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In reducing experimental vapor-liquid equilibrium data it is common to calculate the Gibbs energy of 
mixing in excess of that for a solution whose entropy of mixing is given by one of two expressions: ideal 
entropy or Flory-Huggins entropy. The first of these is proper for a mixture of small molecules of similar 
size and the second one is proper for a mixture of monomer and chain polymer. This paper considers inter- 
mediate cases where there are significant differences in molecular shape as well as size. An expression is 
derived for the combinatolial entropy of mixing; this expression has Flory's result as the leading term but 
also contains corrections for molecular bulkiness. The combinatorial entropy of mixing depends on char- 
acteristic parameters reflecting both molecular size and shape. Methods are given for simple evaluation of 
these parameters and illustrations for representative mixt~~res  are presented. In some case, the corrections 
for bulkiness can be very large. 

En riduisant les donnees sur l'equilibre experimental vapeur liquide, il est commun de calculer I'Cnergie 
de mtlange de Gibbs en exces de celle d'une solution dont I'entropie de melange est donnte par I'une des 
deux expressions: entropie idtale ou entropie Flory-Huggins. La premiere est propre au mtlange de petites 
molCcules aux dimensions semblables et la seconde est relative a un melange de monomere ou polymere 
en chaine. Cette note traite des cas intermediaires ou il n'existe pas de differences significatives aussi bien 
dans la forme que dans la taille de la mol6cule. Une expression a Cte dtduite pour I'entropie combinatoire 
de melange cette expression contient le resultat de Flory comme terme dominant et aussi des termes correc- 
tifs pour I'encombrement moltculaire. L'entropie combinatoire de melange depend des parametres carac- 
teristiques refletant i la fois la forme et la dimension de la molkcule. Des methodes simples d'evaluation 
de ces parametres et des illustrations pardes melanges representatifs ont ete presentees. Dans certains cas 
les corrections apporttes a I'encombrement peuvent &re tres ClevCes. 

[Traduit par le journal] 
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In recent years much effort has been devoted 
toward developing the statistical thermodyna- 
mics of liquid mixtures (1). While most of this 
effort has been directed at mixtures of simple 
fluids containing small, spherical molecules, con- 
siderable progress has also been achieved in 
mixtures containing both large and small ~nole- 
cules as in polymer solutions (2); this progress 
follows primarily from work by Flory (3) and by 
Patterson and Delmas (4) based on a partition 
function proposed by Prigogine (5). These recent 
developments, however, are concerned with resi- 
dual thermodynamic properties, determined by 
differences in free volumes and in intermolecular 
forces. In the last twenty years very little atten- 
tion has been given to the configurational proper- 
ties of solutions as determined bv the combina- 
torial factor. In this work we reconsider the 
problem of calculating the combinatorial entropy 
of mixing fluids whose molecules dlffer in size 
and shape. We have derived an expression similar 
to that of Tompa (6) using arguments different 
from those used previously. Our main concern, 
however, is directed at application of Tompa's 
result which appears to have been forgotten by 

contemporary workers in solution thermody- 
namics. We make some specific suggestions 
toward quantitative calculations of the com- 
binatorial entropy of mixing which, in turn, are 
usef~ll for reduction and subseq~~ent interpreta- 
tion of experimental data for real solutions. 

We consider a binary mixture of two fluids 
indicated by subscripts 1 and 2. The entropy of 
mixing is defined as the change in entropy when 
N, molecules of 1 and N ,  molec~~les of 2 are 
mixed at constant temperature and pressure to 
form a homogeneous solution. It is convenient 
to write this entropy of mixing as the sum of 
two parts: 

where s~~perscript C stands for combinatorial 
and superscript R stands for residual. While the 
recent work of Flory, Patterson and others has 
been directed at ASR, we are here concerned only 
with ASC. The mixing process considered here is 
one where the molecules of fluids 1 and 2 have 
finite size but no forces of attraction and where 
the isothermal, isobaric mixing process occurs 
also at constant volume. 
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Let molecule 1 consist of one segment and AS' 
- - [N, In a, + N, In @,I molecule 2 of r segments. As discussed in numer- C41 7- . - 

ous textbooks, two expressions are commonly a(') 
used for ASC:  + i 

' = I  (1 - (:)t)r 
{[N, + (:) ' I .N~]  

A SC 
- -[N, In x, + N, In x,] C21 7 - 

x [ln (N, + (+) ' i -~,)  - In (N, + N,)] 

= - [N, in 0, + N, in a,] C ~ I  
-  IN^ (+) in (+) '} 

where x is the mole fraction 

and 0 is the segment fraction 

Equation 2 gives the ideal entropy of mixing 
as used in the theory of regular solutions (7) and 
eq. 3, due to Flory, is used, almost without ex- 
ception, in the polymer-solution literature. 
Equation 3 follows from well-defined assump- 
tions (8) including the assumption that molecule 
2 (the polymer) is a long, flexible chain; eq. 3, 
then, was not intended to apply to large bulky 
molecules. Using an approach different from 
Flory's, eq. 3 has also been derived by Longuet- 
Higgins (9) and by Silberberg (10). 

In 1947 Hildebrand (1 1) presented a phenom- 
enological, free-volume derivation of the corn- 
binatorial entropy of mixing. While that deriva- 
tion is ad lloc and difficult to justify theoretically, 
it points to an important conclusion (later 
verified by Tonlpa (12)), viz., the entropy of 
combinatorial mixing has a lower bound given 
by eq. 2 and an upper bound given by eq. 3; the 
"true" combinatorial entropy of mixing lies 
between these limits. Just where the "true" 
combinatorial entropy lies between these limits 
depends on the size and shape of the molecules. 
Tompa has shown that for mixtures of bulky 
molecules, eq. 2 provides a better approximation 
than eq. 3. 

While eqs. 2 and 3 are quoted in all textbooks 
on liquid-mixture thermodynamics, it will be 
useful to have an expression which, taking mo- 
lecular size and shape into consideration, is 
capable of covering the domain bounded by 
eqs. 2 and 3. We have derived such an expression 
here; it is 

A derivation of eq 4 is given in the Appendix. A 
similar equation, based on a different derivation, 
was given by Tompa (6). 

In eq. 4, r is the number of segments of mole- 
cule 2 divided by that of molecule 1 and q is the 
surface (contact) area of molecule 2 divided by 
that of ~nolecule 1. The coordination number z 
is the number of nearest neighbors of a molecular 
segment. 

The parameters a(') depend o n  molecular size 
and shape. They obey the relations 

The quantity on the right side of eq. 6 is the 
nu~nber of contacts made by segments of mole- 
cule 2 with other segments in the same molecule. 

Before discussing particular applications of 
eq. 4, it is instructive to point out  some general 
properties of that equation. 

(a) The first two terms in eq. 4 are identical to 
eq. 3; in other words, the suinn~ation term in 
eq. 4 is essentially a correction to Flory's 
equation. 

(6) If molecules 1 and 2 are identical in shape 
and size, then q = r = 1. In that event, all 
a")'s are zero and eq. 4 reduces to eq. 2. 

(c) If the coordination number z becomes very 
large, q/r + 1 and it can be shown that the sum- 
mation term in eq. 4 vanishes. 

(d) The first two terms in eq. 4 are always 
positive and for r > 1, eq. 3 always gives an 
entropy of mixing that is larger than that given 
by eq. 2. Therefore, if eq. 4 is to  give a result 
intermediate between eqs. 2 and 3, it is necessary 
that the summation term in eq. 4 be negative for 
q/r  < 1 (qlr > 1 is physically impossible). The 
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summation term in eq. 4 is essentially always parameters a( ' ) ,  a(2) ,  and a(3) suffice t o  describe 
negative and increasingly so as qlr -, 0. For the bulkiness of the molecule. Jt can then be 
mixtures of bulky inolecules of different size shown that 
(q/r << I ) ,  eq. 4 approaches eq. 2 as suggested by 

y = (Llylz)2 
Monte Carlo studies of mixtures of different- r91 

(Lly4)l  
sized spheres ( 1 ,  13). For mixtures where q/r is 
slightly less than unity, eq. 4 gives an entropy of 

Cl 01 4 = 
(L l y  + 1x12 + 4 1 2 1 2  

mixing which is very slightly less than that given (lxly + lxlz + l y l z ) ~  
by eq. 2. In such a case therefore, eq. 4 is, 
strictly speaking, not valid although the error is [ I1  "" = 2(r - - 3(r - q, + 

negligibly small. For such mixtures and for [12] $ 2 )  = 3(r - q )  - (r - 1) - 2a(3) 
mixtures where r z 2 or less, eq. 2 should be 
used. [I31 ~ t ( ~ ) = ( r - l ) - 3 q + 3  ( lx  + 1, + l z ) 2  

(e) For mixtures of chain molecules, eq. 4 ( lx  + 1, + L) t  

reduces to the obtained by Huggins ( I 4 )  For a given molecule, the parameters 4,  I,, lr 
and discussed by Guggenheiin (15). must be determined by the size and shape of that 

Determinatiotz of Parameters molecule, subject to the boundary condition 

To apply eq. 4, it is necessary to devise a con- given by eq. 8.  To find these Parameters: we 

sisteiit and physically reasonable method for utilize data for bond angles and bond lengths. 

evaluating the parameters r, q, and We To illustrate, Table 1 gives parameters for some 

present such a method below. representative molecules. These parameters were 

To evaluate r, we use the van der Waals obtained primarily from van der Waals radii 

volumes calculated by Bondi (16). Using the given by Bondi. For silicon-containing com- 

group contributions of Chapt. 14 in Bondi's pounds Bondi's method of calculation was used 

book it is simple to calculate the van der Waals with bond parameters taken from Handbook of 

volume v* of a large variety of molecules. Then Chemistry and Physics. 

[7 I r = u2*/u1* 
Con2binatorial Entropies of Mixing for 

Some Representative Binary Mixtures 
For typical mixtures, we find that r is nearly To illustrate the use of eqs. 4 and 9-13, we 
equal to the ratio of molar volumes. present calculations for a few typical binary mix- 

To  evaluate q, it is tempting to use Bondi's tures. These are shown in Figs. 1-4. Parameters 
calculations of van der Waals surface areas. used to prepare these figures can easily be cal- 
However, the surface areas given by Bondi are culated with eqs. 9 t o  13 using the numbers 
too large for our purposes; Bondi calculates the given in Table 1 .  
total surface area whereas we require that part of Our main interest is to compare results ob- 
the total surface area which is available for tained from eq. 4 with those obtained from 
interaction with neighboring molecules. Because Flory's equation (eq. 3). The essential difference 
of steric requirements, not all of the total surface between these equations is related to the largest 
area is available for interaction with nearest possible number of connections (bonds) which a 
neighbors. segment, upon being placed in the lattice, may 

TO establish a consistent inethod for evaluating have with already placed segments of the same 
both q and a('), we use a simple lattice model molecule. In Flory's equation, suitable for chain 
with z = 6. We assume that the dimensions of a molecules, that maximum number is one. We 
molecule call be represented by three mutually therefore designate results obtained from Flory's 
perpendicular, characteristic lengths (I,, I,, I,), equation by the letters SCSM which stand for 
whose product is equal to the van der Waals Single-Connected Segment Model. By contrast, 
volume : eq. 4 permits a segment of a large molecule to be 

[8 I v* = 1*1,,lZ 
connected to as many as  z - 1 other segments of 
the same molecule which have already been 

As indicated in the Appendix for this simple placed on  the lattice. Therefore we designate 
lattice = a(5' = d6' = 0. Therefore the three results obtained from eq. 4 by the letters MCSM 
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TABLE 1. Molecular parameters for combinatorial entropy of mixing 
- 

- 

v* 

Fluid 
(A) 

& 4 I= In  cm3/mol In W3/molecule 
- 

n-Alkanes 
CH4 3.05 3.05 3.05 17.1 28.4 
CzHs 4.12 3.32 3.32 27.3 45.4 
C3Hs 5.66 3.32 3.32 37.6 62.4 
C4H1o 7.20 3.32 3.32 47.8 79 .4  
G H i 2  8.74 3.32 3.32 58.0 96.3 
CsHi4 10.3 3.32 3.32 68.3 114 
C7H16 11.8 3.32 3.32 78.5 130 
CsHist  13.3 3.32 3.32 88.7 147 

n-Alkenes 
C2H4 3.60 3.32 3.32 23.9 39.7 
C3H6 5.13 3.32 3.32 34.1 56.5 
C4Hs 6.68 3.32 3.32 44.3 73.6 
C6H12 9.71 3.32 3.32 64.7 107 

12.8 3.32 3.32 85.2 141 

n-Alkynes 
C2H2 3.48 3.32 3.32 23.1 38.4  

C4Hs 6.55 3.32 3.32 43.5 72.2 

CsH,4 12.7 3.32 3.32 84.4 140 

Cycloalkanes 
G H l o  5.31 5.31 2.90 49.2 81.8 

c6H12 5.67 5.67 3.03 58.7 97.4 

Aromatics 

CsHs 5.81 5.81 2.38 48.4 80.3 

Naphthalene 8.88 5.81 2.38 74.0 123 
Anthracene 11.9 5.81 2.38 99.6 165 

Spherical 
Molecules 

CF4 3.57 3.57 3.57 27.3 45.5 
cc14 4.43 4.43 4.43 52.3 86.9 
CBr4 4.68 4.68 4.68 61.7 103 

cI4  5.20 5.20 5.20 84.7 141 

C(CH3)4 4.58 4.58 4.58 58.0 96.1 

Si(CH3I4 4.76 4.76 4.76 65.3 108 

( C H ~ ) ~ ( S ~ O ) J  6.52 6.52 6.52 167 277 

tFor11-alkanes C N C H I N  (NC > I) the following equations arevalid: I, = 1.54Nc + 1.04 A; I, = I =  = 3.32 A. 
u* = 10.23NC + 6.88crnilrnol = 16.98Nc + 11.42 il3/molecule. 

which stand for Multiple-Connected Segment 
Model. 

Figures 1-4 give excess combinatorial entro- 
pies per mole of sites. The excess entropy is 
defined, as usual, as the entropy of mixing in 
excess of that found for an ideal system (eq. 2). 
While eqs. 2, 3, and 4 give entropies per mole of 
mixture, we can easily convert to entropies per 
mole of sites by writing 

SE(per mole of sites 

[I4' SE(per mole of mixtu!e) = 

where a, is the site fraction of polymer. 

Figure 1 gives results for the system n-hexane- 
n-hexadecane. Since both components are chain 
molecules, results from eq. 3 are essentially 
identical to those from eq. 4. 

Figure 2 gives results for the system methane- 
n-hexadecane. Because of the larger size differ- 
ence, entropies shown in Fig. 2 are appreciably 
larger than those shown in Fig. 1. Again, there 
is not much difference between SCSM and 
MCSM results. However, the relative difference 
in Fig. 2 is larger than that shown in Fig. 1 be- 
cause the width of methane is smaller than that 
of hexadecane while the width of hexane is the 
same as that of hexadecane. The lower entropy 
for MCSM is in agreement with computer calcu- 
lations reported by Bellemans (17). 
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FIG. 1. Excess combinatorial entropy per mole of 
sites for 12-hexane-11-hexadecane. 

0.08 

Finally curve F is for polyethylene in the shape 
of a cube with I, = I, = I, = 5 1.4. 

Figure 4 clearly shows that the entropy is 
strongly affected by the bulkiness of the large 
molecule, i.e. by the extent to which the segments 
in the large molecule are multiple-connected 
rather than single-connected when placed onto 

- the lattice. Flory's formula (eq. 3) cannot dis- 
tinguish between the six cases shown in Fig. 4. 
Since Flory's formula depends only on the 
volume ratio, it gives results which are the same 
for all six cases, independent of molecular shape. 
Excess combinatorial entropies from eq. 3 are 
essentially identical to  those shown by curve A. 

Residual Excess Gibbs Energy 
To interpret and correlate experimental data 

for liquid mixtures, it is desirable to calculate 
residual thermodynamic functions which, in 

0 0.2 0.4 0.6 0.8 turn, can be related to a suitable partition 

n-HEYADECAdt function. Following Flory (18), AGR, the residual 

I I I I 

- - 

Figure 3 gives results for the system car- 
bon tetrachloride - octainethylcyclotetrasiloxane 
(OMCTS). Both coinponents consist of spherical 
molecules and therefore we expect a significant 
difference between SCSM and MCSM results. 
While the magnitude of the excess entropy is 0.2 

small, Fig. 3 shows that Flory's equation gives 

in a rod-like shape with I, = 3089,1, = I, = 6.64. 
Curve E is for a similar rod-shaped polyethylene 
but with shorter axis and larger cross-section; in 
this case I, = 154, 1, = 66.4, and I, = 13.28. 

- - 

- - 
/ \ 

SCSM-/ \ - - 
/ \ 

\ 

1 \ 

an excess entropy nearly twice as large as that 2 
/ \ 

found from eq. 4. H 
0 

Figure 4 gives results for mixtures of benzene o - 
and polyethylene of carbon number 8022. All 
calculations shown are obtained from eq. 4 with ul 

parameters given in Table 1. The purpose of 0- I - 
Fig. 4 is to show how the degree of bulkiness of 
the polyethylene affects the excess combina- 
torial entropy. Curve A refers to linear (straight- 
chain) polyethylene with I, = 12354 and I, = I ,  
= 3.32 (See Table 1 where all distances are given 
in Angstroms.) Curve B refers to a flat ribbon, 
i.e. to a double-strand linear polyethylene with 0 

I, = 6177, 1, = 6.64, and I= = 3.32. Curve C is 0 0.2 0.4 0.6 0.8 1.0 

also for a flat ribbon, but now the polyethylene VOLUME FRACTION n -  HEXADECANE 

is a quadruple-strand chain with 1, = 3089, 1, = FIG. 2. Excess cornbinatorial entropy per mole of 
13.28, and I, = 3.32. Curve D is for polyethylene sites for methane-11-hexadecane. 
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VOLUME FRACTION OMCTS 

FIG. 3. Excess combinatorial entropy per mole of 
sites for carbon tetrachloride - OMCTS. 

Gibbs energy of mixing is found from the experi- 
mental excess Gibbs energy of mixing by 

Since HE(combinatorial) is zero, eq. 15 becomes 

In some cases the residual Gibbs energy of 
mixing is sensitive to the model chosen for cal- 
culating SE(combinatorial). To illustrate, Fig. 5 
gives results for the system carbon tetrachloride - 
OMCTS and Fig. 6 for the system benzene- 
OMCTS; experimental data are from Marsh 
(19). For both systems the excess combinatorial 

entropy was calculated twice, once with eq. 3 and 
once with eq. 4. Since OMCTS is a large spherical 
molecule, many of its segments are multiple 
rather than single connected when placed onto 
the lattice. The excess combinatorial entropy 
calculated from Flory's equation is, therefore, 
too large and in both binary systems the residual 
Gibbs energy of mixing based on SCSM is more 
than twice that calculated from MCSM. 

The results shown in Figs. 5 and 6 indicate 
that in some mixtures the residual Gibbs energy 
of mixing is a strong function of the method used 
to calculate the combinatorial entropy of 
mixing. Thus details in the calculation of the 
combinatorial entropy of mixing may affect 
interpretation and subsequent correlation of 
residual excess functions in mixtures. 

VOLUME FRACTION POLYETHYLENE 

FIG. 4. Excess cornbinatorial entropy per mole of 
sites for benzene-polyethylene. 
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MOLE FRACTION OMCTS 

FIG. 5. Residual Gibbs energy of mixing for carbon 
tetrachloride - OMCTS at 25 "C. 6 0 0  

Equation A1 says that y j + , , ,  is smaller than 
Y, by a factor which is the fraction of unoccu- 
pied sites. 

It is tempting to generalize eq. A1 by assuming 
that the reducing factor, uiz. the fraction of un- 
occupied sites, can also be used to calculate the 
number of ways of placing the ith segment, that 
is. to assume 

I 1 I I 

- /--, 

Appendix 

Derivation o f  Eq. 4 
We consider a three-dimensional lattice with 

N  sites. We want to fill the lattice with N,  (large) 
solute molecules and N ,  (small) solvent mole- -I 4 0 0  

0 
cules. Each solute molecule occupies r  lattice r 
sites and each solvent molecule occupies one '=; 
site, such that N  = N ,  + rN,. We assume that y 

where Y i  is the number of ways of placing the 
ith segment of the ( j  + 1)th molecule when the 
lattice is nearly empty, containing only i - 1 
segments of the ( j  + 1)th molecule. Since tj is 
generally much larger than ( i  - l), the equation 
can be simplified as shown. 

Equation A2 was used by Flory. We do not 
use it here, however, because the reducing factor 

/ 
\ 

/ 
\ 

I 
\ 

- I 
\ - 

I 
\ 
\ 

I 

I 
\ 
\ 

A B A S E D  ON \ 

- ,' SCSM - \ 

I \ 
I 

\ 

I 
\ 

- I \ 
all configurations have the same energy. 3 

- 
\ 

0 
We proceed in the usual way by placing the 

N, solute molecules onto the lattice, one after - 
another. The remaining sites are then filled with mm 2 0 0  
solvent molecules. Suppose j solute molecules a 
have already been placed; we now want to com- 
pute y j + , , i  which is the number of ways we can 
place the ith segment of the ( j  + 1)th solute 
molecule. 

Consider the first segment of a solute molecule 
and. let Y ,  be the number of ways we can place 0 
that segment in the lattice if that lattice were 0 0.2 0.4 0.6 0.8 1.0 
empty. Now for the case where j solute molecules MOLE FRACTION OMCTS 
have been placed previously, yj+ 1 . I  is FIG. 6.  Residual Gibbs energy of mixingfor benzene- 
given by OMCTS at 25 "C. 
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(N - rj)/N, while valid for the first segment, is 
too low for subseq~ient segments. Once the first 
segment of a solute molecule has been placed on 
a particular site, the probability that an adjacent 
site is empty, is larger than (N - rj)/N. Stated 
in more general terms, if i - 1 sites of a solute 
molecule have been placed on the lattice, the 
probability that a fixed site adjacent to the 
(i - 1)th segment is empty, is larger than 
(N - rj)/N. The probability is larger beca~~se if 
we know that i - 1 segments have already been 
placed in the region where we want now to place 
the ith segment, we know tliat this region is less 
concentrated in solute molecules than the lattice 
as a whole. 

To obtain an improved expression for y j + l , i ,  
we must first introduce the parameters z and q. 
The coordination number of the lattice is z; each 
solvent molecule has z nearest neighbors. Each 
solute molecule has a number of nearest neigh- 
bors equal to qz, which is less than rz, because 
some of the nearest neighbors of a segment with- 
in a solute molecule belong to the same molecule. 
Whereas the total number of segment-segment 
contacts for a molecule is rz, only qz contacts 
are external. For a bulky solute molecule, where 
many of the segments are internal (i.e. com- 
pletely or primarily surrounded by segments of 
the same molec~ile), q/r is well below ~~n i ty .  For 
a linear chain molecule with no rings, q and r do 
not differ very much; they are related by 

Equation A3 is valid also for branched chain 
molecules. However, this equation assumes tliat 
a molecule does not bend back on itself, i.e. a 
segment of a ~nolecule is never placed such that 
one of its immediate neighbors is a segment of 
that same molec~lle more than two links removed. 

111 Flory's eq~lation (eq. A2) the reduction 
factor (N - rj)/N is too low. If it is known that 
a given site (arbitrarily labeled A) is the neighbor 
of one site already occupied by a segment of the 
( j  + 1)th molecule, then, the probability that 
site A is occupied by another segment of that 
same ( j  + 1)th inolecule is (1 - qlr), not zero 
as assumed in eq. A2. Further, if site A is such 
that t of its neighbors are occupied by segments 
of the ( j  + 1)th molecule, then the probability 
that site A is occupied by another segment of 
that same ( j  + 1)th molecule is even higher; it is 
1 - (qlr)'. We therefore replace eq. A2 by 
writing 

The factor in parentheses in eq. A4 is always 
less than unity and since it is in the denominator, 
the number of ways of placing the ith segment 
of the ( j  + 1)th molecule as given by eq. A4 is 
larger than that given by eq. A2. 

As the coordination number rises, the dif- 
ference between r and q falls; when z + c ~ ,  q/r 
-, 1. In that case eq. A4 reduces to  eq. A2. 

Omitting symmetry numbers, we can now 
write the number of configurations, i.e. the num- 
ber of ways of arranging N, solvent molecules 
and N2 solute molec~iles 

where p is the product of all Yi values of one 
solute ii~olecules (for i > 1) and a(') is the num- 
ber of segments of a solute molecule which, 
when placed on the lattice, have already t neigh- 
bors occupied by segments of that same solute 
inolec~~le. The sequence of placing segments on 
the lattice inLlst be s ~ ~ c l i  tliat preference is always 
given to that segment which, when placed on the 
lattice, has the largest number of neighbors 
which are previously-placed segments. Two con- 
servation equations relate the paraiiieters a(')  to 
the parameters q and t .  These are eqs. 5 and 6 
in the text. 

We can now calculate the combinatorial en- 
tropy of mixing fro111 

where k is Boltzmann's constant. To do so we 
first apply Stirling's approximation for large N 
to eq. A5 and obtain 
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[A71 lnIZ(Nl,N,) = N, ln p - N2 ln N, 

- N,  l n N ,  + Nln  N 

Substitution of A7 into eq. A6 gives eq. 4 in the 
text. 

The parameter a(') represents the number of 
segments of a solute ~nolecule which, upon 
being placed in the lattice, have t nearest neigh- 
bors occ~~pied by other segments of the same 
molecule. The integer t varies from unity to z. 

To illustrate the calculation of a('), we consider 
a two-dimensional example. Suppose we have a 
two-dimensional molec~~le of 20 sites; the mole- 
cule is a rectangle 4 sites wide and 5 sites long, 
as shown in Fig. 7. We assume that for a two- 
dimensional lattice z = 4; thus, for example, site 
8 has four nearest neighbors (3, 7, 9, and 13). 
The rectangular molecule has t- = 20 and qz, the 
number of nearest-neighbor external contacts, 
is 18 (one external contact each for sites 2, 3, 4, 
10, 15, 19, 18, 17, 11, and 6; two external con- 
tacts for sites 1, 5, 20, and 16). 

We place the segments on the lattice such that 
each segment placed must have the largest pos- 
sible number of previously placed segments as 
neighbors. First we place segment 1. Then we 

FIG. 7. TWO dimensional molecule occupying 20 sites. 

place segments 2,3,4, and 5, and then segment 6. 
In each of these five placements, the segment 
placed has one nearest neighbor. Next we could 
place segment 11 or 10 or 7 or 8 or 9. We must 
choose segment 7 because it will be placed with 
two neighbors while the others would be placed 
with only one neighbor. After 7, comes 8, 9, and 
10, each with two neighbors. Next comes 11 
(with one neighbor) followed by 12, 13, 14, and 
15 (with two neighbors). Finally, we place 16 
(one neighbor) followed by 17, 18, 19, and 20 
(two neighbors). 

All placements (for i > 1) have either one or 
. s indi- two neighbors. Thus = d4) = 0 A 

cated by the sequence of the previous paragraph 

a(') = 7 (Segments 2, 3, 4, 5, 6, 1 I ,  and 16) 

a") = 12 (Segments7,8,9, 10, 12, 13, 14, 15, 

17, 18, 19, and 20) 

It can readily be shown that these values for 
a(') satisfy eqs. 5 and 6 in the text: 

Extension to Mtrlticoinponent Mixtures 
Unfort~~nately there is no unambiguous way 

to generalize eq. 4 in the text to mixtures con- 
taining more than two components. For  a mix- 
ture of n components the value of R(Nl ,N,,...N,,) 
depends upon the sequence 1, 2, ... n used for 
placing the n~olec~~les on the lattice, as  pointed 
out long ago by Miller (20). Generalization can 
be achieved only in the special case where 

a 1 - ( )  is the same for all 
~nolecules. 
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