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Abstract 

Immunotherapies such as immune checkpoint blockade (ICB) and adoptive cell therapy (ACT) have revolutionized 

cancer treatment, especially in patients whose disease was otherwise considered incurable. However, primary and 

secondary resistance to single agent immunotherapy often results in treatment failure, and only a minority of patients 

experience long-term benefits. This review article will discuss the relationship between cancer immune response 

and mechanisms of resistance to immunotherapy. It will also provide a comprehensive review on the latest clinical 

status of combination therapies (e.g., immunotherapy with chemotherapy, radiation therapy and targeted therapy), 

and discuss combination therapies approved by the US Food and Drug Administration. It will provide an overview of 

therapies targeting cytokines and other soluble immunoregulatory factors, ACT, virotherapy, innate immune modifiers 

and cancer vaccines, as well as combination therapies that exploit alternative immune targets and other therapeutic 

modalities. Finally, this review will include the stimulating insights from the 2020 China Immuno-Oncology Workshop 

co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), the China National Medical 

Product Administration (NMPA) and Tsinghua University School of Medicine.
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Introduction
Recent major breakthroughs in cancer immunotherapy 

lie in the identification of immune checkpoints that can-

cer cells hijack to suppress anti-cancer immunity. With 

the approval of immune checkpoint blockers (ICBs) 

across cancer types, immunotherapy has revolution-

ized cancer treatment, especially with metastatic cancers 

where some patients, previously considered to be incur-

able, can enjoy long-term remission and survival. So far, 

the US Food and Drug Administration (FDA) approved 

ICBs include antibodies targeting programmed cell death 

1 (PD1), PD1 ligand 1 (PD-L1) and cytotoxic T-lympho-

cyte-associated protein 4 (CTLA-4).

With FDA approvals of multiple ICBs across cancer 

types, new applications and approvals of cancer immu-

notherapy have stagnated. More recently, adoptive cell 

therapy (ACT), such as chimeric antigen receptor-

engineered T (CAR-T) cells, has emerged as an effec-

tive therapy in hematological malignancies. While ICBs 

restore suppressed pre-existing anti-cancer immunity, 

CAR-T cells bypass antigen presentation, T cell priming 

and activation, thus directly attacking cancer cells. After 

administration, ACT is still governed by the downstream 

resistance mechanisms, especially those at the tumor 

microenvironment (TME). In addition to ICBs and ACT, 

novel strategies of immunotherapy are being explored to 

further improve the treatment efficacy and/or decrease 

immune-mediated toxicities.

Even though ACT is, in general, associated with high 

response rates, many patients eventually develop sec-

ondary resistance. On the other hand, the response 
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rate of ICB monotherapies is usually around the 20% 

range across solid tumors. One strategy to improve 

cancer immunotherapy is to develop biomarkers, such 

as PD-L1, that can be used to select potential respond-

ers and/or exclude potential non-responders. Another 

strategy is to combine agents with different mecha-

nisms of action and target multiple resistant mecha-

nisms. So far, several combination therapies have 

already been approved by the FDA across different can-

cer types (Table  1 and Fig.  1). �is review article will 

review emerging combination therapies, some of which 

were updated at the 2020 China Immuno-Oncology 

(IO) Workshop co-organized by the Chinese Ameri-

can Hematologist and Oncologist Network (CAHON), 

the China National Medical Product Administration 

(NMPA) and Tsinghua University [1, 2].

Cancer-immunity cycle
In 2013, Chen and Mellman (2013) used the concept of 

“the Cancer-Immunity Cycle,” which dissects the anti-

cancer immune response process similar to the way 

the body mounts response toward any foreign antigens 

(Table 2 and Fig. 2) [3]. �e cycle starts with cross-pres-

entation of cancer-associated antigens from cancer cells 

to the major histocompatibility complex (MHC) mol-

ecules on the antigen presenting cells (APCs). Cancer 

antigens encompass cancer neoantigens from genomic 

alterations (mutations, translocations, readthrough 

and frame shifts), cancer associated proteins normally 

expressed at immune privileged sites, viral proteins 

and others (Step 1). APCs, upon capturing of cancer 

antigens, migrate to secondary lymphoid organs (Step 

2). �ese APCs prime and activate naïve T cells via 

Table 1 Currently approved immunotherapy combinations in cancer

Combinations Indications Approval dates References

Pembrolizumab + pemetrexed /platinum First-line non-squamous NSCLC May 10, 2017 [50, 296]

August 21, 2018

Chemoradiation followed by durvalumab Stage III NSCLC February 16, 2018 [86]

Chemotherapy and pembrolizumab First-line NSCLC October 30, 2018 [52]

Atezolizumab + bevacizumab, paclitaxel and carboplatin First-line NSCLC December 6, 2018 [297]

Atezolizumab + nab-paclitaxel/carboplatin First-line Non-squamous NSCLC December 3, 2019 [51]

Nivolumab + ipilimumab First-line treatment of metastatic or recurrent NSCLC 
(PD-L1 >  = 1%)

May 15, 2020 [298]

Nivolumab + ipilimumab + 2 cycles of Pt chemo First-line treatment of metastatic or recurrent NSCLC May 26, 2020 [299]

Atezolizumab + etoposide/carboplatin ES-SCLC March 18, 2019 [53]

Durvalumab + chemo Extensive SCLC March 30, 2020 [54]

Nivolumab + ipilimumab First-line advanced RCC April 16, 2018 [300]

Axitinib + pembrolizumab First-line advanced RCC April 22, 2019 [301]

Avelumab plus axitinib First-line advanced RCC May 14, 2019 [302]

Nivolumab + cabozantinib First-line advanced RCC January 22, 2021 [303]

Chemotherapy, trastuzumab and pembrolizumab Advanced unresectable or metastatic HER2-positive 
gastric or gastroesophageal junction adenocarcinoma

May 5, 2021 [304]

Chemotherapy + pembrolizumab Locally advanced or metastatic gastric or gastroesopha-
geal junction adenocarcinoma

March 23, 2021 [305]

Atezolizumab + nabpaclitaxel Metastatic triple negative breast March 8, 2019 [55]

Pembrolizumab + chemotherapy Recurrent or metastatic triple negative breast November 13, 2020 [56]

Pembrolizumab + chemotherapy HNSCC June 11, 2019 [57]

Pembrolizumab + lenvatinib Endometrial carcinoma September 17, 2019 [306]

Nivolumab + ipilimumab Previously untreated unresectable malignant pleural 
mesothelioma

October 2, 2020 [307]

Nivolumab + ipilimumab Hepatocellular carcinoma after Sorafenib March 11, 2020 [308]

Atezolizumab + bevacizumab HCC 1st-line May 29, 2020 [309]

Nivolumab + ipilimumab Salvage MSI-H/dMMR metastatic CRC July 11, 2018 [310]

Nivolumab + ipilimumab BRAFWT Metastatic melanoma October 1, 2015 [311]

Nivolumab + ipilimumab Metastatic melanoma across BRAF status January 23, 2016 [312]

Atezolizumab + cobimetinib and vemurafenib BRAF V600 + advanced melanoma July 30, 2020 [313]

Chemotherapy followed by avelumab Locally advanced or metastatic urothelial carcinoma June 30, 2020 [58]
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MHC-antigen-T cell receptor (TCR) interaction, along 

with a hierarchy of costimulatory signals, such as the 

CD28/B7-1/2-mediated signaling (Step 3). Activated 

immune cells then enter the circulation system (step 

4), infiltrate into the tumor microenvironment (Step 

5), recognize tumor cells through the interaction of 

the TCR and its cognate antigen presented on MHC 

of tumor cells (Step 6) and kill their target cancer cells 

(Step 7). After killing the targeted cancer cells, release 

of more tumor antigens further fuels the anti-cancer 

immunity cycle.

Resistant mechanisms along the cancer-immunity 
cycle
Cancer cells have been found to have intrinsic mecha-

nisms bypassing every possible step along the cancer-

immunity cycle to evade anti-cancer immunity (Table  2 

and Fig.  2). At the initiation of the anti-cancer immune 

response, some cancers with low tumor mutation burden 

or low immune cell infiltration (such as in prostate can-

cer) may not elicit sufficient immune responses. Loss of 

MHC expression, loss or mutation of β2-microglobulin 

and mutations within the TCR binding domain of MHC 

have all been associated with escape from anti-cancer 

immunity [4–7].

CTLA4 is the first target of ICBs approved by the FDA 

[8]. In addition to CTLA4, several other negative regu-

lators such as T-cell immunoglobulin, mucin domain-3 

protein (TIM-3), lymphocyte-activation gene 3 (LAG-3), 

T-cell immunoreceptor tyrosine-based inhibition motif 

domain (TIGIT) and V-domain immunoglobulin-con-

taining suppressor of T-cell activation (VISTA) [9–13], 

have been identified and are currently being tested in 

clinical trials to determine their potential as targets for 

cancer immunotherapy. Other than negative regulators, 

suboptimal co-stimulation molecule expression, ineffi-

cient cytokine production and heightened infiltration of 

immunosuppressive immune cells have all been found to 

contribute to weakened anti-cancer immunity.

After immune cell priming and activation, any defects 

affecting immune cell trafficking, migration and infiltra-

tion into the tumor microenvironment can invalidate 

anti-cancer immunity. Vascular endothelial growth fac-

tor (VEGF) plays important roles in angiogenesis as well 

as multiple facets of anti-cancer immunity. It decreases 

trafficking and extravasation of cytotoxic T cells, pro-

motes infiltration of  Treg cells into the tumor bed [14] and 

enhances the expression of PD-1 and other inhibitory 

checkpoints involved in  CD8+T cell exhaustion [15]. In 

mouse models, VEGF also impedes the commitment and 

progression of lymphoid progenitors to the T-cell lineage 

[16].

Cytokines within the TME not only affect immune 

cell migration and recruitment to the tumor site, but 

also modulate immune cell activities. Some cytokines, 

such as Chemokine (C-X-C motif ) ligand 9 (CXCL9), 
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Fig. 1 Timeline of the FDA approvals of combination therapy
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CXCL10 and CXCL11, elicit chemotactic function and 

attract cytotoxic T cells while other cytokines, as seen 

with CCL5, CCL17, CCL22 and CXCL8, attract myeloid-

derived suppressor cells (MDSCs) and  Treg cells con-

tributing to the immunosuppressive TME [17–19]. In 

addition to cytokines, transforming growth factor beta 

(TGF-β) is a multipotent growth factor that affects cell 

growth and differentiation, apoptosis and immunosup-

pression. It is present in high concentrations in the TME 

because of production by cancer, stromal and immune 

cells. In general, it inhibits anti-cancer immunity through 

inhibiting the function of effector immune cells and pro-

moting suppressive cells [20]. Both cytokines and TGF-β 

have already been experimentally targeted for cancer 

immunotherapy.

Once immune cells enter the TME, numerous mecha-

nisms have been identified to elicit resistance to anti-

cancer immunity, including cancer cell intrinsic factors, 

immune cells and the immunosuppressive milieu. As dis-

cussed above, through immunoediting and selection pres-

sure from anti-cancer immunity, cancer cells with loss or 

decrease of antigen presentation can survive anti-cancer 

immunity and proliferate to become resistant cancers. 

Upregulation of immunosuppressive signaling pathways, 

such as PD-1, PD-L1, LAG-3 and TIM-3, infiltration of 

immunosuppressive cells, such as  Treg cells, MDSC, M2 

macrophages, a hypoxic and acidic environment, or 

metabolic alterations in the tumor microenvironment, 

have all been found to negatively contribute to anti-can-

cer immunity.

Currently, the FDA-approved ICBs target the immune 

cell priming and activation (anti-CTLA4 antibody) or the 

final negative regulation of T effector cells (anti PD-1 and 

anti-PD-L1 antibodies). As these inhibitors only affect 

one to two steps of the anti-cancer immunity pathway, 

it is not surprising that only a minority (around 20%) 

of patients achieve cancer response with single agents. 

Slightly higher response rates have been observed with 

anti-CTLA4 and anti-PD1/PD-L1 combination treat-

ments, at the cost of higher immune-mediated toxicities. 

Combination therapies are currently being extensively 

explored to target multiple defects along the immunity 

cycle and cancer intrinsic alterations and improve the 

anti-cancer efficacy, which will be covered in the follow-

ing sections.

Combinations of chemotherapy 
and immunotherapy
Most chemotherapeutic agents were developed through 

its direct cytotoxic effects without consideration of the 

effects on immune system. �e interplay between chem-

otherapy and immunotherapy has been demonstrated 

in mouse models where mice with intact immune sys-

tems had significantly improved tumor responses to 

Table 2 The cancer-immunity cycle, resistant mechanisms and potential solutions

Immune response 

process 
Cancer cell death 

and antigen release 

Cancer antigen 

presentation 

Immune cell 

priming and 

activation 

Immune cell 

trafficking to cancer 

cells 

Immune cell 

infiltration into 

tumors 

Targeting and 

killing of cancer 

cells 

Potential 

mechanisms of 

resistance 

Reduced 

nonsynonymous 

mutation, low tumor 

immunogenicity 

Low tumor mutation 

burden, immunoediting 

and loss of immunogenic 

antigen, lack of tumor 

antigen presentation Ilow  

MHC/β2 microglobin 

expression), factors 

affecting macrophage 

maturation, acidic 

environment, high AMP 

and adenosine, 

immunosuppressive 

tumor 

microenvironment, 

suppressive immune cell 

subsets (Treg and 

MDSC) 

Suboptimal co-

stimulation )OX40, 4-

1BB etc), low 

stimulatory cytokine 

production, negative 

feedback regulators 

(CTLA-4 etc), high 

alternate immune 

checkpoints (such as 

TIM-3, LAG-3, TIGIT 

and VISTA),  defective 

IFN-γ signaling, 

epigenetic alteration, 

Dysregulation of 

chemokines and 

chemokine receptors, 

dysfunction of the 

IFN/JAK/STAT 

signaling pathway 

Defective tumor bed 

vasculature, overly 

active angiogenic factors 

(such as high VEGF), 

defective cytokine 

gradient, defective 

immune cell adhesion 

and extravasation, 

induced immune cell 

apoptosis, hostile tumor 

stroma to exclude 

immune cell infiltration 

Immunoediting and loss 

of antigen presentation, 

loss of MHC/β2 

microglobin expression, 

other escape of NK cell-

mediated cytolysis, co-

inhibitory signaling 

pathways (PD1/PD-L1, 

LAG-3, TIM-3 etc), 

immunosuppressive cells 

(Treg, M2 macrophage, 

MDSC etc), 

immunosuppressive 

cytokines (such as TGF-

β, CCL5, CCL17, 

CCL22, CXCL8, and 

CXCL12), low 

immunostimulative 

cytokines (such as 

CXCL9 and CXCL10), 

altered metabolic 

pathways (such as 

adenosine and IDO) 

Potential targets 

and therapeutic 

approaches 

Chemotherapy  

Radiation therapy  

Targeted therapy 

Photodynamic therapy 

Viral therapy 

Cancer vaccine 

Cancer vaccine 

Dendritic cell vaccine 

Viral therapy 

Interferon α

GM-CSF 

TLR agonist 

STINGS agonist 

Anti-CTLA4 , IL-2, IL-

12, Anti-CD27, Anti-

CD40, targeting alternate 

immune checkpoints, 

epigenetic modifiers 

CAR T 

Adoptive cell transfer 

Bispecific T cell engager 

(BiTE) 

Modulation of TME 

Viral therapy 

Intratumor cytokines 

(such as TGF-β) 

Anti-PD1 

Anti-PD-L1 

IDO inhibitor 

Anti-CD73 

A2AR antagonist 

Viral therapy 

Chemotherapy  

Radiation therapy  

Targeted therapy 

Photodynamic Therapy
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anthracyclines [21]. To date, multiple studies have dem-

onstrated the contribution of cytotoxic chemotherapy to 

anti-cancer immunity, leading to several FDA-approved 

combination therapies with immunotherapy (Table  2) 

[22].

Mechanisms of action

Debulking of tumors

One of the major benefits achieved by cytotoxic chemo-

therapy is tumor debulking. Tumor cells are the major 

contributor to immunosuppressive TME. Hence, reduc-

tion of cancer cell mass decreases production of immu-

nosuppressive factors. Furthermore, reduction of tumor 

cell mass decreases the volume of cancer cells needed to 

be eliminated by immune cells. �is can have dramatic 

The

cancer

immunity

cycle

Cancer cell

death and

antigen

release

Cancer

antigen

presentation

Immune cell

priming and

activation

Immune cell

trafficking to

cancer cells

Immune cell

infiltration

into tumors

Targeting

and killing of

cancer cells

Chemotherapy,

Radiation therapy,

Targeted therap,

Photodynamic

therapy, Viral

therapy

Mechanisms

Reduced

nonsynonymous

mutation, low

tumor

immunogenicity

Mechanisms

Antigen loss and

low

presentation,

macrophage

maturation,

suppressive TME
and immune cell

subsets

Strategies

Cancer vaccine,
Dendritic cell
vaccine, Viral

therapy
,Interferon α, GM-
CSF, TLR agonist,
STINGS agonist

Mechanisms

Low co-
stimulation, low

stimulatory
cytokine, negative

feedback
regulators

Strategies

Anti-CTLA4
antibody, IL-2, IL-

12, Anti-CD27
antibody, Anti-
CD40 antibody

Mechanisms

dysfunction of
chemokines,

receptors, the
IFN/JAK/STAT

signaling pathway

Strategies

CAR T ,Adoptive
cell transfer,

Bispecific T cell
engager (BiTE)

intratumor
cytokines

Mechanisms

Tumor vasculature,
angiogenic factors,

cell adhesion,
extravasationl

apoptosis, hostile
TME

Strategies

Modulation of
TME, anti-

angiogenesis, Viral
therapy,

Intratumor
cytokines

Mechanisms

T cell recognition,
NK cell attack, co-

inhibitory signaling,
immunosuppressiv

e cells, TME and
cytokines,

Strategies

Anti-PD1/PD-L1,
IDO inhibitor,

Anti-CD73, A2AR
antagonist,
virotherapy,

Fig. 2 The cancer-immunity cycle, resistant mechanisms and potential solutions
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consequences, especially in those tumors with limited 

immune cell infiltration at TME.

Immunogenic cell death (ICD)

ICD is a form of regulated cell death that is amenable to 

activating the adaptive immune response in immuno-

competent hosts [23]. Numerous studies have shown that 

cytotoxic chemotherapy induces ICD and potentiates 

immunotherapy [24]. Insult of cancer cells by cytotoxic 

chemotherapy leads to release and relocation of damage-

associated molecular patterns (DAMPs) that increase 

the adjuvanticity of cancer cells [25]. Release of intracel-

lular molecules, such as ATP, enhances the recruitment 

of APCs; cytoplasmic annexin A1 released from cancer 

cells interacts with formyl peptide receptor 1 to promote 

interaction of dendritic cells and damaged cancer cells; 

exposure of endoplasmic reticulum chaperone proteins, 

such as heat shock protein 70 (HSP70), HSP90 and cal-

reticulin, promotes the phagocytosis of stressed cancer 

cells by dendritic cells; cytosolic DNA and RNA stimulate 

the secretion of type I interferon and other proinflamma-

tory cytokines through the cyclic GMP-AMP synthase 

(cGAS)/stimulator of interferon genes (STING) pathway, 

toll-like receptor 3 (TLR3) and TLR9; Type I interferon 

and other molecules released by stressed cancer cells, 

such as high mobility group box  1 (HMGB1), promote 

dendritic cell maturation and antigen presentation to T 

cells; and C–C motif chemokine ligand 2 (CCL2), C-X-C 

motif chemokine ligand 1 (CXCL1) and CXCL10 facili-

tate T-cell recruitment.

Increase in antigenicity of cancer cells

While ample evidence exists that chemotherapy increases 

the adjuvanticity of cancer cells through ICD, less is 

known about enhancement of antigenicity by chemother-

apy. Many of the commonly used cytotoxic agents, such 

as anthracyclines, cyclophosphamide, platinum and taxa-

nes, target cell cycle progression in proliferating cells and 

induce apoptosis. After tumor cell death, antigen-pre-

senting cells engulf dying tumor cells and present tumor 

neoantigens to immune cells.

In addition, several other studies show that cytotoxic 

agents upregulate antigen-presenting machinery. Gem-

citabine can significantly upregulate the expression of 

human leukocyte antigen (HLA)-A, B and C through 

increased expression of β2-microglobulin and alter the 

peptide antigen repertoire expressed on HLA class I [26]. 

A similar phenomenon is also observed with topotecan 

which upregulates HLA class I expression through acti-

vation of NF-κB/Interferon-β/MHC-I signaling axis [27]. 

As discussed above, ICD and stimulation of the cGAS/

STING pathway induces type I interferon production 

which can upregulate HLA class I molecule expression 

and antigen presentation.

Depletion of immunosuppressive cells

Several subpopulations of immune cells are known 

to suppress anti-cancer immunity. Cytotoxic chemo-

therapy, such as platinum, cyclophosphamide, gemcit-

abine and 5-fluorouracil, can clearly reduce MDSCs in 

both humans and mice [28–31]. Trabectedin selectively 

depletes monocytes/macrophages through activation of 

caspase-8-dependent apoptosis [32]. Human  Treg cells 

lack the expression of cyclophosphamide-excreting 

transporter ABCB1 and are more sensitive to cyclophos-

phamide treatment than other immune cells [33]. Fur-

thermore, chemotherapy alters the TME and favors the 

differentiation of immune cells supporting anti-cancer 

immunity. For example, cyclophosphamide and doxo-

rubicin favor the M1 differentiation of tumor-associated 

macrophages [34].

Modulation of gene expression

In addition to the cytotoxic chemotherapy, another major 

class of small molecular drugs are epigenetic modula-

tors. Epigenetic modulation, such as DNA methylation, 

histone modification, chromatin remodeling and the 

readout of these modifications, has tremendous impact 

during oncogenesis and is a  critical event in some can-

cers, such as loss of tumor suppressor genes from DNA 

methylation. Hence, epigenetic modulators constitute an 

ever-expanding class of anti-neoplasm agents.

In addition to direct induction of ICD and stimulation 

of antitumor immunity, as seen with histone deacetylase 

(HDAC) inhibitors vorinostat and panobinostat [35], 

another major contributing mechanism to the synergy 

between epigenetic modulators and immunotherapy is 

through gene expression modification. Both HDAC and 

DNA methyltransferase (DNMT) inhibitors have been 

shown to upregulate the antigen processing and presen-

tation machinery. Both HLA class molecules [36, 37] and 

tumor-associated antigens [38] have been found to be 

upregulated by epigenetic modulators. Epigenetic mod-

ulators also have direct impacts on the immune system 

to potentiate anti-cancer immunity. �ey can upregu-

late co-stimulatory molecules, such as CD80, CD86 and 

ICAM-1, and immune checkpoints CTLA4, PD1 and 

PD-L1 [39]. Furthermore, cytokines can also be induced, 

and response to immunotherapy can be augmented by 

epigenetic modulators [40]. �e innate immune system 

can be modified by epigenetic modulators as well. Acti-

vating receptor NKG2D on the surface of NK cells and 

stressing-inducing ligand MICA and MICB on tumor 

cells can all be induced by HDAC inhibitors to increase 

NK cell killing of tumor cells [41, 42].
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Potentiation and restoration of sensitivity to chemotherapy

Several studies showed that potentiation of immu-

notherapy and cytotoxic chemotherapy is reciprocal. 

Some patients with chemoresistant tumors responded 

to chemotherapy re-challenge upon disease progression 

on anti-PD1 therapy. In both Hodgkin’s lymphoma and 

non-small cell lung cancer, increased response to salvage 

chemotherapy was observed after disease progression on 

immune checkpoint blockade [43, 44].

Detrimental e�ects of chemotherapy on immunotherapy

One of the major detrimental effects of chemotherapy 

to the immune system is lymphodepletion which can 

be immunosuppressive. In fact, some of the immuno-

suppressive drugs used in clinic to treat autoimmune 

diseases are cytotoxic chemotherapy used for cancer 

treatment, but with different doses and schedules. It is 

still controversial whether lymphodepletion induced by 

chemotherapy is suppressive for anti-cancer immunity. 

Lymphodepletion associated with cancer chemotherapy 

is usually associated with rebound of lymphocyte counts 

and an immune system “reset.” One study showed the 

uneven recovery of different immune cell subpopulations 

tilting to anti-cancer immunity [45].

Chemotherapy can also affect tertiary lymphoid struc-

tures (TLS) [46, 47]. TLS are ectopic lymphoid organi-

zations developed in non-lymphoid tissues, including 

cancer, and display similar organization as secondary 

lymphoid organs, such as lymph nodes. Extensive data 

suggest that TLS function similarly to lymph nodes in 

recruiting lymphocytes into tumors, and mounting local 

and systemic immune response against cancers. Overall, 

the presence and high densities of TLS in tumors favora-

bly correlate with prognosis in multiple cancer types, 

and sometimes independent of the pathological TNM 

(tumor-lymph node-metastasis) staging [46–48]. �e 

lymphodepleting effect of chemotherapy can also affect 

TLS either by the direct cytotoxic effect of chemothera-

peutic drugs or associated therapies, such as corticoster-

oids [49].

Table 3 FDA-approved chemotherapy and immunotherapy combination

Cancer Line of therapy Chemotherapy Immunotherapy Clinical bene�t Statistics Trial name and 
reference

NSCLC-non-squa-
mous

Metastatic, first-line Pemetrexed + plati-
num

Pembrolizumab OS at 12 Mos: 
69.2% versus 49.4%

HR 0.49; 95% CI 
0.38–0.64; P < 0.001

KEYNOTE-189  [50],

NSCLC-non-squa-
mous

Metastatic, first-line Carboplatin + nabpa-
clitaxel

Atezolizumab OS: 18.6 versus 13.9 
Mos

HR 0·79; 95% 
CI 0·64–0·98; 
p = 0·033

IMpower 130, [51]

NSCLC-non-squa-
mous

Metastatic, first-line Carboplatin + pacli-
taxel + bevacizumab

Atezolizumab OS: 19.2 versus 
14.7 mo

HR 0.78; 95% 
CI 0.64 to 0.96; 
P = 0.02

IMpower 150, [297]

NSCLC Metastatic, first-line Platinum doublet Nivolumab + ipili-
mumab

OS 15.6 versus 
10.9 m;

HR 0.66; 95% 
CI 0.55–0.80; 
P = 0.00065

CheckMate-9LA, 
[299]

NSCLC-squamous Metastatic, first-line Carboplatin + pacli-
taxel/ nabpaclitaxel

Pembrolizumab OS: 15.9 versus 
11.3 months

HR 0.64; 95% 
CI 0.49 to 0.85; 
P < 0.001

KEYNOTE-407, [52]

SCLC Extensive stage, 
first-line

Carboplatin + etopo-
side

Atezolizumab 
concurrent and 
maintenance

OS: 12.3 versus 
10.3 m

HR 0.70; 95% CI 
0.54–0.91; P = 0.007

IMpower133, [53]

SCLC Extensive stage, 
first-line

Carboplatin + etopo-
side

Durvalumab OS: 12.9 versus 
10.5 months

HR 0·73 (95% 
CI 0·59–0·91; 
p = 0·0047

CASPIAN, [54]

Breast triple nega-
tive

Metastatic, first-line nabpaclitaxel Atezolizumab OS: 25.0 versus 
15.5 months (PD-
L1( +)

HR 0.62; 95% CI 
0.45–0.86

IMpassion 130, [55]

Breast triple nega-
tive

Metastatic, first-line Nabpaclitaxel or 
paclitaxel or carbpol-
atin + Gemcitabine

Pembrolizumab PFS (CPS > 10) 9.7 
versus 5.6 m:

HR 0·65, 95% CI 
0·49–0·86; one-
sided p = 0·0012

KEYNOTE 355, [56]

Bladder cancer Metastatic, first-line 
maintenance

Gemcitabine + cispl-
atin/carboplatin

Avelumab OS: 21.1 versus 
14.3 Mo

HR 0.69; 95% 
CI 0.56 to 0.86; 
P = 0.001

JAVELIN Bladder 
100, [58]

Head and Neck 
Cancer

Metastatic first-line Platinum + 5-FU 
or plati-
num + 5-FU + cetuxi-
mab

Pembrolizumab OS: 13·6 versus 
10·4 (CPS ≥ 1)

HR 0·65; 95% 
CI 0·53–0·80; 
p < 0·0001

KEYNOTE-048, [57]
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FDA-approved chemoimmunotherapy combinations

Many clinical trials with combinations of chemoim-

munotherapy have been conducted in almost all major 

cancers with several FDA approvals (Fig. 1, Tables 1 and 

3). �e poster child of the combinations can be found in 

lung cancer. In the Keynote-189 trial with 616 lung ade-

nocarcinoma patients, pembrolizumab with platinum-

based doublet chemotherapy significantly improved the 

overall survival (OS) when compared to chemotherapy 

alone (HR 0.49, 95% CI 0.38–0.64, p < 0.001) [50]. While 

the benefit was greatest in patients whose tumors had 

PD-L1 > 50% expression, OS was improved across all 

patient subsets regardless of the PD-L1 status. In the 

Impower 130 clinical trial, anti-PD-L1 antibody atezoli-

zumab was combined with carboplatin and nab-paclitaxel 

as it does not require corticosteroid. �e combination 

group was associated with prolonged OS of 18.6 versus 

13.9 months (HR 0.79, 95% CI 0·64–0·98, p = 0·033) [51]. 

Similar survival benefits were observed in metastatic 

lung squamous cell carcinoma, where pembrolizumab 

combined with carboplatin-doublet chemotherapy signif-

icantly improved OS (15.9 versus 11.3 months; HR 0.64, 

95% CI 0.49–0.85, p < 0.001) [52].

In small cell lung cancer (SCLC), two immune check-

point inhibitors, atezolizumab and durvalumab, were 

approved with the combination of standard of care 

platinum-based chemotherapy [53, 54]. �e addition 

of atezolizumab improved the OS from 10.3  months 

to 12.3  months (HR 0.70, P = 0.007), while the addition 

of durvalumab improved the OS from 10.3  months to 

13.0 months (HR 0.73, P = 0.0047).

In addition to lung cancers, the combination of chem-

otherapy and immunotherapy has also been approved 

in several other cancers. In breast cancer, atezolizumab 

plus nab-paclitaxel improved the OS of the intended 

population from 17.6  months of nab-paclitaxel alone 

to 21.3  months (HR 0.84; 95% CI, 0.69–1.02; p = 0.08) 

[55]. Furthermore, the addition of pembrolizumab to 

chemotherapy improved median progression free sur-

vival (PFS) from 5.6 months to 9.7 months in the popula-

tion with PD-L1 expression at a combined positive score 

of 10 or higher (HR 0·65, 95% CI 0·49–0·86; one-sided 

p = 0·0012) [56]. In head and neck cancer, the addition 

of pembrolizumab to cisplatin/carboplatin + 5-fluouracil 

significantly improved OS when compared to the addi-

tion of cetuximab to chemotherapy in the group with the 

PD-L1 combined positive score of 1 or higher: median 

OS 13·6 versus 10·4 months (HR 0·65, 95% CI 0·53–0·80, 

p < 0·0001) [57].

�e OS benefit has also been observed when immu-

notherapy was used as a maintenance therapy after 

completion of chemotherapy, as in bladder cancer. In 

the JAVELIN Bladder 100 trial, significantly improved 

OS was observed in patients with metastatic urothe-

lial carcinoma who completed platinum-based chemo-

therapy without disease  progression was subsequently 

treated with avelumab maintenance therapy: median 

OS 21.4 versus 14.3 months (HR 0.69, 95% CI 0.56–0.86, 

p = 0.001) [58].

However, chemo-immunotherapy combinations have 

not been a panacea in all solid tumors. In squamous 

NSCLC, even though the combination of pembrolizumab 

and chemotherapy improves OS, the addition of atezoli-

zumab to chemotherapy did not (14.2 and 13.5 months, 

HR 0.88, 95% CI 0.73–1.05, p = 0.16) [59]. In metastatic 

urothelial cancer, chemo-immunotherapy combinations 

have been disappointing with minimal improvements 

over chemotherapy alone, in contrast to the Javelin Blad-

der 100 trial, where avelumab maintenance therapy sig-

nificantly improved treatment outcomes. In part, this is 

likely due to patient selection from patients initially doing 

well after chemotherapy selected for the Javelin Bladder 

100 trial and not delaying treatment until progression. 

More studies are needed to determine the optimal com-

bination, sequence, drug choice and underlying mecha-

nisms of different response.

Combination of radiation therapy 
with immunotherapy
�e stimulation of anti-cancer immunity by radiotherapy 

(RT) was first suggested in case reports with regression of 

distant untreated tumors after local RT [60]. While this 

RT-induced abscopal phenomenon is rare and elusive, its 

effects on the induction of anti-cancer immune response 

are intriguing and have aroused tremendous interest with 

the advent of immune checkpoint blockade.

Potentiation of anti-cancer immunity by radiation

Both antigenicity and adjuvanticity are critical for 

immune response. RT can augment both antigenicity and 

adjuvanticity in addition to alteration of the local TME.

RT increases tumor antigenicity through multiple 

pathways. First, similar to chemotherapy as discussed 

above, radiation can induce MHC-I expression and 

enhance tumor antigen presentation [61]. Second, radia-

tion induces ICD. During ICD, annexin A1 guides anti-

gen-presenting cells to dying cancer cells while HSP70, 

HSP90, HMGB1 and other molecules promote uptake 

and cancer antigen presentation to T cells. It has been 

shown that radiation induces translocation of calreticu-

lin to the plasma membrane [62], and release of HMGB1 

[63]. �ird, radiation downregulates CD47 expression 

on the cell surface and enhances the cancer cells’ uptake 

and antigen presentation [64]. CD47 presents as a “do 

not eat me” signal to APCs and is overexpressed in many 

cancer cells [65]. Fourth, reactive oxygen species (ROS) 
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generated during ionizing radiation can modify macro-

molecules, such as proteins and DNA, and increase anti-

genicity. In addition to direct DNA damage, the presence 

of oxygen and generation of ROS are critical for radiation 

induced tissue injury [66].

Another important contribution of radiation to anti-

cancer immunity is increased adjuvanticity. Radiation-

induced DNA damage and cytoplasmic leakage of 

DNA from micronuclei activate the innate and adap-

tive immune response via cGAS/STING pathway and 

upregulate the expression of type I interferon pathway. 

�is pathway is critical for radiation induced anti-cancer 

immunity. Silencing of cGAS in bone marrow-derived 

dendritic cells impairs T cell priming [67]. In addition 

to nuclear DNA, mitochondrial DNA breaks also have a 

role in activating a type I interferon response and syner-

gizing with nuclear DNA breaks [68].

In addition to the cGAS-STING pathway, ICD, release 

of DAMPs and cytokines can enhance adjuvanticity, elicit 

migration of pro-anti-cancer immune subpopulation, 

decrease immunosuppressive cells, alter TME and tilt 

immune response to cancer cell killing. Overall, radiation 

converts cancer cells as an in  situ vaccine to elicit anti-

cancer immunity.

Inhibition of anti-cancer immunity by radiation

In contrast to what is discussed above, ample evidence 

also exists that radiation induces an immunosuppressive 

TME. In addition to cancer cells, radiation can kill nor-

mal cells, including immune cells, especially when broad 

field radiation is considered. Furthermore, radiation 

can alter the TME and, instead of tilting to anti-cancer 

immunity, induce an immunosuppressive milieu. Several 

studies showed that radiation induces infiltration and 

aggregation of MDSCs [69, 70], which contributes to the 

immunosuppressive TME through multiple pathways. 

�e same STING pathway that contributes to the cancer 

adjuvanticity at least partially contributes to the aggrega-

tion of MDSCs in tumor tissues [71]. In addition, radia-

tion can promote the expression of TGF-β and TGF-β 

family activin A, thus promoting the recruitment of  Treg 

cells and reducing the infiltration of  CD8+T cells [72]. 

TGF-β is upregulated upon radiation [73]. In a preclinical 

study, TGF-β neutralization and radiation increase T cell 

priming and decrease tumor growth and metastasis [74].

Other mechanisms of the immunosuppressive effects 

of radiation include the dysregulation of tumor blood 

vessels [75], hypoxia [76], stroma [77], tumor-associated 

macrophages (TAMs) [78], cancer-associated fibroblasts 

(CAFs) [79], cytokines [80, 81] and so on. Moreover, the 

abnormal expression of these components is also related 

to radiation resistance [82]. In conclusion, the forma-

tion of an immunosuppressive TME by radiation is a 

complicated process and targeting these immunosup-

pressive elements provides a new direction for enhancing 

RT-induced anti-tumor immunity.

Clinical consideration of radiation and immunotherapy 

combination

�e first report showing the benefits of radiation and 

immunotherapy came from a patient with melanoma 

who had disease progression while on a clinical trial 

with ipilimumab, but subsequently had abscopal tumor 

shrinkage after radiation therapy [83]. A secondary anal-

ysis of the KEYNOTE-001 trial also showed that prior 

radiotherapy is associated with significant improvement 

of PFS and OS of patients with NSCLC treated with pem-

brolizumab [84]. Since then, there has been an eruption 

of clinical trials with radiotherapy and immunotherapy. 

Currently, over 800 active clinical trials are registered at 

clinicaltrials.gov, when using radiation and immunother-

apy as the search key words.

So far, several clinical studies showed improved clini-

cal outcomes when radiation is added to ICBs. In a meta-

analysis including 20 clinical trials and 2,027 NSCLC 

patients, the combination of anti-PD1/PD-L1 inhibi-

tors with radiotherapy was associated with significantly 

improved objective response rate (odds ratio [OR] 2.76, 

95% CI 1.06–7.19, p = 0.038) and OS (2-year survival HR 

1.77, 95% CI 1.35–2.33, p = 0.000) [85]. Currently, dur-

valumab has been approved as a maintenance therapy 

after platinum-based chemoradiation therapy for stage 

III NSCLC patients based on a Phase III PACIFIC trial 

[86, 87]. Addition of durvalumab significantly increased 

the median PFS (17.2 vs. 5.6  months; HR 0.51, 95% CI 

0.41–0.63, p < 0.001) and OS (HR for death 0.68, 95% CI 

0.54–0.86, p = 0.0025).

In addition to anti-PD1/PD-L1 antibodies, radiother-

apy is already being studied with the combination of 

other immunotherapeutic agents such as cytokines, cell 

therapy, vaccines and other immune checkpoint modula-

tors [88]. While most of these studies are still ongoing, 

some early reports show that these combinations are fea-

sible and can potentially achieve synergistic effects. In a 

small Phase II trial, radiotherapy combined with CAR-T 

cell therapy improved the overall RR of diffuse large 

B-cell lymphoma (p = 0.033) [89].

Even though promising results were observed, other 

studies showed no improvement with the radioimmu-

notherapy combination. Several approaches are cur-

rently being explored to improve treatment outcomes. 

Selection of the right patients (biomarker development) 

and optimization of radiation techniques, includ-

ing dose, schedule and timing, are both under intense 

investigation. Preclinical and clinical data suggest that 

dose and fraction, irradiated area, volume and sequence 
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of administration can each have major impact in sys-

temic anti-cancer immunity [90, 91]. Because radiation 

not only kills cancer cells, but also affects many aspects 

of immune response, such as cancer antigenicity, pres-

entation, TIME, immune response at local drainage 

lymph nodes and in the whole system, it is not surpris-

ing that contradictory findings were observed regarding 

anticancer immunity with different dose and fractiona-

tion schedules. Lymphocytes have little DNA repair 

capacity and are highly sensitive to radiation even 

at the conventional dose of 1.8–2  Gy [92]. One study 

showed post-radiation immune cell re-population dif-

fers with lymphoid response observed more with hypo-

fractionation while conventional dose/schedule induces 

more myeloid response, such as MDSCs and TAMs 

[93]. Several preclinical studies revealed that high-dose 

hypofractionation radiation stimulates more antican-

cer immune response than conventional fractionation 

radiation. High-dose radiation increases expression of 

MHC and death receptors critical for T cell-mediated 

cell killing [61], induces more T cell infiltration into 

tumors [94], triggers more robust abscopal effects [95] 

and synergizes more with anti-PD-L1 and anti-TIGIT 

therapies [93]. A US national database analysis also 

revealed that hypofractionated radiation therapy and 

immunotherapy achieved much higher three-year over-

all survival in metastatic melanoma patients than con-

ventionally fractionated radiation plus immunotherapy 

(37.3% vs. 17.6%, p < 0.0001) [96]. However, less favora-

ble results with high-dose hypofractionation were 

also observed in other preclinical studies. In a breast 

cancer model, the abscopal effect was only observed 

when anti-CTLA-4 therapy was combined with frac-

tionated radiotherapy, but not with single high-dose 

therapy [91]. High-dose radiation induces DNA exo-

nuclease Trex1 and dampens the cGAS-STING path-

way activation [97]. Hence, well-designed prospective 

clinical trials are needed to determine the optimal 

radiation dose, schedule and fractionation to potentiate 

immunotherapy.

Combination of targeted therapy 
with immunotherapy
All cancers harbor genomic alterations that drive 

oncogenesis. Targeting these genomic alterations can 

have direct antitumor activities and can induce more 

responses than cytotoxic chemotherapy [98, 99]. For 

example, in patients with NSCLC, while the response 

rate of platinum-based doublet is less than 30% [100], 

a response rate of 80% is observed in patients with an 

epidermal growth factor receptor (EGFR) driver muta-

tion treated with erlotinib [101]. In addition, many of 

the molecular drivers affect multiple steps along the 

cancer-immunity cycle.

Potential mechanisms

Direct antitumor activity and ICD

Elimination of cancer cells can not only decrease the 

number of cells for immune cells to target and destroy, 

but can also eliminate immunosuppressive factors and 

increase the efficacy of immunotherapy. �e KEY-

NOTE-001 trial showed that smaller tumor sizes are an 

independent factor in predicting treatment outcomes 

[102]. An important factor to consider is ICD induced 

by targeted therapy. As discussed above in the sections 

of chemotherapy and radiation therapy, ICD induced by 

targeted therapy enhances cancer cell uptake and anti-

gen presentation by antigen-presenting cells, prime and 

activate immune response, attract immune cells to tumor 

sites and potentiate anti-cancer immunity.

Antigen presentation

Many of the oncogenic pathways are directly involved 

in the regulation of the expression of antigen presen-

tation machinery. �e cyclin-dependent kinase 4 and 

6 (CDK4/6) pathway is commonly activated in many 

cancers [103, 104]. Inhibition of the CDK4/6 pathway 

upregulates MHC expression [103]. Similar findings are 

also observed with the PI3K pathway. PI3K inhibitors 

have been approved in breast cancer and follicular lym-

phoma. �ese drugs have the potential to be effective in 

other cancers, such as bladder cancer [98, 99]. Activation 

of the PI3K pathway attenuates the expression of MHC 

class I and II expression, while inhibition of this pathway 

reverses the suppression of antigen presentation machin-

ery via interferon γ [105].

Direct e�ect on immune cells

Many of the aberrant signaling activities have profound 

impacts on immune cells. �e VEGF-VEGFR pathway 

plays critical roles in almost every subpopulation of 

immune cells. VEGFRs are expressed on activated and 

memory T cells [106]. Engagement of VEGF-VEGFR 

leads to activation of the downstream signaling pathways 

in T cells [106], inhibits TCR (T cell receptor)-dependent 

activation in T cells [107] and suppresses the cytotoxic 

activity of T cells [108]. In  Treg cells, VEGFR2 is selec-

tively expressed in  FOXP3high  Treg cells. Besides  Treg cells, 

VEGF can activate JAK2 and STAT3 and induce accumu-

lation of Gr1 + CD11b + MDSCs [109]. In dendritic cells, 

production of VEGF by human tumors inhibits dendritic 

cell maturation through the NF-kappa B pathway [110, 

111]. Increased plasma VEGF levels are associated with 

increased number of immature dendritic cells, and sur-

gical removal of tumors partially reverses these effects 
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[112]. In applying these preclinical findings to clinical tri-

als, the combination of angiogenesis inhibitors and ICB 

significantly improved the treatment outcomes in meta-

static renal cell carcinoma and has gained several FDA 

approvals.

Similar direct effects on immune cells are also seen 

with many other targeted agents already approved by the 

FDA or in development. For example, ibrutinib is FDA 

approved for chronic lymphocytic leukemia/lymphoma 

(CLL), mantle cell lymphoma, marginal zone lymphoma 

and Waldenström’s macroglobulinemia. It modulates T 

cells by inhibiting Bruton’s tyrosine kinase (BTK) and IL-

2-inducible T cell kinase (ITK), and drives a �1-selective 

pressure in T lymphocytes and a preferential inhibition 

of �2 response [113]. In patients with CLL, it markedly 

increases CD4 + and CD8 + T cell numbers, decreases 

 Treg/CD4 + T cell ratio, downregulates immunosuppres-

sive CD200 and CD272 expression and decreases the 

production of immunosuppressive IL-10 production. 

Currently, seven clinical trials are ongoing to combine 

ibrutinib with immune checkpoint inhibitors for treat-

ment of cancer.

E�ects on tumor microenvironment

In addition to the direct antitumor activity, many of the 

signaling pathways have versatile functions on the tumor 

immune microenvironment (TIME) that can affect anti-

cancer immunity. EGFR activation mutations occur in 

about 10–15% of all NSCLC and can upregulate PD-1 

and PD-L1 expression which mediates immune escape 

[114]. Similarly, activation of the PI3K/AKT path-

way, including the PTEN deletion, leads to constitutive 

expression of PD-L1 expression and resistance to immu-

notherapy [115].

Other than immune cells, no other cells play such a 

versatile array of functions in TIME as CAF [116, 117]. 

CAFs can secrete immunosuppressive cytokines, attract 

suppressive immune cell subpopulations, remodel tumor 

matrix and facilitate migration, invasion and metastasis 

of cancer cells. CAFs can alter local milieu and indirectly 

suppress anti-cancer immunity, and facilitate tumor cell 

growth [118]. Cross-communication between cancer 

cells and CAFs contributes to development of resist-

ance to chemotherapy and immunotherapy. Many of the 

altered signaling transduction pathways, such as receptor 

tyrosine kinase receptors and their cognate ligands, Wnt 

signaling pathway, TGF-β pathway and others, contribute 

to activation of fibroblasts to CAFs [118, 119].

Many of the genomic alterations and oncogenic drivers 

alter metabolism and other constitutive components of 

the tumor microenvironment and negatively affect anti-

cancer immunity. Oncogenic transformation leads to 

uncontrollable cancer cell proliferation, creates hypoxic 

and acidic tumor microenvironments and inhibits T cell 

function. Indolamine-2,3-dioxygenase (IDO) is a heme-

containing enzyme that catalyzes the first and rate-lim-

iting step of tryptophan catabolism. Depletion of the 

essential amino acid tryptophan and accumulation of 

the metabolic products, such as kynurenine, are highly 

immunosuppressive and tolerogenic. �ey can suppress 

effector T cell and NK cell function, stimulate  Treg cells, 

promote expansion of MDSCs and tilt polarization of 

macrophages to more tolerogenic M2 phenotype [120]. 

It has been shown that multiple oncogenic pathways, 

such as the PI3K/AKT/mTOR, Ras/Raf/MEK/ERK and 

Table 4 FDA-approved combination regimens of immunotherapy and targeted therapies

Cancer Line of therapy Targeted therapy Immunotherapy Clinical bene�t Statistics Trial name and 
reference

Kidney cancer Metastatic, 1st line Axitinib Pembrolizumab 12-Mo OS: 89.9% 
versus 78.3%

HR 0.53; 95% CI 0.38 
to 0.74; P < 0.0001

KEYNOTE-426, [301]

Kidney cancer Metastatic, 1st line Cabozantinib Nivolumab PFS 16.6 versus 8.3 HR 0.51; 95% CI 0.41 
to 0.64; P < 0.001

CheckMate -9ER, 
[303]

Kidney cancer Metastatic, 1st line Axitinib Avelumab PFS 13.8 versus 7.2 
mos,

HR 0.61; 95% 
CI, 0.47 to 0.79; 
P < 0.001

JAVELIN Renal 101, 
[302]

Endometrial 
cancer not MSI-H or 
dMMR

Metastatic, salvage Lenvatinib Pembrolizumab ORR of 38.3% (95% 
CI, 29–49%)

Single-arm trial KEYNOTE-146, [306]

Hepatocellular 
carcinoma

Unresectable, 1st 
line

Bevacizumab Atezolizumab 12-mo OS: 67.2% 
versus 54.6% for 
sorafenib

HR 0.58; 95% CI 0.42 
to 0.79; P < 0.001

IMbrave150, [309]

BRAF V600( +) 
advanced mela-
noma

Advanced, 1st line Vemurafenib + cobi-
metinib

Atezolizumab PFS 15.1 versus 10.6 
mo

HR 0·78; 95% 
CI 0·63–0·97; 
p = 0·025

IMspire150, [313]
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protein kinase C pathways, are all involved in the upregu-

lation of IDO expression [121].

Clinical consideration of the targeted therapy 

and immunotherapy combination

Since many of the targeted therapeutic agents can directly 

or indirectly modulate immune cell functions, a pleth-

ora of clinical trials are currently ongoing to determine 

the efficacy and toxicity of combined targeted therapy 

and immunotherapy, mainly ICBs, in cancer [122–124]. 

As discussed above, anti-angiogenesis agents probably 

have the most versatile immune-modulative functions 

that affect almost all immune cell subpopulations [125]. 

Hence, it is not surprising that five out of six FDA-

approved targeted and immunotherapy combinations 

target angiogenesis (Table  4): axitinib targets VEGFR 

1–3 in addition to platelet-derived growth factor recep-

tor (PDGFR) and c-Kit; cabozantinib inhibits VEGFR2 in 

addition to c-Met and Axl; lenvatinib targets VEGFR1-3 

in addition to fibroblast growth factor receptors, PDGFR 

and RET; and bevacizumab is a monoclonal antibody 

against VEGF-A. �e only targeted therapy combination 

that does not directly target angiogenesis is the combina-

tion of a BRAF inhibitor vemurafenib and a mitogen-acti-

vated extracellular kinase (MEK) inhibitor cobinetinib in 

combination with atezolizumab in advanced melanoma 

with BRAF V600 activation mutation. �ree of the six 

combinations are indicated for advanced kidney cancer: 

pembrolizumab plus axitinib, avelumab plus axitinib and 

nivolumab plus cabozantinib.

In addition to anti-angiogenesis, almost every targeted 

therapy that has been shown to modulate the immune 

response is currently being combined and tested with 

immunotherapy, mainly ICBs. For example, PI3K inhibi-

tors have been approved for the treatment of breast 

cancer and lymphoma. In addition to direct anti-cancer 

activity, it alters tumor local metabolism, downregulates 

antigen presentation machinery and has direct effects 

on immune cells as PI3K-δ is expressed in immune cells 

[126]. Over 10 clinical trials are currently ongoing that 

combine immunotherapy with agents targeting the PI3K/

AKT/mTOR pathway [127].

In addition to ICBs, targeted therapy is also being com-

bined with other immunotherapeutic agents. �e BTK/

ITK inhibitor, ibrutinib and acalabrutinib have been 

approved for the treatment of non-Hodgkin lymphoma 

and are known to increase T cell number and function. 

Currently, seven clinical trials have been designed to 

combine the BTK/ITK inhibitors with CAR-T cell ther-

apy and one clinical trial combining ibrutinib with per-

sonalized multi-peptide cancer vaccine.

Cytokines and other soluble factors
Cytokines are small proteins or glycoproteins (< 30 

KDa) that interact with cell surface receptors and exert 

critical roles in regulating humoral and cellular immune 

response through affecting cell trafficking, maturation, 

growth and responsiveness of target cells. Cytokines 

include chemokines, interleukins, interferons and tumor 

necrosis factors. Interleukin-2 (IL-2) and interferon α 

(IFN-α) are the first two cytokines approved for the treat-

ment of cancers.

Chemokines

Chemokines are the largest subfamily of cytokines that 

play important roles in guiding immune cell trafficking 

and development, and can be classified into four main 

classes depending on the location of the first two cysteine 

(C) residues in their protein sequence: namely, the CC-

chemokines, the CXC-chemokines, C-chemokines and 

CX3C-chemokines [128].

Different immune cell subpopulations respond to dif-

ferent chemokines, traffic into TME and affect anti-can-

cer immunity. For example, effector immune cells, such 

as CD8 +  Teff cells, IFN-γ-expressing T helper 1 (TH1) 

cells and natural killer (NK) cells, can be attracted to the 

tumor microenvironment by CXC-chemokine ligand 9 

(CXCL9), CXCL10 and CXCL11, and exert potent anti-

tumor effects [129, 130].  Treg cells are immunosuppres-

sive cells that can inhibit the functions of other immune 

cells through interaction of inhibitory cell surface recep-

tor, such as: CTLA4-CD28 interaction [131], CTLA4-

CD80/86 and LAG3/MHCII pairs; secretion of inhibitory 

cytokines such as TGF-β, IL-10 and IL-35; secretion 

of granzyme B and lysis of  Teff cells; and metabolic dis-

ruption such as the adenosine pathway [132].  Treg cells 

express CCR4 and CCR10, and migrate into the tumor 

microenvironment in response to CCL22 and CCL28 

[133, 134]. Dendritic cells can be attracted by CCL5, 

CCL20 and CXCL12 [135], while macrophages can be 

attracted by the CCL2-CCR2 signaling [136]. Sometimes 

the same chemokines can recruit different immune cells 

with different and even opposing immune functions. For 

example, CCL21 and CCL19 recruit CCR7 + dendritic 

cells and  Treg cells, while CCL17 and CCL22 can directly 

recruit  Treg and �2 lymphocytes [137–140].

In addition to regulating immune cell trafficking and 

development, chemokines have direct effects on can-

cer cells. Cancer cells can express chemokine receptors 

and be stimulated by chemokines to promote cancer 

cell growth and proliferation [141–143]. Furthermore, 

chemokines can also facilitate cancer metastasis. �e 

CXCL12/CXCR4 and CCL27/CCR10 pathways have 

both been found to be involved in cancer cell adhesion, 

migration and metastasis [144–146].
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Interleukins and interferons

While the major function of chemokines is to regulate 

immune cell trafficking, interleukins and interferons have 

diverse functions in regulating the immune response. 

IL-2 and IFN-α were the first cytokines approved for can-

cer therapy. Since the first approval for the treatment of 

hairy cell leukemia [147], IFN-α has also been approved 

for the treatment of melanoma, follicular non-Hodgkin’s 

lymphoma, AIDS-related Kaposi’s sarcoma and renal cell 

carcinoma, while IL-2 was approved for the treatment of 

renal cell carcinoma and melanoma[148].

Pro-inflammatory interleukins and IFN-α act upon 

every step of the cancer immunity cycle and pro-

mote anti-cancer immunity, while immunosuppressive 

cytokines promote many aspects of oncogenesis and 

inhibit anti-cancer immunity. IL-2 plays key roles in the 

expansion of T lymphocytes and NK cells.  Treg cells have 

high expression of IL-2 receptor alpha (IL-2Rα), which 

is a component of high-affinity IL-2 receptor. Hence, 

IL-2 can skew the expansion of T lymphocytes to  Treg 

cells [149, 150]. To generate more favorable immune cell 

stimulation and decrease  Treg cell proliferation, several 

strategies have been used to modify IL-2. One strategy 

is to conjugate recombinant IL-2 with polyethylene gly-

col (PEG), as in NKTR-214 (or bempegaldesleukin), that 

decreases the affinity to the high-affinity IL-2Rα recep-

tor. Another strategy is to introduce a mutation to IL-2 

to decrease its binding to IL-2Rα, known also as CD25. 

Both versions are currently in clinical development [151, 

152].

Transforming Growth Factor-β (TGF-β)

TGF-β is a pleiotropic cytokine that plays key roles in 

embryogenesis and tissue homeostasis. It regulates 

cell proliferation, differentiation, adhesion, migration, 

metabolism and apoptosis in many normal cells. At early 

stage of oncogenesis, TGF-β can inhibit cancer growth, 

induce apoptosis and work more like a tumor suppressor. 

Once cancer develops, it is involved in promoting tumor 

fibrosis, epithelial–mesenchymal transition  (EMT), 

tumor angiogenesis and suppression of immune response 

[153, 154]. Tumor fibrosis can prevent drugs and immune 

cells from accessing cancer cells, while EMT can lead 

to metastasis and resistance to therapy. Furthermore, 

TGF-β regulates many immune cell subtypes and is 

intensively involved in the immunosuppressive TME. It 

can suppress the expression of IL-2 which is critical for 

T cell proliferation [155], inhibit the differentiation of 

naïve T cells into �1 cells [156] and mitigate the cyto-

toxic effects of CD8 +  Teff cells through inhibiting the 

expression of five cytolytic gene products—namely, per-

forin, granzyme A, granzyme B, Fas ligand and interferon 

γ [157]. For  Treg cells, TGF-β triggers the expression of 

FOXP3 which serves as the master transcription regula-

tor for the  Treg cell differentiation. Furthermore,  Treg cells 

can carry latent TGF-β1, as well as a cell surface docking 

receptor GARP for latent TGF-β, to suppress anti-cancer 

immunity [158–163].

In addition to T cells, TGF-β has immunosuppres-

sive effects on many other immune cells. In dendritic 

cells, TGF-β suppresses expression of MHC-II genes 

and inhibits antigen presentation [164, 165]. For natu-

ral killer cells, TGF-β blocks NK functions by decreas-

ing the expression of NK cell surface receptors NKG2D 

and NKp30 [166], and inhibits �1 response through 

suppressing IFN-γ and TBET expression [167, 168]. For 

macrophages, TGF-β induces macrophage differentiation 

to the M2 phenotype that is immunosuppressive in the 

TME [153, 169]. Furthermore, TGF-β plays important 

roles in tumor development and metastasis via MDSCs. 

Depletion of MDSCs abolishes the therapeutic effects 

of an anti-TGF-β antibody, at least in preclinical studies 

[170].

In addition to direct effects on immune cells, TGF-β 

plays major roles in the immunosuppressive TME. TGF-β 

produced by CAFs excludes CD4 + and CD8 + T cells 

from entering the tumor [171] and an anti-TGF-β anti-

body could reverse tumor T cell exclusion and sensitize 

Table 5 Therapeutic strategies targeting the TGF-β pathway

Therapeutic categories Targets Drugs

Small molecules TGF-βR1 Galunisertib, vactosertib, BMS-
986260, LY3200882; PF-06952229

Antibodies Pan-TGF-β Fresolimumab, SAR439459, NIS793

Glycoprotein-A repetitions predominant (GARP)- TGF-β1 ABBV-151

TGF-β1 and TGF-β2 XPA-42-089

Bi-specific antibodies TGF-βRII and PD-L1 Binstrafusp alfa

TGF-βRII and CTLA4 a-CTLA4-TGFβRIIecd

Antisense TGF-β2 Trabedersen

Modified ACT Dominant-negative TGF-βRII
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tumors to PD-L1 treatment [172]. TGF-β produced in the 

TME can induce the expression of indoleamine 2,3-diox-

ygenase (IDO) and arginase which can suppress many 

effector immune cells [173].

Because of the pluripotent regulation of anti-cancer 

immunity functions by TGF-β, multiple therapeutic 

agents targeting TGF-β have been developed and are 

currently in clinical development (Table  5). Given the 

importance of TGF-β and its effects in the TME, Dr. 

James Gulley at the National Cancer Institute discussed 

the pathway and highlighted bintrafusp alfa at the 2020 

China IO Meeting. Bintrafusp alfa is a bifunctional chi-

meric protein composed of the extracellular domain of 

the TGF-β receptor II (a TGF-β “trap”) fused to anti-PD-

L1 human IgG. It is hypothesized that bintrafusp alfa car-

ries the TGF-β trap to the cancer sites where PD-L1 is 

expressed, blocks both TGF-β and PD-L1, and enhances 

anti-cancer immunity. Preclinical studies showed sig-

nificant anti-tumor effect, TME modification and reduc-

tion of EMT [174, 175]. A Phase I trial with bintrafusp 

alfa was conducted which showed promising anti-tumor 

effects with controllable toxicities [176]. So far, 30 clinical 

trials have been registered at clinicaltrials.gov with bin-

trafusp alfa in various cancers.

Strategies for clinical use and combination therapy

At the 2020 China IO meeting, Dr. Charles Drake from 

Columbia University and Dr. James Gulley from the 

National Institute of Health discussed strategies to target 

cytokines and other combinations for cancer immuno-

therapy. Dr. Drake first discussed the serendipitous find-

ings from a clinical trial with an anti-IL-1β monoclonal 

antibody, canakinumab, in preventing cardiovascular dis-

eases. People treated with canakinumab at 300 mg every 

3 months had a relative risk of overall cancer incidence of 

0.49 and fatal lung cancer of 0.23 when compared to the 

placebo cohort [177], suggesting that canakinumab has a 

protective effect. His group then confirmed that an anti-

IL-1β antibody, especially in combination with anti-PD1 

antibody, dramatically increased M1 macrophage and 

the M1/M2 macrophage ratio in the TME [178]. Subse-

quently, a pilot clinical trial was initiated to determine 

the efficacy and molecular correlative studies in kidney 

cancer (ClinicalTrials.gov Identifier: NCT04028245). He 

also discussed that cytokines can be significantly affected 

by androgen deprivation therapy (ADT) in prostate 

cancer that can possibly be targeted for cancer therapy. 

In mice, ADT significantly increases the expression of 

CXCL15, which is the mouse equivalent of human IL-8. 

�is cytokine pathway is involved in infiltration of neu-

trophils and polymorphonuclear myeloid-derived sup-

pressor cells (PMN-MDSC) into the immunosuppressive 

TME. Based on those findings, a clinical trial was initiated 

with the anti-PD1 antibody nivolumab in combination 

with an anti-IL-8 antibody to synergize ADT in prostate 

cancer (Clinicaltrials.gov identifier No: NCCT03689699).

As discussed above, IL-2 and IFN-α are rarely used in 

clinic due to their systemic pro-inflammatory side effects. 

One future development strategy to use cytokines for 

cancer immunotherapy is to confine cytokines to the site 

of action, such as intratumoral injection of the cytokines 

or using gene therapy or other vehicles to express 

cytokines into the cancer sites. Intratumoral injection 

of IL-2 and IFN is one of the earliest formats of targeted 

delivery of cytokines to the site of action to minimize 

systemic pro-inflammatory reaction. Talimogene laher-

parepvec (TVEC) is a genetically engineered oncolytic 

herpes virus expressing human granulocyte–macrophage 

colony-stimulating factor (GM-CSF) that has been 

approved for intratumoral injection of melanoma [179].

Since intratumoral injection may not be practical in 

patients with multiple metastatic lesions or deep loca-

tions of cancer, another strategy is to modify cytokines 

and change their binding specificity. NKTR-214, a ther-

apeutic where IL-2 is conjugated to polyethylene gly-

col (PEG), has decreased affinity for the high-affinity 

IL-2 receptor α and therefore lower associated toxicities 

compared to IL-2 [180]. Consistent with the findings in 

preclinical models, NKTR-214 significantly promotes 

cytotoxic immune cell infiltration and upregulates gene 

expression associated with effective cells with limited 

increase of  Treg cells in tumors in a Phase I clinical trial 

[181], with further clinical development in urothelial and 

renal cancers.

More recently, cytokine-based bifunctional molecules 

have generated great interest in which the cytokine in the 

molecule exerts its immunoregulatory functions while 

the other part of the molecule acts as a carrier to deliver 

the cytokine to the site of action as seen in RO6874281, 

or as a carrier and functional domain as seen in bin-

trafusp alfa discussed above. RO6874281 contains a vari-

ant form of interleukin-2 (IL-2v) that completely lacks 

binding to the high-affinity IL-2 receptor α, but retains 

IL-2Rβγ binding. IL-2v is conjugated to a human mon-

oclonal antibody directed against fibroblast activation 

protein-alpha (FAP) on CAF [182]. Both RO6874281 and 

bintrafusp alfa have shown clinical activities in addition 

to their reduced toxicity [182, 183]. In a Phase I trial with 

bintrafusp alfa as a second-line treatment for NSCLC, an 

overall response rate of 21.3% (17 of 80) was observed in 

the whole study population. It was 25.0% (10 of 40) at the 

recommended Phase 2 dose of 1200  mg every 2  weeks 

and 36.0% (10 of 27) in those with PD-L1-positive tumors 

[183].

Because cytokines can regulate every step along the 

anti-cancer immunity cycle, many clinical trials are 
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ongoing to combine cytokines with other agents along 

the immunity cycle to determine whether the anti-cancer 

efficacy can be further improved. For immunostimula-

tory cytokines, such as IL-2, IL-10, IL-12 and IL-15, their 

native forms and genetically engineered cytokines have 

been combined with ICBs. For example, the combination 

of pegylated long-acting IL-10 and anti-PD1 antibody 

pembrolizumab or nivolumab had manageable toxicity 

profiles and showed preliminary antitumor activity [184]. 

For immunosuppressive cytokines, such as TGF-β, CCL2 

and IL-8, their neutralizing antibodies or small molecule 

inhibitors have been tested in clinic with the combination 

of ICBs and chemotherapy.

Adoptive cell therapy
Brief history

Adoptive cell therapy (ACT) in cancer is the transfer 

of immune cells, either autologous or allogeneic, into 

patients with cancer to mount an anti-cancer immune 

response. In both cases, immune cells are isolated from 

patients themselves (autologous) or a donor (allogeneic), 

manipulated and expanded in  vitro, and infused into 

patients for cancer therapy. �e first ACT was performed 

in patients with metastatic melanoma using autolo-

gous tumor-infiltrating lymphocytes (TILs) [185]. TILs 

are available in only a minority of patients with selected 

tumors, usually melanoma, and associated with incon-

sistent response rates. With the development of chimeric 

antigen receptor (CAR) technology [186–188], mela-

noma tumors were shown to clinically regress after infu-

sion of normal lymphocytes expressing an engineered 

T cell receptor targeting the MART-1 tumor antigen 

[189]. �e research and clinical applications accelerated 

after 2010 with the demonstration of tumor regression 

in B cell lymphoma after administration of lymphocytes 

expressing CAR against the B cell antigen CD19 [190].

Because NK cells mirror the functions of CD8 + cyto-

toxic T cells [191], NK cells have also been engineered to 

express CARs for cancer immunotherapy [192]. �e cyto-

toxic function of NK cells is upregulated via engagement 

of activating receptors, such as NKG2D. Hence, CAR NK 

cells usually use one of these activating receptors such as 

CAR NK cells expressing NKG2D-containing CARs [193, 

194]. So far, several clinical trials with CAR NK cells tar-

geting hematological malignancies (CD7, CD19, CD22, 

CD33, BCMA) and solid tumors (Robo1 and MUC1) are 

ongoing (www. clini caltr ials. gov).

Resistant mechanisms

Even with great success and FDA approvals of ACT, espe-

cially in hematological malignancies, 10–20% patients fail 

to achieve remission after receiving anti-CD19 CAR-T 

cell therapy, and 30–50% who achieve initial remission 

develop disease relapse [195, 196]. Some of the treat-

ment failure can be secondary to logistic issues, such as 

manufacturing failure and delay, insufficient numbers 

of CAR-T cells, delay in insurance approval and disease 

progression to an irreversible end stage. More com-

monly, the same mechanisms of resistance to anti-cancer 

immunity, especially those at TME, are responsible for 

resistance to ACT.

CAR-T cells bypass the first three steps of the can-

cer immunity cycle: antigen release and presentation, 

immune cell priming and immune cell activation. How-

ever, like any other effector immune cells, ACT is still 

governed by the regulation of immune response and 

resistant mechanisms along the anti-cancer immunity 

cycle described above [3]. Since CAR-T cells are engi-

neered T cells, the intrinsic T cell function status can 

affect the treatment outcomes. After infusion, CAR-T 

cells have 3 main characteristics to achieve long-lasting 

remission: expansion, persistence and tumor cytotox-

icity. Hence, defects of the original T cells that affect T 

cell expansion, cytotoxic function and development of 

memory cells can also affect the efficacy. For example, the 

efficacy of ACT is inferior in chronic lymphocytic leuke-

mia (CLL) than that in B-cell acute lymphoblastic leuke-

mia (B-ALL), which may be related to the intrinsic T cell 

defects in CLL patients. Hence, generation of universal 

CAR-T cells from healthy donors or third-party donors is 

being explored [197, 198].

CAR-T cells contain a T cell receptor stimulatory 

domain and a co-stimulatory domain, both of which are 

required for T cell priming, activation and replication. 

Preclinical and observation studies showed that the co-

stimulatory domain can significantly affect the persis-

tence and cell function after infusion [199]. Optimization 

of CAR design to enhance CAR-T cell activation, repli-

cation and conversion to memory cells is ongoing. Com-

pared to the second-generation CAR which contains a 

single costimulatory domain (CD28, 4-1BB or OX-40), 

the third-generation CAR contains two or more costim-

ulatory domains which can exhibit strong short-term 

anti-tumor activity associated with CD28 and long-term 

persistence with 4-1BB [200, 201].

After infusion, CAR-T cells still need to go through 

cell trafficking, infiltration into the cancer sites and then 

recognition and killing of cancer cells. Dysregulation of 

cytokine and cytokine receptors, and an immunosup-

pressive TME can adversely affect CAR-T cell function. It 

has been shown that β-catenin- over-expressing tumors 

have an altered CXCR3-CXCL9/10 chemokine axis to 

attract effector T cells into tumors after adoptive trans-

fer [202]. Delivery of CXCL11 to tumor sites significantly 

increases CAR-T cell infiltration and enhances anti-

tumor activity [203].

http://www.clinicaltrials.gov
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Once inside tumors, suppressive signals produced in 

the TME, such as TGF-β, IDO1, IL-10 and adenosine, 

contribute to exhaustion of CAR-T cells. Tumor cells 

can produce suppressive signals, such as PD-L1, that 

suppress CAR-T cells. CAFs, MDSCs and TAMs can all 

contribute to the suppression of CAR cell function in 

the TME. Combination of ACT with other therapies to 

prevent exhaustion and enhance CAR-T cell functions is 

being explored. Blockade of adenosine 2A receptor sig-

nificantly improves the efficacy of CAR-T cells [204]. PD1 

is another negative regulator of  Teff cells at the end cyto-

toxic stage and was found to be upregulated after CAR-T 

cell infusion [205].

In addition to the mechanisms along the cancer immu-

nity cycle, alterations in malignant cells also contribute to 

primary and secondary resistance to ACT. Loss or mod-

ification of the target antigen has not only been identi-

fied in ACT, but also in other immunotherapy modalities 

[206, 207]. Loss of the target molecules could be second-

ary to alternative slicing [208] or interruption of antigen 

presentation to the cell surface [209]. Furthermore, a 

diminishment of target molecule density on the cell sur-

face can lead to evasion of CAR-T cell therapy [210]. Low 

or loss of expression of target molecules on tumor cells 

at relapse can be secondary to pre-existing malignant cell 

heterogeneity [211] or lineage switching [212].

Novel construction and combination strategies to improve 

ACT e�cacy

Novel design of CAR-T cells

Development of universal CAR-T cells is one approach 

to address the intrinsic defects of T cells from patients 

with hematological malignancies. To improve the 

proliferation of CAR-T cells, inclusion of a stronger 

co-stimulatory domain, such as 4-1BB instead of CD28, 

or incorporation of both 4-1BB and CD28 (the third-

generation CAR-T cells), can improve the persistence of 

CAR-T cells [213, 214]. To alter the immunosuppressive 

TME, a fourth generation of CAR-T cells called TRUCKs 

(“T cells redirected for antigen‐unrestricted cytokine‐ini-

tiated killing”) has been designed and has entered early 

phase clinical trials. TRUCKs have a transgene, usually 

immunostimulatory cytokines, under the control of the 

NFAT‐responsive/IL‐2 minimal promoter. CAR engage-

ment and activation leads to NFAT phosphorylation and 

transgene expression that acts in an autocrine fashion 

to stimulate CAR-T cells, or paracrine to modulate the 

immune cell environment [215]. Other than optimizing 

the CAR-T cell design, an alternative strategy is to com-

bine ACT with another therapy and maximize the antitu-

mor activity (Table 6).

Combination of ACT with immune checkpoint inhibitors

PD1 is upregulated after CAR-T cell infusion which can 

down-regulate the CD28 co-stimulatory signaling and 

induce the CAR-T cell dysfunction [205]. Both preclini-

cal and several clinical trials suggest that the PD1/PD-L1 

blockade and CAR-T combination therapies can achieve 

synergistic anti-tumor activity [216–218]. To eliminate 

the negative effects of PD-1/PD-L1 axis on the func-

tion of CAR-T cells, CAR-T cells have been modified 

with the knockdown of the PD1-encoding gene PDCD1 

[219]. �ese PD1-deficient CAR-T cells possess increased 

antitumor activity similar to the combination of CAR-T 

cells and anti-PD1 antibodies without the systemic tox-

icity. In addition to PD1/PD-L1, inhibition of other 

immunosuppressive pathways has also been explored in 

ADT. For example, as discussed above, TGF-β is a major 

Table 6 Combination strategies to enhance the efficacy of adoptive cell therapy

Category Example Mechanisms

Combination with negative immune 
regulator blockade

Immune checkpoint inhibitor Remove the suppression of CAR cell function through the 
checkpoint pathway

Knockout TGF-β signaling in CAR cells Enhance CAR cell function and alter TME

Combination with lymphodepletion Fludarabine and cyclophosphamide Suppress immune response and elimination of CAR cells

Deplete  Treg and other competing immune cells

CAR T cell combination Two CAR cells targeting the same molecule Overcome immune elimination of the first CAR cells

Two CAR cells targeting the different molecules Maximize therapeutic effects and reduce antigen escape

Combination with immune modulators Exogenous immune modulators Stimulate CAR cells and other cytotoxic immune cells and 
reduce immunosuppressive cells

Fourth-generation CAR T cells Deliver immune regulators at cancer sites

Combination with TKI CAR T cells with ibrutinib Exert direct antitumor activity, downregulate PD1/PD-L1, tilt 
from Th2 to Th1, suppress MDSC, etc

Combination with oncolytic virotherapy Armed oncolytic adenovirus Exert direct lysis and killing of cancer cells, stimulate innate 
immune response, alter TME, cytokine to attract and stimu-
late CAR T cells
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immunosuppressive regulator affecting multiple immune 

cells in the TME. Knockout of the TGF- β signaling in 

CAR-T cells enhances CAR-T cell proliferation and aug-

ments antitumor activity [220].

Combination with lymphodepletion

After CAR-T therapy, relapse with malignancies carry-

ing the target antigen represents a potential opportunity 

to re-treat with the same CAR-T cell therapy. However, 

in many cases, a re-challenge with the same CAR-T cells 

frequently fails to induce a response [206]. One mecha-

nism of resistance is that patients have developed an 

immune response to the single-chain variable fragment 

of CAR that can eliminate re-infused CAR-T cells. To 

prevent the development of immune response to the 

CAR, intensified lymphodepletion before CAR-T therapy 

has been used with improved clinical activities [221, 222]. 

Furthermore, lymphodepletion can minimize the effects 

of regulatory T cells, reduce other immune cells that 

compete for homeostatic cytokines and enhance APC 

activation.

Combination of two di�erent CAR-T cell therapies

Instead of using lymphodepletion to prevent immune 

response and elimination of CAR-T cells, an alternative 

strategy is to combine two types of CAR-T cells with 

different structures of CARs targeting the same target 

molecules. In this case, the second type of CAR-T cells 

can survive and kill tumor cells even after the recipient 

patients develop immune response to the first CAR-T 

cells. It has been shown that humanized CD19 CAR-T 

therapy can overcome immune-mediated rejection of 

murine-derived anti-CD19 CAR-T therapy [223].

Another ACT combination strategy is to use CAR-T 

cells targeting two different antigens on tumor cells. 

One mechanism of ACT failure is tumor cell heteroge-

neity wherein some tumor cells do not express the tar-

get molecule. Targeting two different molecules on the 

same malignant cell can maximize tumor cell killing and 

decrease recurrence. �is can be achieved through a tan-

dem construct of a single CAR vector that targets two 

different antigens [224] or a combination of two different 

types of CAR-T cells, each targeting different antigens 

[210].

Combination with immune modulators

In order to create an immunostimulatory milieu, CAR-T 

cells can be combined with other immunostimula-

tory molecules, such as immunostimulatory cytokines, 

cytokine receptors and co-stimulatory molecules, or 

even modified to directly express these molecules as seen 

in the fourth generation of CAR-T cells [225]. IL-12 is 

one of the cytokines that has been extensively studied in 

preclinical models. It can enhance the cytotoxic activity 

of CD8 + T cells and NK cells, stimulate the �1 helper T 

cell response and counteract the immunosuppression by 

 Treg and MDSCs. A clinical trial with the fourth genera-

tion of CAR-T TRUCK cells expressing IL-12 has been 

initiated [226].

Combination with small molecule inhibitors

In addition to its direct antitumor activities, ibrutinib, 

a BTK inhibitor, has several other immunomodulatory 

effects. It can downregulate PD1 expression in CD4+ and 

CD8 + T cells, PD-L1 expression on CLL-affected B-cells 

and IL-10 production [227]. Furthermore, ibrutinib is 

an irreversible ITK inhibitor which leads to a preferen-

tial inhibition of �2 in favor of the �1 differentiation 

[113], and conversion of MDSCs to dendritic cells [228]. 

Currently, several clinical trials with the combination of 

ibrutinib and CAR-T cell therapy are ongoing. In addi-

tion to ibrutinib, several other tyrosine kinase inhibitors, 

such as EGFR inhibitors, are being explored in combina-

tion regimens.

Combination with oncolytic virotherapy (OV)

Several preclinical studies on the antitumor activity 

of oncolytic virotherapy with ACT have already been 

reported [229]. With this combination, oncolytic viruses 

can target and kill cancer cells, stimulate an innate 

immune response and create a stimulatory immune 

milieu to potentiate ACT. Because OVs are usually can-

cer-specific, they can express transgenes on the surface 

of cancer cells which can then be recognized by CAR-T 

cells. Furthermore, armed OVs can express cytokines that 

can attract CAR-T cells to the tumor sites and enhance 

the cytotoxicity of CAR-T cells [230]. So far, this combi-

nation has yet to be translated into clinical applications.

Virotherapy and innate immune modi�ers
Innate immune system

Overview of the innate immune system

�e innate immune system is the first line of defense 

against infections and foreign substances. In addi-

tion to anatomical barriers, it consists of different cells 

involved in broad-spectrum pattern-based recognition 

and response to foreign substances. It is not only an obli-

gate prerequisite for the induction of adaptive immune 

response, but also a prerequisite of effective ways of 

clearing foreign substance, including killing tumor cells 

independent of T cells. Like adaptive immune response, 

the innate immune system is also tightly regulated 

through built-in stimulatory and inhibitory feedback 

networks which are being exploited for cancer immuno-

therapy. Considering the overall disappointing efficacy of 

ICBs, innate immune cells and their regulatory molecules 
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represent attractive alternatives for improving and/or 

complementing ICBs for cancer therapy (Table 7). Natu-

ral killer cells and phagocytes, including macrophages 

and dendritic cells, are commonly studied for cancer 

immunotherapy [165, 169, 192, 231].

Enhancing the innate immune system for cancer 

immunotherapy

NK cells can be stimulated through the activating recep-

tors, such as NKP46, NKP30, NKP44, NKG2D, CD16 

and 2B4, and via cytokines, such as IL-2 and IL-15 [232]. 

Activation of NK cells can directly contribute to anti-

cancer immunity through their direct cytotoxic activi-

ties, attraction of dendritic cells and cytokine production, 

such as IFN-γ. IL-2 can not only stimulate cytotoxic T 

cells, but also expand NK cells. ALT-803 includes an 

IL-15 mutant (IL-15N72D) and a dimeric IL-15 receptor 

α sushi domain-IgG1 Fc fusion protein. It acts as an IL-15 

super-agonist [233]. Because of the critical roles that NK 

cells also play in adaptive immune response, clinical tri-

als are currently ongoing not only for ALT-803 alone, 

but also in combination with ICBs (clinicaltrials.gov ID: 

NCT02523469, NCT03228667 and NCT03853317).

Dendritic cells play critical roles in antigen presenta-

tion, cross-priming and activation of cytotoxic T cells, 

and produce CXCL9 and CXCL10 to recruit tumor-spe-

cific T cells to the tumor sites. During immune response, 

NK cells release CC-chemokine ligand 5 (CCL5), XC-

chemokine ligand 1 (XCL1), XCL2 and FLT3LG, which 

recruit dendritic cells to stimulate the immune response 

[234]. Dendritic cells are strongly activated by type I 

interferons which are induced upon activation of specific 

pattern-recognition receptors, such as toll-like recep-

tor (TLR) 3, TLR 7 and TLR 9. Multiple drugs target-

ing TLRs have already reached the clinical trial stage in 

combination with standard of care or ICBs [235]. In one 

study, a TLR3 agonist poly-ICLC was combined with 

Fms-like tyrosine kinase 3 ligand (Flt3L) and localized 

radiotherapy in patients with indolent non-Hodgkin’s 

B cell lymphoma. FLT3L promotes the commitment of 

hematopoietic progenitor to the dendritic cell lineage, 

recruits intratumoral dendritic cells and enhances den-

dritic cell survival and proliferation. As discussed above, 

local radiotherapy converts cancer cells into an in  situ 

vaccine while poly-ICLC activates dendritic cells. �is 

combination increases dendritic cell number and activa-

tion at tumor sites and induces abscopal effects [236].

Type I IFN expression can be induced by the cGAS-

STING pathway which plays critical roles in the innate 

immune system [237–239]. Upon binding to cytosolic 

DNA, cGAS triggers the reaction of GTP and ATP to 

form cyclic GMP-AMP which binds to STING. In addi-

tion to induction of Type I IFN expression, activation of 

the cGAS-STING pathway upregulates the expression 

Table 7 Innate immune cells for cancer immunotherapy

Natural killer cells Stimulatory Activating receptors: NKP30, NKP44, NKG2D, CD16, 2B4

Cytokines: IL-2 and IL-15

Engineered NK cells

Inhibitory ITIM-containing receptors (KIR family, PD1 and TIGIT)

CD94/NKG2A

LIR1

TIM-3

IDO

Dendritic cells Stimulatory cGAS-STING pathway

TLR

Cytokines: GM-CSF, Type I IFN, FLT3L

Inhibitory ITIM-containing receptors (FcγRIIB, etc.)

CD39/CD73/adenosine pathway

IDO

Macrophages Stimulatory CpG oligonucleotide

IFN-γ

TNF-α

IL-12

TLR agonists

Inhibitory ITIM-containing receptors (SIRPα-CD47, SIGLEC-10, etc.)

IL-10, IL-4, IL-13

CCL5, CCL2/CCR2
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of NK cell receptor NKG2D ligands that can lead to the 

recognition and destruction of cancer cells by NK cells 

and T cells. Because of the important roles of the cGAS-

STING pathway in stimulating the anti-cancer immunity, 

several STING agonists have entered into clinical trials 

with the combination of ICBs to improve their clinical 

efficacy [240].

Macrophages are professional phagocytes that can 

internalize large particles, such as debris, apoptotic cells 

and pathogens, to maintain homeostasis in the human 

body. According to their functions, TAM can be classified 

into two major subsets: classically activated inflamma-

tory macrophages (M1, CD80 + and CD86 +) that pro-

mote anti-cancer immunity and alternatively activated 

anti‐inflammatory macrophages (M2, CD 68 +, CD163 + 

and CD206 +) that are immunosuppressive. Given the 

key roles played by macrophages, several cytokines (such 

as IL-12), immunoagonists and inhibitors of TAMs are 

being explored to polarize and tilt macrophages to the 

M1 phenotype. For example, CpG oligonucleotide, which 

is also a TLR9 agonist, can not only induce macrophage 

polarization to the M1 phenotype [241], but also induce 

memory T cells and abscopal anti-tumor activity [242].

Suppression of the negative regulators of the innate immune 

system

Like the adaptive immune response, the innate immune 

system has many negative regulators that can be targeted 

to boost anti-cancer immunity. �e immunoreceptor 

tyrosine-based inhibition motif (ITIM) is a conserved 

amino acid sequence found in the cytoplasmic tails of 

many inhibitory receptors on immune cells [243]. Some 

of the ITIM-containing receptors, such as PD1, has 

already been targeted for cancer therapy. �e killer-cell 

immunoglobulin-like receptors (KIRs) are a family of 

ITIM-containing receptors identified from the seminal 

discoveries in 1990s by Alessandro Moretta et  al. [244]. 

�ey are expressed on the plasma membrane of NK cells 

and some T cells. Most KIRs are inhibitory in that their 

recognition of MHC molecules suppresses the cytotoxic 

activity of NK cells [245]. Under normal conditions, these 

KIRs recognize autologous cells and prevent auto-reac-

tive cytotoxicity which can also dampen the cytotoxicity 

of NK cells against HLA-expressing cancer cells. An anti-

pan-KIR2D agent, lirilumab, has already reached clini-

cal trials. �e combination of lirilumab and nivolumab 

is well tolerated and showed promising clinical activi-

ties with an overall response of 76% (16/21) in relapsed/

refractory classical Hodgkin lymphoma [246]. Other 

ITIM-containing receptors are being extensively stud-

ied [247]. For example, LIR-1 (binding to HLA-G  and 

other low affinity HLA ligands) is expressed on approxi-

mately one-third of NK cells. An antibody blocking LIR-1 

significantly potentiated the tumoricidal activity of NK 

cells in vitro and in vivo [248].

In addition to KIRs, other MHC-recognizing receptors 

are also important in regulating NK cell functions and 

tumor eradication. NKG2A (binding to HLA-E) is consti-

tutively expressed in approximately 50% NK cells and can 

be induced in T cells upon cytokine stimulation or anti-

gen-induced activation [249]. Preclinical studies showed 

that an anti-NKG2A antibody had remarkable antitumor 

effects and synergized with the anti-PD1 antibody dur-

valumab in unleashing NK and CD8 + T cell function 

[250]. Promising results were shown in a Phase II trial 

of the humanized anti-NKG2A antibody monalizumab 

in combination with cetuximab with a 31% objective 

response rate in patients with previously treated head 

and neck cancers [250].

Since most of the TAMs are M2 macrophages, sev-

eral approaches have been explored to inhibit or deplete 

TAMs for cancer immunotherapy. Several cytokines, 

such as CCL5 and CCL2/CCR2, are involved in recruit-

ing macrophages to the tumor sites and promoting can-

cer growth. Several preclinical studies showed that tumor 

growth inhibition could be achieved through targeting 

these cytokines or with depletion of TAMs. However, 

they have yet to be translated into clinical applications 

as these cytokines have other functions in addition to 

recruiting macrophages [251].

CD47 is a transmembrane protein expressed in all 

types of cells, serves as a self‐marker and interacts with 

signal regulatory protein α (SIRPα) to inhibit phagocy-

tosis by immune cells [252]. SIRPα is a transmembrane 

protein expressed on macrophages, granulocytes, mono-

cytes, dendritic cells and neurons.  �e recognition of 

CD47 by SIRPα generates a “don’t eat me” signal and has 

been used by cancer cells to evade anti-cancer immu-

nity. Many inhibitors have been developed to block the 

CD47‐SIRPα pathway and enhance tumor immunother-

apy, including anti‐CD47 therapy and anti‐SIRPα therapy 

[253]. An early clinical trial showed that the combination 

of an anti-CD47 blocking antibody Hu5F9-G4 and the 

CD20 antibody rituximab had promising clinical activi-

ties with an objective response rate of 40% with relapsed 

or refractory diffuse large B-cell lymphoma and 71% with 

follicular lymphoma [254].

Virotherapy

Overview

Virotherapy uses viruses to target and kill cancer cells, 

induce innate and adaptive immune response for cancer 

treatment. Adenoviruses, herpes viruses, measles viruses, 

coxsackie viruses, polioviruses, reoviruses, poxviruses 

and Newcastle disease viruses, among others, are some of 

the oncolytic viruses (OVs) under preclinical and clinical 
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development for cancer therapy [255]. Initially wild type 

viruses were used. Because those viruses are potentially 

associated with adverse events caused by viral replication 

in normal cells, almost all OVs under current develop-

ment are modified with strong cancer tropism and usu-

ally armed with transgenes to enhance the efficacy and/

or potentiate combination therapy. So far, three OVs have 

been approved and used at clinic: Rigvir (an oncolytic 

picornavirus) [256], H101 or Oncorine (an adenovirus) 

[257] and talimogene laherparepvec, also known as T-vec 

(a herpes simplex-1 virus encoding for GM-CSF) [179].

Mechanisms of action

Several mechanisms have been proposed for the action 

of OVs. First, OVs can directly target, lyse and kill can-

cer cells. Cancer tropism can occur naturally with OVs 

as oncogenic signaling pathways are more active in 

cancer cells which can facilitate viral replication. More 

recently, genetic engineering has been used to make 

cancer-specific OVs. For example, mutations/deletions 

can be introduced in genes that are required for replica-

tion in normal but not in cancer cells; critical viral genes 

are under the control of cell-specific promoters active in 

cancer cells, but not in normal cells; and expression of 

cancer-targeting viral receptors can guide cancer-spe-

cific tropism [258]. Second, OVs can activate the innate 

immune response. Viral replication and destruction of 

tumor cells and release of viral DNA can induce innate 

immune response locally to kill more cancer cells. �ird, 

OVs can induce adaptive immune response. Viral repli-

cation and destruction of tumor cells alter TME, trigger 

chemotaxis and accumulation of cytotoxic lymphocytes 

to the site of infection, and can convert immune “cold” to 

“hot” tumors; viral replication induces ICD, and releases 

DAMPs, such as calreticulin, high-mobility group protein 

B1 (HMGB1) and ATP, along with tumor-associated 

antigens. Fourth, OVs can be engineered to express 

transgenes to stimulate immune response. For example, 

talimogene laherparepvec expresses GM-CSF and was 

FDA approved for treatment of recurrent melanoma. 

Several other immunoregulatory genes are currently 

being explored for their potentiation to stimulate immu-

notherapy with OVs, such as IL-2, IL-12, IFN-α/β, 4-1BB 

and CD40L [259].

OVs armed with transgenes

Even though oncolytic virotherapy showed promising 

preclinical activities, clinical activities are still moder-

ate. In cutaneous melanoma, intratumoral injection of 

talimogene laherparepvec is associated with an overall 

response rate of 26.4% [179]. One advantage of OVs is 

that they can be armed with transgenes and combined 

with several therapeutic interventions. So far transgenes 

targeting every step along the anti-cancer immunity cycle 

have been studied at least in preclinical models (Table 7) 

[260]. For example, oncolytic adenovirus armed with bi-

specific T cell engager (BiTE) has been demonstrated to 

induce both oncolysis by OV and engagement and acti-

vation of cytotoxic T cells which led to immune-medi-

ated destruction of cancer cells both in vivo with tumor 

implants and in primary ex vivo patient specimens [261, 

262].

Combination therapies with OVs in clinical development

While most OVs armed with the transgenes listed on 

Table  8 are still at the preclinical stages, several clinical 

trials combining OVs with another therapeutic agent 

have been initiated [263]. �e most common combina-

tion therapy is OVs and ICBs. �ese two agents have 

complementary mechanisms of anti-cancer immunity in 

Table 8 Strategies to arm oncolytic viruses for cancer immunotherapy

The anti-cancer immunity cycle Transgenes to arm OVs and enhance cancer 
immunotherapy

Example transgenes

Step 1. Cancer cell death and antigen release Molecules inducing immunogenic cell death Type I IFN, TNFα, TRAIL

Step 2. Antigen presentation Tumor-associated antigens, cancer vaccine, 
chemokine

Truncated CD19, cancer vaccine, GM-CSF

Step 3. Priming and activation Checkpoint inhibitors, co-stimulatory molecules, 
immunostimulatory cytokines

Anti-CTLA4 miniantibody, anti-PD1, IL-2, IL15, 
OX40L, 4-1BBL

Step 4. T cell trafficking Molecules targeting tumor vasculature, VEGF/VEGFR inhibitor, endostatin,

Step 5. Infiltration into tumors Chemokines to attract T cells; molecules targeting 
tumor stroma and matrix degradation

CXCL9, CXCL10 CXCL11, CCL2, CCL5, hyaluronidase, 
collagenase, MMP-9

Step 6. Recognition of tumor cells by T cells Bi-specific T cell engager (BiTE) BiTE targeting CD3 and CD19, BiTE targeting EpCAM 
and CD3

Step 7. Killing of cancer cells Checkpoint inhibitors, co-stimulatory molecules, 
immunostimulatory cytokines, molecules target-
ing TME metabolism, molecules targeting or 
depleting inhibitory immune cells

Anti-CTLA4 miniantibody, anti-PD1, IL-2, IL15, 
OX40L, 4-1BBL, CD39/CD73/A2aR, IDO inhibitors
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that ICBs release the suppression of anti-cancer immune 

response while OVs stimulate the immune response. �e 

combination was first tested in preclinical models with an 

oncolytic Newcastle disease virus (NDV) in combination 

with systemic CTLA-4 blockade [264]. Local virotherapy 

induced abscopal effects and immune cell infiltration at 

distant tumors.

Since then, many trials combining OVs with anti-CTLA 

and anti-PD1/PD-L1 antibodies either have already 

been completed or are in progress to determine the effi-

cacy and toxicity of the combinations. In one study with 

unresectable stage IIIB–IV melanoma, the combina-

tion of ipilimumab and talimogene laherparepvec sig-

nificantly improved the objective response rate to 39% 

from 18% with ipilimumab alone (OR 2.9, 95% CI 1.5–

5.5, P = 0.002), and induced abscopal effects on visceral 

lesions [265]. In addition to talimogene laherparepvec, 

several other major OVs are being combined with ICBs 

in clinical trials.

OVs have also been tested in clinical trials with chemo-

therapy. In a Phase I/II trial of carboplatin/paclitaxel plus 

reovirus, the combination therapy was well tolerated 

with significant clinical activity and minimal viral toxicity 

[266]. Another Phase I trial determined the toxicity of the 

combination of gemcitabine with replication-competent 

adenovirus Ad5-yCD/mutTK(SR39)rep-ADP (Ad5-DS) 

in locally advanced pancreatic cancer. �is adenovirus 

expressed double-suicide genes: yeast cytosine deami-

nase (yCD) and herpes simplex virus 1 thymidine kinase 

(HSV-1 TK) [267]. �is combination was well tolerated in 

early clinical trials.

Therapeutic cancer vaccine
Cancer vaccine is a targeted cancer immunotherapy that 

uses putative cancer antigen(s) or antigenic epitope(s) 

presented in protein, RNA, DNA, viral or bacterial vec-

tors, cells or other means to stimulate anti-cancer immu-

nity. In contrast to vaccination for infectious diseases 

in general, the efficacy of early cancer vaccines is dis-

appointing, with objective response rates less than 5% 

[268]. More recently, with the understanding of anti-can-

cer immunity and development of vaccine technology, 

deep sequencing and bioinformatics, personalized can-

cer vaccines showed promising clinical activities. How-

ever, many patients do not respond. �e reason for low 

efficacy for cancer vaccines is likely to be multifactorial. 

Cancer vaccines are used in patients whose immune sys-

tem has already tolerated cancer and cancers can develop 

or have already developed an immunosuppressive TME 

that prevents anti-cancer immunity. In contrast, vaccines 

for infectious diseases are exogenous antigens that hosts 

have not developed resistance.

Cancer vaccine antigens

�ere are two major types of cancer vaccines: shared 

tumor-associated antigens (TAA) and unique tumor anti-

gens (Table  9). Shared TAAs include cancer/testis anti-

gens, cell differentiation antigens and overexpressed cell 

antigens. Cancer/testis antigens are a group of proteins, 

such as cancer/testis antigen 1 (CTAG1B, often referred 

to New York esophageal squamous cell carcinoma 1 or 

NY-ESO-1), melanoma-associated antigen 1 (MAGE-

A1), MAGE-A3, etc., that are normally expressed in 

immune privileged germline cells, but upregulated in 

some cancer cells. Cell differentiation antigens are a 

group of antigens expressed in differentiated tissues 

from which some cancers develop and share those anti-

gens, such as glycoprotein 100 (gp100), prostatic acid 

phosphate, and prostate-specific antigen (PSA). Overex-

pressed cell antigens are expressed in normal cells, but 

significantly upregulated in some cancer cells, such as 

mucin 1 (MUC1) or epithelial membrane antigen, meso-

thelin and HER2. �ere are two major issues associated 

with shared TAAs. First, the immune system has already 

developed tolerance to these antigens. Hence, even with 

strong adjuvants, co-stimulators or repeated vaccina-

tions, anti-cancer immunity may develop, but is not suf-

ficient to eliminate cancers. Second, these antigens are 

also expressed in some normal cells. Hence, untoward 

damage may develop against those normal cells/tissues 

expressing the target antigens.

Unique tumor antigens include oncogenic viral anti-

gens associated with viral infection and tumor neoanti-

gens associated with cancer genomic alterations, such as 

Table 9 Classification of cancer vaccine antigens

Category subcategory Tumor speci�city Immune 
tolerance

Prevalence Potential 
for cancer 
vaccine

Cancer-associated antigens Cancer/testis antigens Usually high Low Intermediate Intermediate

Overexpressed and dif-
ferentiation antigens

Variable, but usually low High High Low

Cancer-unique antigens Cancer viral antigens High Low Intermediate High

Neoantigens High Low Low and usually unique High
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mutations, frame shift and gene fusion. �e three most 

commonly studied viruses associated with cancers and 

cancer vaccines are hepatitis B virus, human papillomavi-

rus (HPV) and Epstein–Barr virus (EBV). Because these 

unique tumor antigens appear after the immune system 

has already developed, the central tolerance to these anti-

gens and cross-reactivity to normal tissues are usually 

low and the likelihood of induction of immune response 

to them is high.

Vaccine delivery vehicles

Several approaches have been used in clinic to deliver 

cancer antigens in order to elicit anti-cancer immunity 

(Table 9). Cell-based vaccines use autologous cancer cells, 

antigen-presenting cells or allogeneic cells to deliver can-

cer vaccine antigens. When cancer cells are used, cells are 

treated in vitro, usually with radiation, to prevent further 

cell division before administration. �e advantage of cell-

based vaccine is that specific target antigens do not need 

to be prospectively identified, and dendritic cells can 

present tumor antigens in the context of the MHC that 

can be further potentiated with a stimulatory cytokine. 

Sipuleucel-T is FDA approved for treatment of metastatic 

prostate cancer and is comprised of autologous dendritic 

cells activated ex vivo with expression of a chimeric pro-

tein of immune stimulatory cytokine, GM-CSF, fused 

to a cell differentiation tumor antigen PAP. In a Phase 

III clinical trial, the median overall survival (OS) of the 

sipuleucel-T group was about 4 months longer than the 

control cohort treated with placebo [269]. However, the 

vaccine treatment was not associated with any biomarker 

(PSA) or radiological response. In fact, subgroup analyses 

showed there was no OS difference between the thera-

peutic and control groups of young patients (< 65 years) 

who were supposed to have more robust immune 

response [270]. Several other cell-based vaccines are also 

at clinical trials. Both gemogenovatucel-T and GVAX 

are tumor cell vaccines expressing GM-CSF to promote 

antigen presentation, activation and survival of dendritic 

cells. Some other cellular vaccines are manipulated to 

down-regulate the expression of immunosuppressive 

factors. For example, belagenpumatucel-L is a mixture 

of four irradiated human NSCLC cell lines, transfected 

with a TGF-β2 antisense gene. A higher response rate 

was observed in patients with NSCLC treated with 

higher doses of Belagenpumatucel-L [271]. However, a 

Phase III trial failed to demonstrate the OS benefit when 

it was used as a maintenance therapy after platinum-

based chemotherapy in Stage III/IV non-small cell lung 

cancer [272]. Gemogenovatucel-T expresses a bi-func-

tional short hairpin RNA to knock down the expression 

of the enzyme furin which converts immunosuppressive 

TGF-β1 and TGF-β2 into active isoforms. Even though 

those cell-based vaccines showed promising activities in 

preclinical models and stimulated immune response in 

patients, their clinical efficacy has yet to be proven [273].

In addition to human cells, microorganisms such as 

bacteria and yeasts are also being explored for cancer 

vaccine therapy. Heated-inactivated bacteria and Bacillus 

Calmette-Guérin have been used in clinic to treat cancers 

for decades. But strictly, they are not cancer vaccines as 

they do not carry tumor antigens. Other bacteria, such 

as Listeria, can deliver DNA- and RNA-encoded tumor 

antigens directly into mammalian cells, including APCs, 

and are being tested as cancer vaccine vehicles [274].

For microorganisms, viral vectors have been studied 

as a vehicle to deliver cancer vaccines. For viral vectors, 

in addition to its ability to induce innate and adaptive 

immune response, exogenous genes can be incorpo-

rated and expressed, including cytokines and tumor anti-

gens. One potential disadvantage of using a viral vector 

to deliver a cancer vaccine is that the immune response 

induced by previous vaccinations or infections of the 

same virus produces a neutralizing antibody and clears 

Table 10 Major vehicles to deliver cancer vaccines

Technology Examples Important considerations

Peptides Short peptide (< 15 aa) Directly binding to MHC, Not processed by APC, more tolerogenic,

Synthetic long peptide, neoantigens Preferably taken up and processed by dendritic cells, usually co-administrated with adjuvant to 
potentiate immunogenicity

Cellular vaccine Tumor cells Autologous or allogeneic, not need to identify tumor antigens,

Dendritic cells Provide tumor antigens and costimulatory signals, can co-express cytokines and other co-
stimulatory molecules, highly immunogenic

Microorganisms Microorganisms are immunostimulatory, can co-express other stimulatory molecules

Viral vector PROSTVAC-VF/Tricom Vehicles are highly immunogenic, can co-express stimulatory cytokines and other molecules; 
may need local injection; neutralizing antibody can clear virus

DNA/RNA RNA mutanome vaccines Vaccine (DNA/RNA) itself is immunogenic. Low delivery efficiency with the native form. Other 
delivery methods (nanoparticles, gene gun and in situ electroporation) enhance delivery
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subsequent vaccinations. One approach is to administer 

the vaccine through intratumoral injection as talimogene 

laherparepvec. Another approach is to use a heterologous 

prime/boost strategy which cancer antigens are delivered 

by two different viral vectors at the primary and boost 

vaccinations (Table 10).

Peptide vaccines have also been used in vaccine studies 

as T cells recognize tumor antigens presented by MHC. 

When short peptides are used, they can directly bind to 

MHC molecules on any nucleated cells. As T cell activa-

tion requires the engagement of T cell receptors by anti-

gens presented with MHC as well as a second signal from 

a co-stimulatory molecule, presentation of short pep-

tide vaccines by nucleated cells other than APCs often 

induces T cell anergy and immune tolerance since other 

nucleated cells lack co-stimulatory signals. To overcome 

the immune tolerance associated with short peptides, 

synthetic long peptides (SLPs) have been used. SLPs are 

preferentially taken up and processed by dendritic cells 

which also provide co-stimulatory molecules to prime 

and activate T cell immunity. To further improve the 

efficacy, SLPs are often formulated with inflammatory 

adjuvants. For example, synthetic cancer neoantigen long 

peptide vaccines formulated with a toll-like receptor 3 

(TLR3) ligand poly-ICLC (polyinosinic and polycytidylic 

acid) induced strong anti-cancer immunity and clini-

cal response [275]. In this study, vaccination stimulated 

polyclonal neoantigen-specific CD4 + and CD8 + T cell 

responses and immune cell migration into intracranial 

glioblastoma tumors. Systemic immune response was 

abolished in those patients who received the immu-

nosuppressive steroid dexamethasone during vaccine 

priming.

Peptides and proteins have also been formulated in 

nanoparticles to enhance its efficacy. Nanoparticles can 

protect peptides/proteins from degradation, prolong 

circulation time, control antigen release, confer targeted 

delivery through decorating cancer targeting peptides 

on the surface[276–278], and formulate with adjuvant 

agents to enhance immune response [279, 280]. Further-

more, by optimizing the structure, surface charge and cell 

penetrating peptides, the efficacy of nanoparticles can 

possibly be further enhanced [281, 282]. So far, various 

nanomaterials, such as polymeric materials, liposomes, 

micelles, silica nanoparticles, gold nanoparticles (AuNPs) 

and virus nanoparticles, have been studied in preclinical 

models with a few translated into clinical trials, but the 

efficacy is still yet to be validated [279].

Instead of using peptides and proteins, DNA and RNA 

vaccines have also been translated into clinical trials 

[283]. After administration, DNA and RNA can be taken 

up by antigen presenting cells that then translate into 

peptide/proteins and present to immune cells. In addition 

to serving as vaccines, exogenous DNA and RNA can 

serve as immune stimulators, trigger nucleic acid sen-

sors and activate dendritic cells through certain TLR 

and STING pathways. One major disadvantage of naked 

DNA and RNA vaccine is their low delivery efficiency. To 

overcome this obstacle, various delivery methods have 

been developed, such as viral vectors and nanoparticles 

as discussed above, gene gun, electroporation and so on 

[284]. Two coronavirus (COVID-19) mRNA vaccines 

approved in the US are both RNA vaccines formulated in 

lipid nanoparticles [285, 286]. For cancer vaccines, RNA 

lipid nanoparticles, either alone or in combination with 

ICBs, induced durable clinical responses, associated with 

strong CD4 + and CD8 + T cell immunity against the 

vaccine antigens [287].

Combination therapy with cancer vaccines

Cancer vaccines are designed to bypass and/or stimulate 

the first three steps of the anti-cancer immunity cycle: 

cancer antigen release and presentation, immune cell 

priming and activation of immune cells. Once immune 

cells are activated, they still need to go through the 

remaining four steps along the cycle: mobilize in the 

periphery, infiltrate into cancer sites, recognize cancer 

cells and elicit cytotoxicity toward cancer cells. Hence, 

resistance mechanisms governing the anti-cancer immu-

nity, especially those in the TME, can still dampen the 

efficiency of cancer vaccines and are being explored to 

potentiate cancer vaccines.

�e most critical function of cancer vaccines is to pre-

sent cancer antigens to prime and activate T cells and 

induce anti-cancer immunity. In many cancers, little or 

no anti-cancer immunity exists in patients that manifests 

as cold tumors with little immune cell infiltration at the 

tumor sites. �ese cold tumors usually do not respond 

to ICBs, as there is no ammunition to fire at cancer cells 

upon removal of the brake by ICBs. To improve their effi-

cacy, cancer vaccines have been extensively studied to 

be combined with adjuvant agents, such as a TLR-3 ago-

nist poly-ICLC, to stimulate immune response. Immune 

response to the cancer/testis antigen NY-ESO-1 is higher 

when NY-ESO-1 vaccine is combined with poly-ICLC 

[288].

Many trials are currently ongoing to determine the effi-

cacy and toxicity of cancer vaccines in combination with 

cytokines. For example, IL-2 plays critical roles in key 

functions of immune response. Compared to IL-2 alone, 

the combination of IL-2 with a tumor-associated antigen 

gp100 significantly improved the overall response rate 

(ORR: 16% vs. 6%, p = 0.03) and progression-free survival 

(PFS: 2.2 versus 1.6  months, p = 0.008) [289]. In addi-

tion to IL-2, several other immunostimulatory cytokines 

are being explored. IL-12 is a multipotent cytokine that 
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stimulates T and NK cells, regulates other cytokines and 

multiple aspects of immune response. Several clinical tri-

als are currently ongoing to determine the efficacy and 

toxicity of IL-12 and cancer vaccine combinations.

Extensive preclinical studies as well as many clinical 

trials are currently ongoing to combine cancer vaccines 

with ICBs. GX-188E (tirvalimogene teraplasmid) is a 

therapeutic HPV DNA vaccine that encodes HPV-16 and 

HPV-18 E6 and E7 [290]. When GX-188E was combined 

with pembrolizumab in HPV-16/18-positive advanced 

cervical cancer, 11 of 26 patients (42%; 95% CI 23–63%) 

achieved a response; four patients (15%) had a CR at 

24  weeks. �is combination was well tolerated [291]. 

Similar results were observed in another Phase II trial 

with a synthetic long-peptide HPV-16 vaccine ISA101 

combined with nivolumab in HPV-16-positive solid 

tumors; this combination showed a 33% ORR and 17.5-

month median OS [292]. Other than concurrent use, ICB 

has also been shown to have activity as a salvage therapy 

after cancer vaccine failure. Ott et al. showed that pem-

brolizumab induced complete responses in melanoma 

patients after failure of treatment with synthetic long 

peptide vaccine of tumor neoantigens with poly-ICLC 

adjuvant [293]. With a follow-up of almost four years, 

long-term persistence of neoantigen-specific T cells was 

still observed with the development of memory T cell 

phenotype, tumor infiltration and epitope spreading 

[294].

In addition to multiple studies focusing on anti-PD1/

PD-L1 and anti-CTLA4 antibodies, other immune co-

inhibitory and co-stimulatory agents are being actively 

studied to enhance the efficacy of cancer vaccines. One 

Phase I clinical trial has already been reported with a 

melanoma-associated antigen recognized by T cells 1 

(MART-1) peptide vaccine plus IMP321, a fusion protein 

consisting of four LAG-3 extracellular Ig-like domains 

fused to the Fc fraction of a human IgG1 (LAG-3Ig). �e 

combination group is associated with significant increase 

of MART-1-specific CD8 T cells (p < 0.02), higher pro-

portion of  CCR7−  CD45RA+/− CD8 T effector cells 

(p < 0.02) and reduced expansion of regulatory T cells 

(p < 0.04) [295].

Conclusion remarks
A few combination therapies have been approved by the 

FDA to improve clinical efficacy of ICIs. With increasing 

research in identifying action-driven reliable biomarkers 

in guiding clinical immuno-oncology decisions, IO com-

binations among ACT, novel ICIs, cancer vaccines and 

small molecule inhibitors are expected. In this regard, 

the future of cancer immunotherapy awaits for a truly 

patient-oriented, individualized approach.
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