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Cell Science at a Glance

Classes of phosphoinositide 3-kinases at a glance

Steve Jean* and Amy A. Kiger*

ABSTRACT

The phosphoinositide 3-kinase (PI3K) family is important to nearly

all aspects of cell and tissue biology and central to human

cancer, diabetes and aging. PI3Ks are spatially regulated and

multifunctional, and together, act at nearly all membranes in the cell

to regulate a wide range of signaling, membrane trafficking and

metabolic processes. There is a broadening recognition of the

importance of distinct roles for each of the three different PI3K

classes (I, II and III), as well as for the different isoforms within each

class. Ongoing issues include the need for a better understanding of

the in vivo complexity of PI3K regulation and cellular functions. This

Cell Science at a Glance article and the accompanying poster

summarize the biochemical activities, cellular roles and functional

requirements for the three classes of PI3Ks. In doing so, we aim to

provide an overview of the parallels, the key differences and crucial

interplays between the regulation and roles of the three PI3K

classes.

KEY WORDS: Class I PI3K, Class II PI3K, Class III PI3K,

PI3-kinases, PI3K, Phosphoinositide

Introduction

This Cell Science at a Glance article and the accompanying

poster provide a broad overview of the current knowledge and
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emerging themes related to the important phosphoinositide 3-

kinase (PI3K) family. Although widely appreciated for crucial

roles in cell signaling or membrane trafficking, new research

directions continue to reveal important complexities in specific

PI3K class regulation and functions. Here, we will not elaborate

on the details of specific pathways or processes that engage

individual PI3K subfamily members in normal and human

disease states, which have been reviewed in depth elsewhere.

We instead will highlight the similarities and differences in the

molecular-cellular requirements for each of three PI3K classes

(I, II and III).

Class I, II and III PI3Ks synthesize three distinct

phosphoinositides

Most PI3K functions are mediated by phosphoinositides, the low-

abundance phosphorylated forms of phosphatidylinositol (PtdIns)

(see poster) (Di Paolo and De Camilli, 2006; Sasaki et al., 2009).

All three PI3K classes (I, II and III) phosphorylate the 39-position

hydroxyl of the D-myo-inositol head group to generate specific

phosphoinositide forms (see poster) (Vanhaesebroeck et al.,

2010a). In vitro, all classes can generate phosphatidylinositol

3-phosphate [PtdIns(3)P], class I and II can synthesize

phosphatidylinositol (3,4)-bisphosphate [PtdIns(3,4)P2], and only

class I can produce phosphatidylinositol (3,4,5)-trisphosphate

[PtdIns(3,4,5)P3]. An understanding of more-selective in vivo

PI3K activities has been derived from approaches that combine

the use of genetic mutants or pharmacological inhibitors with

phosphoinositide analysis by chromatography, microscopy

imaging of fluorescent biosensors and epistasis with specific

phosphoinositide 3-phosphatases. In vivo, there is significant

support for class I PI3K synthesis of PtdIns(3,4,5)P3 [and

indirectly, PtdIns(3,4)P2], class III PI3K synthesis of PtdIns(3)P,

and to a lesser extent, class II PI3K synthesis of PtdIns(3)P and

PtdIns(3,4)P2 (see poster) (Backer, 2008; Vanhaesebroeck et al.,

2010a; Falasca and Maffucci, 2012; Posor et al., 2013; Schink

et al., 2013). Despite their overlapping selectivities, the different

PI3Ks exhibit non-redundant functions in cells and animals, as

discussed below. The PI3K family appears restricted to

eukaryotes, and only the class III PI3K is conserved from yeast

to human (Brown and Auger, 2011). In contrast, class I and II

PI3Ks have evolved conserved multidomains, distinct adaptors

and expanded targets that are relevant to multicellular life

(Engelman et al., 2006).

PI3K phosphoinositide functions are mediated by

effector recruitment

A common role for phosphoinositides is the recruitment of

effector proteins through phosphoinositide-binding protein

domains. The best-characterized 3-phosphoinositide-binding domains

are FYVE and a subset of PX and PH domains (Lemmon, 2008)

(see poster). The relatively low phosphoinositide-binding affinity

of these domains in combination with 3-phosphoinositide

phosphatase activities permits highly reversible effector

localization and responses. In addition, ‘coincidence detection’

of both a phosphoinositide and another membrane-localized

protein can further promote effector specificity (Di Paolo and De

Camilli, 2006; Jean and Kiger, 2012). There is a broad range

of known phosphoinositide-regulated effector functions. One

category of effectors directs localized membrane remodeling

events, such as membrane tubulation, fusion, fission or transport.

This is seen with the endosomal sorting and tubulation performed

by the PtdIns(3)P-binding PX-domain-containing sorting nexins

(SNXs) (Cullen, 2008). A second category of effectors mediates

membrane-localized signaling. Examples of this are signal

transduction at the plasma membrane via the PtdIns(3,4,5)P3-

binding PH-domain-containing proteins Akt and Grp1 (Hawkins

et al., 2006). PI3K phosphoinositide activities can also serve other

roles by locally modifying the biophysical properties of membranes,

such as electrostatic interactions or a less well-understood function

in regulating membrane curvature (McLaughlin and Murray, 2005;

Lemmon, 2008).

PI3K protein domains and regulatory subunits

All PI3Ks possess a ‘PI3K signature motif’ that is composed of a

C2 domain, which likely binds membranes, a helical domain and

the catalytic kinase domain (see poster) (Vanhaesebroeck et al.,

2010a). The classification of PI3Ks into the three different classes

is based mainly on the presence of additional protein domains and

their interactions with regulatory subunits. The nomenclature of

the PI3K subunits is shown in Table 1.

The class I PI3K subfamily comprises four members in

vertebrates (see poster), only one member in worm and fly, and

there are none in yeast (Hawkins et al., 2006; Brown and Auger,

2011). Class I PI3Ks function as heterodimers consisting of one

of four catalytic p110 subunits (p110a, b, d or c) and a regulatory

subunit [p85a (or its splice variants p55a and p50a), p85b, p55c,
p101 or p84]. (Vanhaesebroeck et al., 2010a; Vadas et al., 2011).

There are two major classes of regulatory subunits, each

represented by alternative isoforms. Alternative p85 regulatory

subunits (p85, p55, p50), which each harbor two Src homology 2

domains (nSH2, cSH2) and an intervening p110-binding region

(iSH2), constitutively interact with the p110a, p110b and p110d
catalytic subunits through an N-terminal adaptor-binding domain

(ABD). Acting as an adaptor, p85 recruits the complex to

phosphorylated tyrosine commonly downstream of activated

receptor tyrosine kinases (RTKs). p85 also negatively regulates

the kinase activity of p110a through a helical domain interaction,

with important effects in cancer (Vadas et al., 2011). In contrast,

p110c does not have a clear p85-binding domain. Instead, p110c
heterodimers form with the regulatory subunits p101 or p84 that

are devoid of SH2 domains and are almost exclusively activated

by G protein-coupled receptors (GPCRs). Class I PI3Ks also

harbor a Ras-binding domain (RBD) in the N-terminal extension,

Table 1. Nomenclature of PI3K subunits.

Subunit Protein Gene name (human)

Class 1

Catalytic p110a PIK3CA

p110b PIK3CB

p110d PIK3CD

p110c PIK3CG

Regulatory p85a, p55a, p50a PIK3R1

p85b PIK3R2

p55c PIK3R3

p101 PIK3R5

p84, p87 PIK3R6

Class 2

Catalytic PI3KC2a PIK3C2A

PI3KC2b PIK3C2B

PI3KC2c PIK3C2G

Class 3

Catalytic Vps34 PIK3C3

Regulatory Vps15 PIK3R4
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and p110a, p110d and p110c are each stimulus-dependent Ras

effectors (Vanhaesebroeck et al., 2010a). In contrast, the p110b
RBD interacts with Rab5 GTPase (Christoforidis et al., 1999) and

Rho GTPase family members (Fritsch et al., 2013), and

specifically, Rac potentiates p110b GPCR responses

(Guillermet-Guibert et al., 2008; Dbouk et al., 2012; Fritsch

et al., 2013).

The class II PI3K (PI3KC2) subfamily has three members in

vertebrates (see poster), only one member in worm and fly, and

also none in yeast (Brown and Auger, 2011; Falasca and

Maffucci, 2012). This class has additional domains in both N-

and C-terminal extensions. There is no known obligatory

regulatory subunit, but the class II enzymes interact with

proteins that could serve adaptor functions. PI3KC2a and

PI3KC2b contain an N-terminal clathrin-binding (CB) region,

suggesting a link with clathrin-coated vesicles. The PI3KC2a N-

terminal region appears to inhibit kinase activity, which can be

released by clathrin binding (Gaidarov et al., 2001), and PI3KC2a
has been implicated in clathrin-mediated endocytosis (Posor et al.,

2013). The PI3KC2b N-terminus also binds the scaffold protein

intersectin, which promotes increased PtdIns(3)P synthesis (Das

et al., 2007). Unlike the PI3KC2a and -b isoforms, PI3KC2c
protein interactions have not been tested. We identified a scaffold

for the 3-phosphoinositide phosphatase myotubularin (MTM) as a

possible PI3KC2 adaptor, as discussed below (Jean et al., 2012).

Class II PI3Ks also harbor a Ras-binding domain (RBD), although

these signaling inputs are not well characterized. All three PI3KC2

subfamily members possess a unique C-terminal extension that

carries a C2 domain and a PX domain that preferentially binds to

phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] (Stahelin

et al., 2006).

A single class III PI3K is conserved in all eukaryotes (see

poster) (Backer, 2008). This enzyme was first identified as

vacuolar protein sorting 34 (Vps34), the sole PI3K in yeast (Schu

et al., 1993). Vps34 binds to the adaptor protein Vps15 which is

N-terminally myristoylated and regulates the intracellular

membrane localization of Vps34 and its activity (Backer,

2008). Vps15 also engages with other key membrane proteins,

such as the Rab5 GTPase to coordinate Vps34 activity at

endosomes (Christoforidis et al., 1999). Vps34 does not contain

known protein domains outside of the ‘PI3K signature motif’, but

it engages in a growing list of protein interactions that regulate

distinct PtdIns(3)P pools (see below) (Simonsen and Tooze,

2009; Kim et al., 2013).

PI3K and phosphatase co-regulation

An emerging theme is the co-regulation of specific PI3Ks and

PtdIns-phosphatases through shared adaptor protein interactions

(see poster) (Jean and Kiger, 2012). Although first identified as a

p110 regulatory subunit, p85 has since been shown to also bind,

regulate share phenotypes with the antagonizing phosphatase and

tensin homologue (PTEN) 3-phosphatase (Chagpar et al., 2010).

In this way, p85 reversibly regulates the conversion of

PtdIns(4,5)P2 to PtdIns(3,4,5)P3. p85 also interacts with the 5-

phosphatase SHIP (Jackson et al., 1995) and with the 4-

phosphatase INPP4 (Munday et al., 1999), which have possible

significance in the successive endosomal conversion of class I

PI3K PtdIns(3,4,5)P3 to PtdIns(3,4)P2 and PtdIns(3)P,

respectively (Ivetac et al., 2005; Shin et al., 2005). Likewise,

we identified a conserved physical interaction between class II

PI3K and MTMR13/Sbf, an adaptor for 3-phosphoinositide

phosphatase MTMR2/Mtm, and we also found that all these

components functionally co-regulate a PtdIns(3)P pool in

endosomal trafficking (Jean et al., 2012). Finally, the Vps15

adaptor for class III Vps34 was identified to exist in a trimeric

complex with the 3-phosphatases MTM1 or MTMR2 that

compete with Rab5 and Rab7 for Vps15 binding (Cao et al.,

2007). These parallels suggest that shared kinase–phosphatase

adaptor interactions provide a tight spatiotemporal control of

distinct phosphoinositide pools and thus of their specific cellular

functions.

PI3K cellular functions and pathways

The collective cellular and organismal functions for the PI3K

family extend into all parts of the cell, cell-types and

developmental stages (see poster). Each PI3K class has multiple

cellular roles through the regulation of distinct phosphoinositide

pools. The direct roles of PI3Ks can be categorized

predominantly as acting in cell signaling (class I, II) or

membrane trafficking (class II, III). Although not yet widely

addressed, members of different PI3K classes can act at

successive steps in shared pathways and processes (Dou et al.,

2010; Lu et al., 2012). There are also emerging descriptions of

PI3K localization and/or roles in the nucleus (Kumar et al., 2011).

In addition, there are many indirect consequences of these diverse

PI3K functions. Below is a brief overview of the cellular roles

and pathways depicted on the poster and as reviewed elsewhere.

Class I PI3Ks

There is a rich literature on the functions for this founding class of

the PI3K family. Numerous growth factor pathways are under the

control of activated RTKs or GPCRs that recruit p85–p110

complexes to the plasma membrane, where upon relief of p85

inhibition, p110 converts PtdIns(4,5)P2 in to PtdIns(3,4,5)P3 to

elicit signaling responses (Vanhaesebroeck et al., 2010a).

Notably, PtdIns(3,4,5)P3 recruits the kinase Akt, which controls

multiple pathways (including activation of mTORC1, FOXO

and others), to regulate cell growth, proliferation, survival,

metabolism and autophagy (Vanhaesebroeck et al., 2012).

Localized class I PI3K activity also plays a role in cortical F-

actin dynamics, which underlies chemotaxis and phagocytosis

of large particles (Leverrier et al., 2003; Tamura et al., 2009;

Hawkins et al., 2010; Flannagan et al., 2012; Weiger and Parent,

2012). For example, at the neutrophil leading edge, p110c-
induced PtdIns(3,4,5)P3 formation results in the recruitment

of Rac GTPase, which promotes F-actin polymerization,

lamellipodia formation and cell migration (Yoo et al., 2010).

Consistent with a central role for PtdIns(3,4,5)P3 in all of these

cellular processes, the 3-phosphatase PTEN downregulates

PtdIns(3,4,5)P3 and these class I PI3K-activated pathways

(Song et al., 2012).

The four class I catalytic isoforms share overlapping but

distinct functions. The p110c and p110d isoforms are mainly

restricted to functions in immune cells where they are expressed,

whereas p110a and p110b are ubiquitous, but also exhibit

isoform-specific cell-type- and context-dependent requirements.

Most class I PI3K functions are related to their catalytic

properties; however, there is growing evidence for kinase-

independent scaffolding roles for p110c and p110b (Patrucco

et al., 2004; Hirsch et al., 2009; Dou et al., 2010; Rauch et al.,

2011; Dou et al., 2013). Less well understood are the roles for the

numerous regulatory adaptor isoforms in the regulation of class I

p110 functions. Given the importance of class I PI3K function in

cellular homeostasis and regulation, mutations in class I PI3Ks or
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in p85 adaptors are associated with a multitude of human diseases

ranging from diabetes to cancer. In addition, PIK3CA-activating

mutations have recently been linked to congenital lipomatous

overgrowth with vascular, epidermal and skeletal anomalies, or

CLOVES syndrome (Kurek et al., 2012). We refer readers to

reviews that discuss the involvement of class I PI3K in human

disease (Vicinanza et al., 2008; Kok et al., 2009; Vanhaesebroeck

et al., 2010b; Wong et al., 2010).

Class II PI3Ks

Class II PI3Ks have received less research attention to date, so it

is more difficult to generalize on their functions. One emerging

theme is the requirement for class II PI3K functions at the cell

cortex, as seen by its disparate roles in cell migration, cortical

remodeling, glucose transport, insulin signaling, channel

regulation, endocytosis and exocytosis (Mazza and Maffucci,

2011; Falasca and Maffucci, 2012). Class II PI3K functions have

been mostly (although controversially) attributed to PtdIns(3)P,

which has roles in either cell signaling or intracellular membrane

trafficking. Growing evidence suggests that these two

mechanisms could be interrelated at the level of ‘endosomal

signaling’ (Yoshioka et al., 2012; Biswas et al., 2013), or

endosome platforms for the formation of specific signal

transduction complexes and responses (Platta and Stenmark,

2011). With regard to cell signaling roles, PI3KC2-induced

PtdIns(3)P appears to mediate immune cell K+ channel activity

(in the case of PI3KC2b), growth factor receptor responses, and

activation of Rho GTPases in cell contraction and migration (in

the cases of PI3KC2a and -b) (Bridges et al., 2012; Falasca and

Maffucci, 2012; Yoshioka et al., 2012), whereas PI3KC2a-
mediated PtdIns(3,4)P2 activity has been associated with insulin-

induced Akt stimulation (Leibiger et al., 2010). With regard to

membrane trafficking roles, PI3KC2a-induced PtdIns(3)P

activity appears to direct endosomal trafficking in endocytic

recycling (Krag et al., 2010; Jean et al., 2012; Yoshioka et al.,

2012), phagosome maturation (Lu et al., 2012), late steps in

exocytosis (Mazza and Maffucci, 2011; Falasca and Maffucci,

2012) and autophagy (Behrends et al., 2010; Devereaux et al.,

2013), whereas PtdIns(3,4)P2 activity has been recently

implicated with a central role in clathrin-mediated endocytosis

(Posor et al., 2013).

The identification of class II PI3K effectors and pathways will

be important for a broader understanding of their functions.

Although not yet causally linked to human disease, PI3KC2

polymorphisms and studies in cell lines suggest that it might be

potentially involved in diabetes (PI3KC2a and -c) and cancer

(PI3KC2a and -b) (Falasca and Maffucci, 2012). Recent mouse

knockout results also suggest a possible role for human PI3KC2a
in blood vessel formation and integrity (Yoshioka et al., 2012).

Interestingly, phenotypes that result from an inactivation of

specific MTM 3-phosphoinositide phosphatases are suppressed

by a co-knockdown of class II PI3K in flies and worms (Lu et al.,

2012). This suggests that class II PI3K inhibition might be a

therapeutic avenue for treatment of MTM-associated myopathy

and neuropathy disorders in humans (Vicinanza et al., 2008).

Class III PI3K

Vps34 predominantly regulates membrane trafficking, with

central roles in endosomal protein sorting, endosome–lysosome

maturation, autophagosome formation, autophagy flux and

cytokinesis (Backer, 2008; Simonsen and Tooze, 2009; Nezis

et al., 2010; Raiborg et al., 2013). Vps34 is found in an increasing

variety of protein regulatory complexes that specify the synthesis

of PtdIns(3)P pools at distinct intracellular membranes (see

poster) (Backer, 2008). The three core Vps34 regulatory complex

components include the Vps34 catalytic subunit, the Vps15

membrane adaptor (see above), and Vps30 (known as Beclin 1 in

mammals, also called Atg6). In yeast, the complex I [Vps34,

Vps15, Vps30, Atg14 and Atg38 (Araki et al., 2013)] is

implicated in autophagy, whereas complex II (Vps34, Vps15,

Vps30 and Vps38) is involved in membrane trafficking for

vacuolar protein sorting, although not all Vps34 endosomal

functions seem to require Vps30/Beclin 1. Other associated

proteins – the extent and identity of which continues to emerge –

specify Vps34 localization, activity and membrane accessibility

(Backer, 2008; Simonsen and Tooze, 2009; Funderburk et al.,

2010; Kim et al., 2013; Russell et al., 2013).

On early endosomes, Rab5 GTPase activates specific Vps34

complexes for endosomal maturation (see poster). The synthesis

of endosomal PtdIns(3)P leads to the recruitment of effectors,

such as endosomal sorting complex required for transport

(ESCRT) components that are involved in sorting of protein

cargo, and the homotypic fusion and protein sorting (HOPS)

complex that mediates endosome fusion and trafficking to

lysosomes (Raiborg et al., 2013). In a similar fashion, Rab5

and Vps34 are required for phagosome maturation (Flannagan

et al., 2012). Distinct Vps34 complexes that contain the

autophagy core factor Atg14 have been associated with

autophagy. PtdIns(3)P synthesis at autophagosome precursor

membranes – potentially at omegasomes that arise at the

endoplasmic reticulum (ER) and on nascent autophagosomes –

recruits the protein WD-repeat protein interacting with

phosphoinositides 1 (WIPI1; Atg18 in yeast) and elicits a

hierarchical cascade that directs autophagosome formation

(Simonsen and Tooze, 2009; Jaber et al., 2012; Schink et al.,

2013). A growing list of regulators controls the activity of the

Vps34 complex in autophagy (see poster), including the direct

and multi-faceted roles for AMPK that promote Vps34 activity in

response to nutrient stress (Kim et al., 2013). Signaling functions

are also becoming more broadly established for Vps34, with roles

in yeast pheromone signaling (Backer, 2008), regulation of

various developmental receptor pathways (von Zastrow and

Sorkin, 2007; Platta and Stenmark, 2011; Wada and Sun-Wada,

2013) and amino acid sensing in mTORC1 activation (Yoon

et al., 2011; Zoncu et al., 2011; Jaber et al., 2012). In cytokinesis,

Vps34 activity at the midbody leads to the synthesis of a

PtdIns(3)P pool that recruits FYVE-CENT and associated

proteins that regulate the role of ESCRT-III in abscission

(Nezis et al., 2010; Schink et al., 2013).

So far, no human diseases are associated with mutations in

Vps34, although genetic linkage studies found a correlation

between Vps34 promoter variants and schizophrenia (Backer,

2008). In addition, low levels of PtdIns(3)P in brain have been

found in humans affected with Alzheimer’s disease (Morel et al.,

2013), and co-expression of Vps15 and Vps34 could suppress

aspects of Danon autophagic vacuolar myopathy (AVM) disease

in human patient muscle cells (Nemazanyy et al., 2013).

PI3K studies in model organisms

PI3K mutants isolated in model organisms have been

instrumental in describing cellular roles for PI3Ks

(Vanhaesebroeck et al., 2012) (see poster). Roles for class I

PI3K in insulin-signaling-meditated regulation of cell size,

growth and lifespan were first shown in Drosophila and
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Caenorhabditis elegans (Oldham and Hafen, 2003; Kenyon,

2005), the class II PI3K subfamily was first identified and studied

in flies (MacDougall et al., 1995), and class III PI3K functions in

trafficking were identified through its mutant phenotypes in yeast

(Schu et al., 1993; Raiborg et al., 2013). Nearly all of the PI3Ks

and regulatory subunits have now been targeted by gene deletions

in mouse, with extensive phenotypic variation depending on the

expression pattern and genetic redundancy of the targeted isoform

(Vanhaesebroeck et al., 2005; Falasca and Maffucci, 2012; Jaber

et al., 2012; Yoshioka et al., 2012). Although most PI3K isoforms

are required for mouse viability, tissue-specific knockout and

knock-in strategies are now commonly used to facilitate the in

vivo characterization of PI3K function. Care must be taken in

interpreting PI3K isoform knockouts, owing to both the possible

compensation by the non-targeted isoforms in animals with

multigene families and the potential for the involvement of

kinase-dependent and -independent functions. The use of

compound inhibitors has advanced our understanding of class I

and class III PI3K functions (Vanhaesebroeck et al., 2012). The

development of isoform-specific class I and class III PI3K

inhibitors are becoming valuable tools both for use in research

and as the focus of clinical trials for use as chemotherapeutics

(Wu et al., 2009; Wong et al., 2010). However, class II PI3Ks are

generally less sensitive to the first-generation pan-inhibitors, and

no specific class II PI3K compounds have been described to date.

Perspectives

A vast amount of knowledge on PI3Ks has been acquired since

their discovery nearly 30 years ago (Vanhaesebroeck et al., 2012).

Class I PI3K isoforms represent important druggable targets for

multiple human diseases, and key lessons such as on feedback

loops and crosstalk within and between PI3K and other signaling

pathways have been uncovered in pursuit of class I-related

therapies (Carracedo and Pandolfi, 2008; Castellano and

Downward, 2011). The central role for class III PI3K in

autophagy, along with the increasing relevance of autophagy to

human disease, has sparked basic and applied research aimed at

better understanding the regulation and function of the Vps34

complex. There are still many basic functions that remain to be

better illuminated: a deeper understanding of the structure,

generalized roles and isolation of selective compounds for

PI3KC2; composition and in vivo regulation of PI3K protein

complex assemblies; and the direct or indirect effects of

phosphoinositide phosphatases on PI3K functions. The

expanding knowledge on PI3Ks clearly continues to raise new

questions with central relevance to both basic biology and human

health.
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