of the store or facility, range of prod-
ucts or services and overall quality and price considerations.
Models of estimating residential location choice include var-
ious logit models [2, 16, 10]. In modelling the choice of
leisure facilities some recent developments are based on hol-
low space time prisms which are derived from leisure trip
length statistics [14].

2.1 Radiation model of spatial choice
The radiation model [22] is inspired by the theory of in-

tervening opportunities [24] and applies emission-absorption
ideas to compute probabilities of interactions for a set of ori-
gins and destinations of known capacities. It is a destination-
constrained parameter free model where distance decay is
replaced with rank-based decay similarly to intervening op-
portunities. We applied this idea at an individual level to
derive a probability of choosing a particular facility from a
set of facilities of the given type with known capacities.

In our model we assign every individual an emission thresh-
old zi which determines a minimum level above which a par-
ticular driving trip will become worthwhile. For example, in
case of shopping destination choice process, an individual
with a large threshold z who is planning a shopping trip
would have high or perhaps very specific demands which
would have to be overcome and so is less likely to be ab-



sorbed by a nearby facility or shop. We assume there is
some preselected distribution which describes this demand,
p(z). As there is no information on which kind of shopping
trip an individual plans to undertake, we consider that a par-
ticular location choice of an individual at location i is based
on the probability Pmi

(z) that a maximum threshold drawn
from p(z) after mi repetitions is equal to z. Suppose that
each possible destination facility at location j has a certain
probability to satisfy that demand Pnj

(> z), which is given
by a maximum threshold extracted from p(z) after nj repe-
titions, where nj is the capacity of a facility at j. We must
also account for the probability that none of the intervening
facilities could absorb the traveller Psij

(< z) where sij is
the total facility capacity in a circle centred on i of the ra-
dius equal to the distance between locations i and j. Then,
the probability that a person at location i with a demand
threshold mi makes a trip to a facility at j with capacity nj

and no other closer facility, is given by

P (1|mi, nj , sij) =

∫
∞

0

dzPmi
(z)Psij

(<z)Pnj
(>z), (1)

We perform the integral in a similar fashion to the radiation
model [22] and find

P (1|mi, nj , sij) =
minj

(mi + sij)(mi + nj + sij)
. (2)

In our adaptation we aimed at a model where an unknown
distribution p(z) of the demands of individuals deciding to
commence a car trip can be integrated out.

2.2 Mobility data
The movement dataset we used to model shopping, leisure

and recreation trips is a combination of Twitter data col-
lected in [20] and an Irish subset of the Foursquare dataset
described in [8]. It contains a total of 107218 check-in events
posted by 5287 unique users. Characteristic trip lengths
contained in this dataset as compared to commute distances
and call lengths are presented in Figure 2. Other summary
statistics plots including temporal descriptors of users activ-
ities and their mobility are presented in Figure 5. We use
this data to assess the parameters of the characteristic trip
length for non-working activities.

2.3 Facility choice and parameter fitting
In contrast to the original radiation model where the in-

puts are the known populations of the origin and destination,
we have a quantity mi which relates to the choice of facilities
in a region. Good quality public datasets on facility capaci-
ties are not readily available. We can make some estimate of
our parameter mi for a given region from the user-inputted
data on OpenStreetMaps, but the overall coverage of this
dataset is somewhat sparse. Instead we have found that we
can substitute the mi for a given location with an average
facility choice mopt for the entire region. We have devised
a simple method to determine the optimum value for this
parameter (Figure 3). The facilities are ranked according to
the distance to the trip origin and for each facility we use the
radiation model (2) to find the probability that a trip to the
facility will be made. The data clearly show a long tail, con-
firming that longer trips to lower capacity facilities become
increasingly unlikely. In trying to find a good value of m we
see that if we set it too large, m > mopt, this implies the high
or specific demand which can not be satisfied by nearby fa-
cilities and indeed it can be seen in Figure 3 the probability
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Figure 3: Fitting the m parameter in the inverse
rank cumulative probability plot, log-log scale.
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Figure 4: Impact of m parameter on the trip length
histogram. X-axis is in log10 scale, km.

to undertake a trip to a distant facility is significantly in-
creased. Conversely, if m is too small, an individual is much
more likely to make a trip to a nearby facility. The optimal
value of the parameter mopt is found by minimising the dif-
ference between the rank cumulative probability as found by
the radiation model and the observed data. The trip length
distributions resulting from a facility choice dictated by a
radiation model are shown in Figure 4. Again, it is seen
that the m < mopt results in a shorter average path length,
and conversely for m > mopt. The optimal mopt reproduces
the trip length distribution which we find from a database
of check-ins. An example of the theoretical analysis of the
trip length distribution under generic multiplicative spatial
choice models can be found in [25].

2.4 The geography of social networks
Empirical evidence [3, 21, 9] suggests the importance of

social influence on the formation of atypical patterns of mo-
bility. People visit family members or friends, and join them
in recreation, leisure, tourism or shopping trips. It was ob-
served that a probability of befriending a person is inversely
proportional to the number of closer people, i.e. a spatial
rank of the person [18]. Social networks also possess distinct
community structure which often show geographical pat-
terns both at inter-city [11] as well as intra-city scales [26].
One can use the characteristic distances and geographical
layout of these interactions as a proxy for socially related
travel such as journeys to visit friends and family.

The geographical layout of the major communities de-
tected in a cell phone communication network in Greater
Dublin area is presented in Figure 6 (taken from [26]). The
community structure is clearly influenced by the underly-
ing geography. Given that it is much more likely to observe
social links between members of a community than across
different ones, we have simulated a social network for the
population of the agent which reproduces the characteristic
link length distribution, node degree and community struc-
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Figure 5: Empirical CDF for the observed check-ins
dataset show lack of power law tails due to limited
sampling time, relatively low number of messages
registered per user, and bounded geographical area
of observation.

Figure 6: Geographical layout of the major commu-
nities detected in a cell phone comunication network
in Greater Dublin area [26].

ture which we find in the communication network. We will
present further details on this social network generation al-
gorithm elsewhere, and instead show the resulting statistics
of the network in Figure 7.

3. TRAFFIC SIMULATION
Agent-based micro simulation is an effective way to model

and predict traffic. In this approach, each agent is con-
sidered as an individual with an ability to make their own
decisions and manage their daily activities to get the great-
est return. MATSim [4] and SUMO (Simulation for Urban
MObility) [6] are two examples of software frameworks im-
plementing agent-based traffic simulations.

In MATSim each agent is assigned a plan which represents
the desires of that agent for the day, for example, one desire
is the departure time for work. The plan is altered through
different iterations of the simulation in order to maximise
an individual agent’s utility score. Travelling is seen as
having a negative or neutral score whereas spending time
at home has a positive score. Each iteration tries to min-
imise travel time to increase the overall utility score. The
iterations should continue until the system has reached a
relaxed state, known as a Nash Equilibrium where future it-
erations will produce little improvement in the utility scores
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Figure 7: A histogram of a social tie length (left)
and a node degree (right) of the simulated social
network.

of agents. The variables which MATSim can alter during
iterations are the departure time, the route choice and op-
tionally, the location choice for secondary activities, such as
leisure and shopping [14]. Route choice is determined us-
ing the A-Star algorithm [17], while time choice is achieved
using local random mutation [5].

Activity chains, which represent the sequence of activities
undertaken by individuals, are a key input for micro simu-
lations. Generally they are derived from data recorded from
travel surveys and reveal patterns of activities that people
carry out on a normal day. For example, the percentages
of people who travel to a shop immediately after work can
be calculated and integrated into traffic simulations in order
to predict which shopping locations will receive which por-
tions of the road traffic. MATSim has been used by Horni
et al. [14] in this way. By combining data from the Swiss
census regarding work, education and home locations of cit-
izens, with a activity chains collected by the Swiss National
Travel Survey, traffic flows were produced for an average
day. Originally MATSim employed an entirely time based
utility function to calculate where individuals could travel
within the time allocated for shopping trips, however this
was discovered to be insufficient. Therefore, the model was
extended to consider further variables such as shop size or
the density of shops in a given area [14].

3.1 Implementation
We use MATSim to generate a traffic simulation for the

Greater Dublin Area and compare two location choice mod-
els in the simulating traffic flows. One approach considers a
nearest neighbour algorithm while the other uses a variant
of the radiation model detailed in Section 2.1. MATSim has
specific data requirements, including the road network and
agent plans for the study area. Below, the details of the
how this data was prepared for the simulation of traffic in
the Greater Dublin Area are provided.

3.1.1 Network
MATSim requires a network consisting of nodes and links.

The nodes represent road intersections while the links are
the road segments joining these intersections. Using tools
provided by MATSim, the OpenStreetMap(OSM) road net-
work for Dublin was extracted and transformed into the ap-
propriate structure. All roads in an area of approximately
200kms squared around Dublin City were extracted from
OSM, Figure 1. Additionally, all major roads (national
routes and motorways) in Ireland were obtained. Additional
information provided by OSM including the speed limits,
class of road and type of road were also obtained. This per-
mits the simulation to determine the flow capacity of road
segments which is used in route choice.



Figure 8: Home (left) and work (right) locations.

Figure 9: A close up view on home (left) and work
(right) locations highlight a typical segregation of
residential areas and industrial zones.

Figure 10: Locations of facilities in the area. The es-
timated capacities are denoted by circle size (largest
correspond to major shopping malls).

3.1.2 Population and Demand
MATSim also requires a population, which it will model.

The population represents the home and work locations of
individuals within the study area. The locations are shown
in Figure 8. Figure 9 highlights the contrast between a res-
idential and industrial area. Additionally each individual
needs to have a plan, which consist of the desired activi-
ties they will perform during the day. The plans or activity
chains which include the sequence and duration of activi-
ties represent the demand on the network. Further details
on the datasets used within the micro simulation framework
are given in Appendix 1. One important aspect of creating
the demand is the choice of location where activities will
occur.

3.2 Facility choice implementation
The location of various activity types (schools, gyms, pubs,

restaurants, shops, etc.) were extracted from public datasets
including the OSM and a points of interest database of an
in-car GPS navigator. Additionally, the capacity of each of
these facilities was estimated. The resulting facilities are
shown in Figure 10 where the size of the circle on the map
represents the capacities. This formed the input for deter-
mining the location choice during the generation of the day
plan for each agent. The plans were assigned according to
the survey as described in Appendix 1 and contained the
following activity types: school/education, shopping, per-
sonal business, visiting family/friends, social/entertainment,
sport/leisure, and doctor/medical facility. The radiation
model was applied for each individual choice over all alterna-
tives amongst the facilities of a given type. That is, the same
model was applied both at a strategic choice (a school’s loca-
tion) and a tactical choice level (a pub or a restaurant). For
a social visit, a location to visit was assigned by sampling a
home or work location of a friend from the simulated social
network (Section 2.4). In addition to the radiation model for
location choice described in Section 2.1, a nearest neighbour
location choice was used as a näıve baseline approach. This
model randomly selects a facility within a 4km threshold of
the agents’ current or future location. A sample of 50,000
individuals was randomly selected from the available data
for home and work locations. In total 50 route replanning



Figure 11: Traffic volume counts and simulation results for location 1.

Figure 12: Traffic volume counts and simulation results for location 2.

iterations of the simulation were used.
MATSim outputs several pieces of data which are useful

to assess the effectiveness of the simulation. Firstly an ani-
mation which shows the movement of the 50,000 agents over
the road network can be rendered to assess traffic volumes
at different periods of the day. The total distance travelled
and trip duration of individuals is also produced. Finally,
count data which shows the number of cars passing each
road segment (link on the network) for each hour of the
day is provided and served as a key validation measure for
assessing the model performance.

4. RESULTS
The count data obtained with a simulation is compared to

observed count information provided by the National Roads
Authority (NRA) in Ireland which counts traffic using hard-
ware embedded in road surface at specific locations. We
have aggregated hourly average volumes for a typical work-
ing day over a summer period of 2006. Figure 14 shows a
summary of the volume of cars using each road segment on
the network during a 24 hour period returned by the simu-
lation with radiation location choice. Not surprisingly, the
motorway (M50 motorway) which surrounds the city sees
the highest volume of traffic and so is assigned the darkest
colour. Figure 14 also shows the physical location of all NRA
count stations used to validate the simulation and highlights
the three (labelled 1 - 3) that are presented in the paper in
Figures 11-13. These were chosen due to their diverse ge-
ographic locations. The count information for these count
stations was extracted from the data returned by MATSim.
As 50,000 agents represents approximately 10% of vehicu-
lar traffic, the counts were scaled appropriately. The re-
sults were plotted alongside the mean NRA observed count
data which were calculated by averaging the count data for
weekdays (Tuesday to Thursday) from the published count
statistics.

Figures 11 to 13 show the count data for each count sta-
tion. All the graphs emphasise the importance of location
choice for secondary activities. The nearest neighbour ap-
proach (dashed line) successfully detects the time of day that

the morning and evening peak in traffic occurs. This is due
to the fact that home and work locations are obtained from
census data. For the remainder of the day when secondary
activities are occurring, the nearest neighbour model signifi-
cantly underestimates the volume of traffic as individuals fail
to travel for better opportunities and instead select activity
locations which are in close proximity to them.

This is in contrast to the radiation model (solid line) which
produces accurate count data throughout the day. Signifi-
cantly, the volumes at the morning and evening peaks occur
within 2 standard deviations of the mean observed counts
for traffic on the M50 motorway (Figures 12,13). Similarly
for the remainder of the day, the volume closely follows the
mean observed count data. Figure 11 shows the count data
for station 1 which is on the M4 motorway that connects
Dublin to cities in the West of Ireland. Here, the peak
for the morning out-bound traffic appears later than the
observed mean values and the evening peak for in-bound
traffic appears absent. This anomaly can be explained by
the experiment set-up in which only individuals working in
Dublin are considered. The simulation does not capture
those that live in the Greater Dublin Area and work outside
the city. Therefore this road is underused in the morning
for out-bound commuter traffic and likewise in the evening
for in-bound traffic.

5. CONCLUSIONS
It is not uncommon to observe the accuracy of models

and the forecasts of volumes within 40% interval of the mea-
sured flows [12], and the observed fit can be considered as
surprisingly good for a generic approach undertaken in this
study. A major impact on the quality of the results is due to
the amount, high detail and spatial resolution of the home
to work data available for the region. Nevertheless, the
newly introduced universal radiation spatial choice model
was shown to perform superior to the nearest facility choice
and was able to reproduce midday traffic volumes at a vari-
ety of major roads. The exact geography of social ties makes
an essential contribution to its performance. We will study
the influence of model components on the traffic system in



Figure 13: Traffic volume counts and simulation re-
sults for location 3.

more detail. Particularly, we are interested in the impact of
stratification effect that emerges in the coupled considera-
tion of mobility and social influence on facilities choice [15].
Also, the simulated volumes will be increased to the levels at
which the impact of congestion on the route and destination
facility choice can not be neglected.
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Appendix 1.

The population data was obtained from the Irish National
Census which is conducted every five years. The most recent
census was conducted in 2011, however as the data is still
being collated, the 2006 Census was used for generating the
Dublin Simulation. POWCAR (Place of Work - Census of
Anonymised Records) is a subset of the full census which
provides the home location and work location of individuals,
the mode of transport used to commute and the time at
which individuals leave their residence. The home location
is anonymised by giving it at an electoral division level while
the work location is presented a 250 metre grid level. The
time of departure is presented as discrete 30 minute intervals
for the morning period and several modes are encoded in the
means of transport.

To simulate movement within the Greater Dublin Area,
individuals whose place of work is within the Dublin are
extracted. Furthermore, only those who use a private car
or van to get to work are considered. For finer grained
location data, we assign each individual in the POWCAR
dataset buildings to represent their home and work loca-
tions. GeoDirectory, a commercial database, which contains
the location of every building in Ireland was used. The
database contains the coordinates of buildings, the electoral

division they are in and the class of building (commercial,
residential or both). Using this database, each individual
is assigned a random residential building in their electoral
district and a random commercial building with a 250 me-
tre buffer of the work location declared in the POWCAR
dataset. This data was combined with the departure time
information. For the discrete values, a random time instant
in the 30 minute departure segment was selected.

The demand is represented by activity chains and day
plans collected via The Irish National Travel Survey (INTS)
[1]. This Survey was carried out in 2009 as part of the
Quarterly National Household Survey. Over 7000 partici-
pants were randomly selected and issued with a travel diary
to record all journeys for a period of twenty four hours on a
day that was allocated to them. The information gathered
included journey origin and destination type (home, work,
school, etc.), time of departure and arrival, mode of trans-
port, purpose of trip, distance travelled and the time of each
journey.

Activity chains, with durations were extracted from the
INTS and relative frequencies of all travel sequences were
calculated. This enabled a probability to be applied to each
one so that for each individual in the POWCAR dataset,
a day plan was generated. Once the sequence of events is
determined, the duration of the activities needs to be defined
by randomly selecting from all of the durations associated
with the specific activity chain that has been chosen.
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