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Abstract

Mycoplasma bovis pneumonia in cattle has been epidemic in China since 2008. To investigate M. bovis pathogenesis, we
completed genome sequencing of strain HB0801 isolated from a lesioned bovine lung from Hubei, China. The genomic
plasticity was determined by comparing HB0801 with M. bovis strain ATCCH 25523TM/PG45 from cow mastitis milk, Chinese
strain Hubei-1 from lesioned lung tissue, and 16 other Mycoplasmas species. Compared to PG45, the genome size of HB0801
was reduced by 11.7 kb. Furthermore, a large chromosome inversion (580 kb) was confirmed in all Chinese isolates
including HB0801, HB1007, a strain from cow mastitis milk, and Hubei-1. In addition, the variable surface lipoproteins (vsp)
gene cluster existed in HB0801, but contained less than half of the genes, and had poor identity to that in PG45, but they
had conserved structures. Further inter-strain comparisons revealed other mechanisms of gene acquisition and loss in
HB0801 that primarily involved insertion sequence (IS) elements, integrative conjugative element, restriction and
modification systems, and some lipoproteins and transmembrane proteins. Subsequently, PG45 and HB0801 virulence in
cattle was compared. Results indicated that both strains were pathogenic to cattle. The scores of gross pathological
assessment for the control group, and the PG45- and HB0801-infected groups were 3, 13 and 9, respectively. Meanwhile the
scores of lung lesion for these three groups were 36, 70, and 69, respectively. In addition, immunohistochemistry detection
demonstrated that both strains were similarly distributed in lungs and lymph nodes. Although PG45 showed slightly higher
virulence in calves than HB0801, there was no statistical difference between the strains (P.0.05). Compared to Hubei-1, a
total of 122 SNP loci were disclosed in HB0801. In conclusion, although genomic plasticity was thought to be an
evolutionary advantage, it did not apparently affect virulence of M. bovis strains in cattle.
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Introduction

Mycoplasma bovis is a member of the Mycoplasmataceae family in

the class of Mollicutes that was first identified as a causative agent

of mastitis in 1961 and recognized as an important pathogen of

bovine respiratory disease in 1976 [1].M. bovis pneumonia became

more common with the development of the beef industry and was

often induced by long-distance transport of stockers to feedlots.

Because this microorganism is resistant to several antibiotics

including b-lactams and there is no effective commercial vaccine

available, M. bovis has caused a significant economic loss in the

United States, Canada and most of Europe [2,3]. In China, M.

bovis pneumonia was first reported in 2008 in the Hubei province

with an average case fatality of 10%, but possibly over 40% [4].

Although M. bovis was discovered nearly five decades ago, its

pathogenic mechanisms remain largely unknown. Recently, the

complete genomic sequences of M. bovis PG45 [5] and a Chinese

strain Hubei-1 [6] have been published and the genomic

annotation has identified some putative virulent genes, which

are yet to be confirmed. To obtain more insight into M. bovis, we

sequenced another Chinese strain, HB0801, isolated from Hubei

province in 2008. In addition, by assembling the full genomic

sequences, we preformed comparative genomic analysis of M. bovis

strains HB0801, PG45, Hubei-1 and 16 other sequenced

Mycoplasmas. Our results revealed that HB0801 contained

extraordinary genomic plasticity. Further, in vivo cattle experi-

ments demonstrated that both PG45 and HB0801 had similar

virulence to calves.

Materials and Methods

Strain and culture
The HB0801 strain was isolated from the lesioned lung of an

infected beef cattle from Yingcheng city in Hubei province, China

by this laboratory [4] and stored at the China Center for Type

Culture Collection (CCTCC # M2010040) at Wuhan University,

Wuhan, China. HB1007 was isolated from milk of a dairy cow

with mastitis in Hubei in 2010.

The strain was cultured on a pleuropneumonia-like organisms

(PPLO) agar plate at 37uC, in a 5% CO2 atmosphere for 3 days or

in PPLO broth (2.5 g glucose, 10.5 g PPLO, 2.5 g yeast, 50 mL

donor equine serum (Thermo Fisher Scientific, Waltham, MA,
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USA), 5 mL10% arginine, 5 mL 106MEM, 5 mL of 80,000 IU/

mL penicillin-G, and 500 mL 1% phenol red) at 37uC for 3 days

on an orbital shaker.

Library construction and DNA sequencing
The culture was harvested from 50 mL broth by centrifugation

at 1180 g for 30 min and DNA was extracted using a bacterial

genomic DNA extraction kit (Tiangen, Beijing, China) and sent to

the Tianjin Biochip Corporation (Tianjin, China) for further

processing.

A 6 kb library of the HB0801 genome was prepared by

standard protocols at the Tianjin Biochip Corporation and

sequenced with a Roche 454 GS-FLX Pyrosequencer (Roche,

Welwyn Garden City, Hertfordshire, UK) according to the

manufacturer’s protocols. The 284,110 paired reads with an

average length of 136 bps, as well as 52,910 single end reads with

an average length of 324 bps were produced, representing a 56.6-

fold coverage of the genome. 93.6% (315,507) of reads were

assembled de novo using the 454/Roche Newbler assembly

program (v2.0). The assembly produced 8 scaffolds and 134

non-redundant contigs in total. The N50 contig length of 76 large

contigs (.1 kb) was 30,795 bp and the largest one was 78,194 bp.

The number of total bases of the large contigs was 908,485 bp.

To fill the gaps within the scaffolds and validate the sequences

from the assembly, an additional 2 kb library was prepared using

Illumina sample preparation kits and sequenced by using an

Illumina Solexa GA IIx (Illumina, Little Chesterford, Essex, UK)

according to the manufacturers’ guidelines. A total of 6,278,608

reads with 54 bp lengths were generated to reach a 342.8-fold

coverage.

After removal of duplications, all generated reads were mapped

to the scaffolds constructed by 454 reads to yield an assembly using

the Burrows-Wheeler Alignment tool (BWA) [7]. The gaps within

the scaffolds were filled using Solexa sequencing technology

(Illumina, Inc., San Diego, CA, USA) and 454 paired-end reads

with one end mapped on the unique contig and the other end

located in the gap region. The local assembly was performed using

an in-house Perl script. In addition, the combination of the Solexa

and 454 sequencing helped to solve the possible errors of small

indels in homopolymers [8].

Genome annotation and analysis
When the genomic sequencing was completed, no M. bovis

genomic sequences had been published or available for reference.

The HB0801 open reading frames (ORFs) were initially predicted

using Glimmer 3 software (http://www.cbcb.umd.edu/software/

glimmer/) and most were verified using the tBLASTn algorithm

(http://blast.ncbi.nlm.nih.gov/) and compared to the related M.

agalactiae genome (GenBank Accession: NC_009497.1). Transfer

RNA (tRNA) and ribosomal RNA (rRNA) genes were predicted

using the tRNAscan-SE program (http://lowelab.ucsc.edu/

tRNAscan-SE/) and by similarity to M. agalactiae rRNA genes. The

Artemis algorithm [9] was used to collate data and facilitate

annotation. Functional predictions were based on BLASTp algo-

rithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) sim-

ilarity searches against the UniprotKB database (http://www.ebi.ac.

uk/uniprot) and the clusters of orthologous groups (COG) database

(http://www.ncbi.nih.gov/COG). Lipoproteins (LPs) were deter-

mined using preg in the EMBOSS package [10]. The PROSITE

expression of the extended lipobox search pattern was obtained from

previous work on strain PG45 [5] and translated into regular

expression. In addition, signal peptide sequences and putative

transmembrane proteins were predicted using SIGNALP [11], and

TMHMM 2.0 [12], respectively. Furthermore, the inter-strain

comparative analysis forM. bovis strains was performed using Mauve

2.3.1 genome alignment software [13] and the Artemis Comparison

Tool (ACT) [14].

Orthologs detection and phylogenetic analysis
The genomes of 17 Mycoplasmas strains were freely available at

the time of the study and were presented in Table 1. Coding

sequences (CDS) were extracted from GenBank files, and

orthologs or recent paralogs were determined using OrthoMCL

[15]. This program first made a tBLASTn search, which helped to

detect frame shifts and truncated genes, and predict the putative

pseudogenes and missed genes in annotation. Then we performed

reciprocal BLASTP searches of the 17 proteomes to define the

ortholog pairs based on the clustering criteria; 10210 cut-off e-

value, minimum protein length of 40 amino acids and at least 70%

identity. Putative orthologs or paralogs were clustered into protein

families using the Markov Cluster algorithm (MCL) [16] with an

inflation parameter value of 1.5. In return, the MCL yielded a set

of clusters, with each containing a set of orthologs and/or recent

paralogs. We used the OrthoMCL output to construct a table

describing the gene content of various Mycoplasma genomes (Table

S1). Genes that were not included in a cluster were considered

taxon-specific genes. This table was used to construct core-genome

data sets of Mycoplasma (Table S2).

The orthologs did not need to be conserved in all codons.

Frame shifts [17], gene mergers or sequencing errors [18] could

greatly interrupt the amino acid sequences of pseudogenes.

Orthologs were first compared at the amino acid level with

BLASTp to retrieve all conserved regions. The codons in the non-

conserved regions were removed using the in-house Perl scripts

and edited manually. The remaining amino acid sequences were

aligned using the Clustal W 1.82 algorithm [19] and then back-

translated to DNA using an in-house Perl script.

The phylogenetic tree of each ortholog was re-constructed from

the DNA alignment with the phyML algorithm (http://www.atgc-

montpellier.fr/phyml/) using the maximum likelihood under the

GTR+ gamma (with 8 categories) +I model of evolution with a

BioNJ start tree [20]. The 1000 bootstrap experiments were

performed on the concatenated sequences to assess the topological

robustness. The phylogenetic tree of each ortholog was resolved to

several independent bipartitions, each of which represented one

branch of the phylogenetic tree. Support for each bipartition was

obtained by bootstrapping a maximum likelihood tree search using

Tree-puzzle 5.2 [21]. All well-supported (.70% bootstrap

support) bipartitions from each ortholog were collected. The

super-tree was re-constructed using the matrix representation with

parsimony (MRP) method [22] as implemented in Clann 2.0.2

[23].

Horizontal gene transfer (HGT) analysis
As a gene was being moved laterally, the depicted phylogenetic

relationship would be different from the typical species tree [24]. If

one M. bovis ortholog was clustered with other species in

bipartitions at a .70% bootstrap support level, but not with M.

agalactiae, this ortholog might have undergone a putative recom-

bination. This method was utilized to detect recombination

between HB0801 and other Mycoplasmas species with help of the

phylogenetic tree of each ortholog and species trees obtained

beforehand.

Sequence confirmation with PCR
In order to confirm vsp gene sequences, we designed a pair of

primers for the flanking sequences of the entire vsp cluster region.

Geno-Plasticity of M. bovis
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Vsp-F: 59-TGCTATTCATTTCTTTGTAGTATTTTATGT-

39;

Vsp-R: 59-TTTATTTCCTTTACCAATTACATATATTCG-

39.

PCR assays were conducted using 2 mL HB0801 genomic DNA

as the template in 25 mL reaction mixture with 1 U of LA Taq

DNA polymerase (TaKaRa, Tokyo, Japan) in 16buffer supplied

by the manufacturer, 200 mM dNTPs and 1.4 mM of each primer.

The amplification was programmed over 35 cycles, each consisting

of 45 s at 95uC, 30 s at 60uC, and 8 min at 72uC and an initial

denaturation step at 95uC for 5 min.

In order to show the inverted region of the HB0801 genome as

compared to M. bovis PG45, we designed two other sets of primers:

Inv-1 and Inv-2, which were specific to the two connection regions

at both ends of the inversion.

Inv-1F: 59-GAAAAATGGAACTCCTTTACCTTATGG-39;

Inv-1R: 59-AATGAGATAGAACTGTTAGGAGGCGTC-39.

Inv-2F: 59-GCATCACCATTTGTTCTGTTGTCTGTT-39;

Inv-2R: 59-CTGACGCTGCTGCTTATGATTTTATTG-39.

Both PCR reactions were programmed in the cycler (Veriti 96-

Well Thermal Cycler, Applied Biosystems) for 30 cycles, each

consisting of 40 s at 94uC, 40 s at 53uC, and 90 s at 72uC and an

initial denaturation step of 94uC for 5 min. These reactions were

expected to yield the 2307 bp and 2893 bp fragments, respective-

ly, if the inversion occurred. The products were sequenced at

Sangon Biotech (Shanghai) Co. Ltd., Shanghai, China.

Pathological assessment of M. bovis strains in cattle
To compare the virulence ofM. bovis strains HB0801 and PG45,

cattle were artificially infected. The animal treatment was carried

out in strict accordance with the Hubei Regulations for the

Administration of Affairs Concerning Experimental Animals,

2005. The protocol was approved by the China Hubei Province

Science and Technology Department (Permit Number: SYX-

K(ER) 2010-0029). A total of nine locally bred calves (age: ,6

months) without overt clinical signs were purchased from a local

market and raised at the Huazhong Agricultural University

experimental farm. The calves were randomly divided into three

groups (n = 3 calves each): two infection groups and a control

group. In the infection groups, calves were challenged through

intratracheal injection with 10 mL (109 CFU/mL) of M. bovis

strains HB0801 or PG45 for three successive days, while the

remaining calves were mock-infected with an equal amount of

medium as a negative control. After challenge, each group was

segregated in different pens and observed for 20 days.

At day 20 post-challenge, all calves were euthanatized by

intravenous injection of sodium pentabarbitone and postmortem

examinations were performed. The scoring system for the gross

pathological lesions of the inner organs [25] and lungs [26] were

applied to assess virulence of the strains. The lung tissue and

cervical lymph nodes (1 cm3) were cut and fixed immediately with

10% neutral buffered formalin and sent to Wuhan Guge Biological

S & T Co. Ltd. (Wuhan, China) to produce 4 mm-thick paraffin-

embedded tissue sections. Immunohistochemical staining by the

streptavidin–biotincomplex (SABC) method and SABC (mouse

IgG) - POD kit was performed according to the manufacturer’s

instructions (Boster Biotech, Wuhan, China). Each tissue from one

calf was sub-divided into 2 groups of 3 sections each: (1) Negative

control: the sections were stained with phosphate-buffered saline

(PBS) instead of mouse monoclonal antibody to M. bovis; (2) M.

bovis staining: the sections were stained with in-house mouse

monoclonal antibody 2A3 (1:200 dilution) to M. bovis [27]. All

sections were stained with biotinylated goat anti-mouse IgG and

then Streptavidin–HRP complex. The reaction was developed

with 3,39-Diaminobenobenzidine (DAB)/H2O2, counter-stained

with hematoxylin and mounted. Results were positive when the

cells stained brown and negative when the cells stained blue. Based

on cell density and uniformity, lymph nodes were selected to

quantitatively analyze the difference between positive signals of

infection and control groups with Image-Pro Plus 6.0 (IPP6)

Table 1. Genomes Used for Phylogenetic Construction and Comparison Analysis.

Species Accession No. in GenBank

Mycoplasma agalactiae PG2* NC009497

Mycoplasma agalactiae 5632 NC013948

Mycoplasma arthritidis 158L3-1* CP001047

Mycoplasma capricolum subsp. capricolum ATCC 27343* CP000123

Mycoplasma conjunctivae HRC/581* FM864216

Mycoplasma gallisepticum str. R(low)* AE015450

Mycoplasma hominis ATCC 23114* FP236530

Mycoplasma hyopneumoniae 232* AE017332

Mycoplasma hyopneumoniae 7448 AE017244

Mycoplasma hyopneumoniae J AE017243

Mycoplasma mobile 163K* AE017308

Mycoplasma mycoides subsp. capri str. GM12 CP001621

Mycoplasma mycoides subsp. mycoides SC str. PG1* BX293980

Mycoplasma pneumoniae M129* U00089

Mycoplasma pulmonis UAB CTIP* AL445566

Mycoplasma synoviae 53* AE017245

Mycoplasma bovis HB0801* CP002058

Note:
*, Mycoplasma species involved in the frequency of orthologs analysis.
doi:10.1371/journal.pone.0038239.t001

Geno-Plasticity of M. bovis
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software (Media Cybernetics, Inc., Bethesda, MD, USA). Briefly,

six fields for each tissue were photographed under a light

microscope (6400) and positive signals for each image was

assessed by IPP6 as the integrated optical density (IOD), and the

total IOD of each calf was calculated. The difference in IOD

between each group was analyzed with R*64 2.13.0 software.

Differences were significant when P,0.05 and very significant

when P,0.01.

Nucleotide Sequence Accession Number
The complete HB0801 genome sequence was deposited in the

GenBank database (Accession number: CP002058).

Results

General features
The genome of Mycoplasma bovis HB0801 was composed of

991,702 base pairs (bps) with a single circular chromosome

(Figure 1). The general genomic features of M. bovis HB0801 were

compared with strains Hubei-1 and PG45 (Table 2). The genome

size of HB0801 was about 11.7 kb smaller than that of PG45. This

difference comprises 1% of the PG45 genome. The common

properties between HB0801 and PG45 include 29.3% of G+C

content, 34% of tRNAs, a similar coding percentage (84.2% for

HB0801, 83% for PG45), similar length of CDSs (1096 bps for

HB0801, 1089 bps for PG45), and similar number of insertion

sequences (IS). However, there was a large difference in the

number of integrative conjugative elements (ICE) and variable

surface lipoproteins (vsp).

Insertion sequence (IS) elements
DNA sequence analysis and BLASTp searches against the IS

database (http://www-is.biotoul.fr/is.html) found 51 IS elements

in the HB0801 genome that belonged to eight distinct categories.

These categories of IS elements were designated as ISMbov (1–

8)HB0801 and each had a different copy number, ranging from 1 to

12. The features of these 8 categories of IS elements including the

amine acid sizes of ORF, copies in M. bovis HB0801 strain,

homology to other IS elements and the origins and the related IS

families were shown in Table 3. The first seven categories

(ISMbov1-7HB0801) were identical to ISMbov1-7PG45 of PG45, as

previously described [28]. ISMbov8HB0801 was only found in

HB0801 and showed 26% similarity to either ISMmy1 in M.

mycoides subsp. mycoides small colony type or ISMbov2 in PG45.

Integrative conjugative element (ICE)
The integrative conjugative element B-1 of M. bovis HB0801

designated as ICEBHB0801-1 (Mbov_0384-0400) was found, but

ICEB-2 was absent in the HB0801 genome as compared to PG45.

The BLASTp comparative analysis between ICEBHB0801-1 and

ICEs of other Mycoplasmas indicated that ICEBHB0801-1 was best

aligned with ICEAPG2 of M. agalactiae PG2, suggesting that they

occurred in a common ancestor prior to speciation. Between

ICEBHB0801-1 and ICEBPG45-1, almost all the corresponding

CDSs showed an average of 99% identities, except CDS11 and

CDS5, which were designated according to previous M. fermentans

ICEs nomenclature [29]. The CDS11 (Mbov_0392) presented one

copy in ICEBHB0801-1, two copies in ICEBPG45-1 and both shared

an average of 55% identities. The CDS5 (Mbov_0387), which

encoded TraG, was disrupted by a stop mutation in ICEBHB0801-

1. This was a conjugal protein that coupled the relaxosome to the

translocation apparatus [30]. There was also another conjugation-

related protein, TraE (Mbov_0397) in M. bovis HB0801, which was

thought to be involved in DNA transport across the conjugative

pore [31,32].

M. bovis PG45 ICEB-2 also contained the traG gene and the

traE-like ICEB-1pseudogene. Interestingly, there were low identi-

ties of these two genes between ICEB-1 and ICEB-2 in PG45. The

other ICEB-2 genes encoded transposases, putative lipoproteins,

membrane proteins and hypothetical proteins without known

functions. Furthermore, all showed no identities to those of ICEB-

1. Therefore, the loss of ICEB-2 in HB0801 may be related to a

strain level difference and host-pathogen interactions.

Variable surface lipoproteins (Vsp) cluster
A cluster of 6 vsp-related ORFs (Mbov_0793-Mbov_0798) was

found in HB0801 and designated as vspHB0801-1 to 6, while PG45

had 13 vsp-related ORFs (Figure 2A). With the exception of

vspHB0801-6 (Mbov_0798), which had a 99% identity to PG45 vspL,

none of the vsp-related ORFs in HB0801 was identical to the PG45

vsp genes, which have been already characterized. Similar to the

Figure 1. Circular Diagram of the M. bovis HB0801 Genome
Structure. The dnaA gene is at position zero. Starting from the outside,
the first circle shows the genome length (units in Mb); the second and
the third circles show the locations of the predicted CDSs on the plus
and minus strands, respectively, which were color-coded by COG
categories (gold for translation, ribosomal structure and biogenesis;
orange for RNA processing and modification; light orange for
transcription; dark orange for DNA replication, recombination and
repair; antique white for cell division and chromosome partitioning;
pink for defense mechanisms; red for signal transduction mechanisms;
peach for cell envelope biogenesis and outer membrane; deep pink for
intracellular trafficking, secretion and vesicular transport; pale green for
post-translational modification, protein turnover and chaperones; royal
blue for energy production and conversion; blue for carbohydrate
transport and metabolism; dodger blue for amino acid transport and
metabolism; sky blue for nucleotide transport and metabolism; light
blue for coenzyme metabolism; cyan for lipid metabolism; medium
purple for inorganic ion transport and metabolism; aquamarine for
secondary metabolites biosynthesis, transport and catabolism; and gray
for unknown function); the fourth circle shows tRNAs (violet) and rRNAs
(red); the fifth circle shows the centered GC (G+C) content of each CDS
(red: above mean and blue: below mean); and the sixth circle shows the
GC (G+C) skew plot.
doi:10.1371/journal.pone.0038239.g001

Geno-Plasticity of M. bovis

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e38239



structure of vspPG45 genes, each vspHB0801 gene contained two

highly conserved upstream regions and a variable C-terminal

repetitive downstream region. The highly conserved regions

contained a non-coding 70 bp sequence upstream from the

ATG initiation codon (Figure 2B-1) and a fragment encoding 31

amino acids at the N-terminal region (Figure 2B-2), which

represented a typical prokaryotic lipoprotein signal peptide. In

addition, some non-vsp ORFs (ORF-1 and ORF-2, Figure 2A) in

this cluster and the adjacent site-specific tyrosine recombinase

were shown to be highly conserved in both strains.

Comparison between HB0801 and PG45
The genome of HB0801 was compared to PG45 using the

Mauve 2.3.1 software (Figure 3A-1 and 3A-2). A large mid-

inversion region of about 580 kb was discovered in the HB0801

compared to PG45, that also existed in Hubei-1 genomes [6]. The

mechanism leading to this inversion was explored. The analysis

revealed that two mobile genetic elements were associated with

this inversion. A complete ISMbov3 and an interrupted ISMbov3

were separately found at each side of the inverted fragment in

PG45 but were deleted on both sites of this inversion in HB0801.

In addition, another mobile element ICEB-2 was upstream of the

inversion region in PG45, but completely absent in HB0801 and

Hubei-1 [6]. Therefore, these mobile genetic elements might have

mediated this inversion mutation.

The difference between M. bovis strains HB0801 and PG45 was

mainly due to IS elements. Generally speaking, ISs are distributed

stochastically across the whole genome. With the exception of

ISMbov8, which was absent in PG45, both strains contained

ISMbov1 to ISMbov7. However, the copy number and location of

each IS element were different.

In addition to IS elements, there were some unique insertion

fragments in HB0801 compared to PG45. One large insertion

fragment (Mbov_0339-Mbov_0350) was 18.8 kb, other smaller

insertions included fragments of 3.5 kb (Mbov_0354-Mbov_0357),

6.0 kb (Mbov_0365-Mbov_0368), 5.0 kb (Mbov_0417-Mbov_0420),

5.3 kb (Mbov_0454-Mbov_0457) and 8.3 kb (Mbov_0463-

Mbov_0466), all which were shown in Figure 3A-1 and 3A-2.

With the exception of the 5.0 kb fragment, each insertion

contained at least one IS element in or outside the region and

therefore the IS elements might be responsible for the gene

transfer. In addition to the IS elements, most of the genes included

in the insertion fragments were encoding putative lipoproteins or

transmembrane proteins (marked with green or red color), those

would probably result in the virulence and the phenotype

differences between two strains.

M. bovis strains HB0801 and PG45 also contained distinct

restriction modification (RM) systems, which include three distinct

types (I, II and III). The type I RM system usually includes a

multifunctional enzyme that comprises three subunits encoded by

three closely linked genes, hsdR, hsdM, and hsdS, which have both

restriction and modification activities. A 13.0 kb fragment

(276,441 nt to 289,403 nt) in HB0801 contained a complete type

I RM system that was designated as hsd-2 (shown in purple in

Figure 3A-2) and a recombinase. This fragment seemed to be

completely different at the nucleotide level from the 10.2 kb

fragment at the same position (703,157 nt to 713,368 nt) of the

PG45 genome, which encoded a complete hsd-2 and an integrase.

In addition, there was another fragment encoding a complete hsd-1

(Figure 3A-1) and a recombinase in HB0801 at separate positions

(755,964 nt to 766,464 nt). Of the hsd-1 genes, hsdM and hsdR

Table 2. General Feature Comparison of Mycoplasma bovis
HB0801 with Hubei-1 and Mycoplasma bovis ATCCH 25523TM/
PG45.

Features Mycoplasma bovis strains

HB0801 Hubei-1a PG45b

Genome size (bp) 991,702 948,121 1,003,404

G+C content (%) 29.3 29.4 29.3

Protein coding genes without
pseudogenes

762 803 765

Pseudogenes 46 30 61

Average length of CDSs (bp) 1097 1058 1089

Percentage coding (%) 84.2 89.5 83

tRNA 34 34 34

rRNA (23S, 16S and 5S) sets 2 1 2

Predicted lipoproteins 103c 96c 96

Insertion sequences 51 26 54

ICE Number 1 1 2

vsp cluster genes 6 0 13

aLi et al., 2001;
bWise et al., 2010. ICE, Integrative Conjugative Element; vsp, Variable Surface
Lipoproteins.
cThe data were predicted using the same method mentioned in PG45 genome
paper.
doi:10.1371/journal.pone.0038239.t002

Table 3. Features of IS Elements in Mycoplasma bovis HB0801.

IS Copies Amino acid size

Homology to other IS

elements Origin IS family

ISMbov1HB0801 12(2 p) 416 94%ISMag1 M. agalactiae PG2 IS30

ISMbov2HB0801 6(3 p) 470 94%ISMmy1 M. mycoides SC PG1 IS1634

ISMbov3HB0801 9(1 p) 557 94%IS1634 M. mycoides SC PG1 IS1634

ISMbov4HB0801 4(2 p) 477 34%ISMmy1 M. mycoides SC PG1 IS1634

ISMbov5HB0801 6(2 p) 462 28%ISMmy1 M. mycoides SC PG1 IS1634

ISMbov6HB0801 3 338 39%IS1630 M. fermentans PG18 IS30

ISMbov7HB0801 10(3 p) 414 42%ISMmy2 M. mycoides LC IS3

ISMbov8HB0801 1 478 26%ISMmy1 M. mycoides SC PG1 IS1634

Notes: p, Pseudogene which is interrupted or truncated, containing premature stop codon or frameshift mutation.
doi:10.1371/journal.pone.0038239.t003
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Figure 2. Comparison of vsp Gene Cluster betweenM. bovis HB0801 and PG45. The vsp gene loci of HB0801 (A-1) and PG45 (A-2) are shown.
The locations and directions of the vsp ORFs are indicated with gray arrows. The adjacent non-vsp ORFs (ORF-1 and ORF-2) are indicated with open
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showed a high homology (93% and 99%) to those in the PG45

genome at same position (272,909 nt to 282,015 nt). However,

this RM-specific subunit gene hsdS, which determines bacterial

restriction and methylation specificity, varies between the two

strains and experiences DNA rearrangement. The rearrangement

in hsdS is believed to respond to environmental change and might

be mediated by the adjacent integrase. There were two other

fragments related to the RM system that varied between the

HB0801 and PG45 genomes. In HB0801, one fragment

(619,537 nt to 624,534 nt) contained a methyltransferase that

was different from the corresponding fragment (412,382 nt to

415926 nt) in PG45, which contained a type II RM system. The

other fragment (867,161 nt to 871451 nt) contained a type III RM

system methylase pseudogene which was resulted from one

frameshift mutation. This type III RM system methylase

pseudogene varied from the corresponding fragment (866,349 nt

to 871,012 nt), which also contained a degenerate type III RM

system in PG45. Distinct RM systems of HB0801 and PG45 might

imply their different abilities to adapt to the environment.

Another significantly varied region between the strains was

marked with blue ovals in Figure 3A-2 and referred to the vsp

cluster. HB0801 which has less and different vsp ORFs compared

to PG45. Further analysis related to vsp cluster had been

mentioned before.

In addition to the Vsp family, some putative lipoproteins

(marked with green dots) and transmembrane proteins (marked

with red dots) were shown to vary between HB0801 and PG45

(Figure 3A). A special fragment (595,710 nt to 613,545 nt) in

HB0801, encoding five putative transmembrane proteins

(Mbov_0510, 0514, 0516, 0517 and 0519) and two putative

lipoproteins (Mbov_0515 and 0518), showed only 76% identities to

the corresponding PG45 fragment (421,848 nt to 439,718 nt) by

BLASTn analysis. The difference in the lipoproteins and

transmembrane proteins may have resulted from varied environ-

ment pressures and may be important in pathogenesis and

immune adaptation.

Comparison between HB0801 and Hubei-1
The HB0801 genome was 43581 bp greater than Hubei-1.

Based on the published Hubei-1 sequence (GenBank Accession no:

CP002513), the size difference mainly involved two unique

deletion fragments and nine insertion fragments in HB0801

(Figure 3B). One deletion fragment contained an ISMbov1

(MMB_0191) and a hypothetical protein (MMB_0190), while

another encoded an N-terminal truncated type III RM system

methylase (MMB_0159).

Among the nine HB0801 insertion fragments, six were stand-

alone mobile IS elements, including five ISMbov3 copies and one

copy of ISMbov1.

Amazingly, the vsp gene cluster, which existed in both PG45 and

HB0801, was completely deleted in Hubei-1, although the vicinal

gene encoding an integrase-recombinase (xerC) remained. The vsp

cluster was previously reported as a characteristic region in M.

bovis [33].

In addition, there were three large insertion fragments in

HB0801, which were 11.5 kb, 10.7 kb and 6.6 kb, respectively.

The 11.5 kb insertion fragment (208,970 nt to 220,444 nt)

contained two IS elements (ISMbov1, ISMbov2) and three putative

lipoproteins (Mbov_0182, 0186 and 0188). The 10.7 kb

(527,734 nt to 538,505 nt) insertion fragment consisted of four

IS elements (ISMbov1, ISMbov2 and two copies of ISMbov3) and

three putative lipoproteins (Mbov_0458, Mbov_0461 and

Mbov_0462) and the 6.6 kb insertion fragment (712,168 nt to

718,846 nt) encompassed a 16S rRNA, 23S rRNA and an

ISMbov4 psuedogene. Each insertion fragment contained mobile

IS elements, which were suspected of mediating the fragment

transfers. In contrast to the two 16S-23S rRNA operons in

HB0801and PG45, there was only one in Hubei-1. However, two

5S rRNAs were found at other positions in the Hubei-1 genome.

These findings indicated that Hubei-1 may have lost one 16S-23S

rRNA operon as a result of internal ISMbov4-mediated transfer.

Furthermore, two putative lipoproteins (Mbov_0339 and

Mbov_0656) were found to possess intragenic insertion fragments

in HB0801 compared to Hubei-1. The former which contained

repeat sequences was inserted by two different repeat sequences of

39 bp at the repeat region. It showed a high homology to vpmaY1

in Hubei-1 and was designated as vspY1 in HB0801. The latter

also contained repeat sequences and the 51 bp insertion fragment

occurred at either repeat region. The repeat regions could lead to

polymerase slippage during replication and result in the high

frequency phase variation.

Meanwhile, we analyzed single nucleotide polymorphism (SNP)

loci between the HB0801 and Hubei-1 genomes (Table S6). A

total of 122 SNP loci were found. Among them, 57% (69/122)

were present in IS elements (25 in ISMbov1, 31 in ISMbov7, 6 in

ISMbov2, 6 in ISMbov3 and 1 in ISMbov5). This suggested that the

gene mutations were more likely to occur in IS elements during

evolution. In addition, there were 18 SNPs present in six genes

(Mbov_0339, Mbov_0473, Mbov_0477, Mbov_0518, Mbov_0730,

Mbov_0732 and Mbov_0856), which encoded putative LPs. Of

these, 10 were present in one gene (Mbov_0339) encoding for the

VpmaY1-like variable surface lipoprotein (VspY1) and located

near the two inserted fragments. Furthermore, there were five

SNPs occurring in four different putative transmembrane proteins.

The lipoproteins such as VspY1 and membrane proteins are

thought to be potential virulence factors. Therefore, the corre-

sponding SNPs may affect M. bovis pathogenicity. Moreover, there

were six SNPs present in genes encoding transporters for nutrients,

including glycerol (Mbov_0271), multiple sugars (Mbov_0581),

oligopeptides (Mbov_0034 and Mbov_0037), and chromate

(Mbov_0762), and a ABC transporter for drug resistance

(Mbov_680). It is interesting that there also was the phosphoglyc-

erate mutase gene (Mbov_0776), which functions in glycerol

metabolism possessing one SNP locus. There were also two

lipoate-protein ligase A (lplA) genes (Mbov_0009 and 0010) found

to contain one SNP each. LplA is an essential enzyme to ligate free

lipoate to target proteins and was found to affect the pathogenic

virulence [34]. Almost all SNPs present in transporters resulted in

missense mutations, except the SNP in the chromate transporter.

Since glycerol is considered the main carbon and energy source of

M. bovis [6], the SNPs present in genes responsible for the

transport and metabolism of glycerol may affect M. bovis growth

arrows. The locations of the putative tyrosine recombinase genes (xer C) are indicated with hatched arrows. The highly homologous regions upstream
of the vsp genes are indicated with black blocks. (B) Sequence alignments for vsp upstream 59 regions (B-1) and Vsp N-terminal regions (B-2). The
HB0801 vsp gene family (vspHB0801-1 to -6) and the vspA gene, a representative PG45 vsp gene, are compared. The numbers above the sequences
indicate positions relative to the initiation codon. Nucleotides representing a putative ribosome-binding site (SD) are headlined and the initiation
codon (ATG) is underlined with a horizontal arrow. The division of the vsp upstream 59 region into two distinct cassettes is indicated by a vertical
arrow at nucleotide position -72.
doi:10.1371/journal.pone.0038239.g002
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and pathogenicity. In addition, the SNPs that occur in drug

resistance transporters may affect M. bovis drug resistance.

However, this needs to be further analyzed.

Comparative analysis between M. bovis and M. agalactiae

strains
M. agalactiae is phylogenetically closest to M. bovis and about

89.6% of M. bovis genes showed homology to M. agalactiae.

However, they tended to infect different ruminant hosts. We made

a comparative analysis using the completed genome sequences of

M bovis strains (PG45 and Hubei-1) and M.agalactiae strains (PG2

and 5632) to explore the genetic diversity between the two species.

The results showed that the diversity involved genes encoding

variable surface lipoproteins, putative lipoproteins, membrane

proteins and some function-unknown hypothetical proteins (Table

S7). Lipoproteins have been shown to have virulence-associated

functions, such as colonization and invasion of hosts, and evasion

of host immunodulation [35]. Similarly, membrane proteins are

also known to play an important role in the interaction between

pathogens and hosts. Therefore, the genetic diversity of lipopro-

teins and membrane proteins may help us to better understand the

mechanism of host specificity of these pathogens.

The M. bovis vsp cluster was also compared to the corresponding

vpma cluster in M. agalactiae. There is one vpma cluster in M.

agalactiae PG2, but two clusters in M. agalactiae 5632. The

sequences of vpma clusters in different strains of M. agalactiae

varied and showed low homology to the M. bovis vsp clusters.

However, it was common for both vpma and vsp genes to share

highly conserved 59 untranslated regions and short N-terminal

sequences [36] and the gene clusters were close to a site-specific xer

recombinase.

Comparative analysis with other Mycoplasmas
The orthologs of HB0801 and 16 other sequenced Mycoplasmas

were searched using OrthoPC and a table describing gene content

of various Mycoplasma genomes was developed (Table S1).

Furthermore, a phylogenic tree of each ortholog and a super-tree

was constructed (Figure 4A). The analyzed Mycoplasmas were

divided into three clusters represented by mycoides (M),

pneumoniae (P) and hominis (H). In cluster H, about 89.6% of

M. bovis genes showed homology toM. agalactiae [35]. However,M.

mycoides and M. bovis were situated in different clusters.

Furthermore, we selected 13 different species of Mycoplasmas by

excluding the repeated genomes of strains for each species to

estimate the genes of a Mycoplasma pan-genome. A surprisingly low

ratio (39%) of genes in the pan-genome was discovered to exist in

only one lineage, which suggested a remarkable degree of

horizontal gene transfer in shaping Mycoplasmas genomes

(Figure 4B). The genes shared by two genomes and three genomes

occupy 23% and 7%, respectively. There were only 224 core genes

present in all 13 genomes, which represented 10% of the total

orthologous genes. The core Mycoplasmas genes encode proteins

involved in essential cellular functions, such as ribosomal structure

and biogenesis, DNA replication, transcription and translation,

protein synthesis, energy production and conversion, and metab-

olism of nucleotides, carbohydrates, amino acids and inorganic

ions (Table S2).

The lineage-specific genes present in all the 3 M. bovis strains

were analyzed and the results are shown in Table S8. A total of 18

orthologs were predicted to be lineage-specific genes, which may

be related to particular M. bovis characteristics. Among these, 7

genes encoded putative transmembrane proteins or putative

lipoproteins, 2 encoded variable surface lipoproteins and 9

encoded hypothetical proteins. These specific membrane proteins

and lipoproteins may be responsible for the special interaction

between M. bovis and hosts.

Horizontal gene transfer (HGT)
The HGT detection indicated that 27 orthologs might have

undergone recombination between M. bovis HB0801 and other

Mycoplasma species. Furthermore, 28 orthologs specific to M. bovis

might have transferred between M. bovis with bacteria not

analyzed in this paper (Table S3). In addition, we detected 107

HGT orthologs shared by M. bovis and M. agalactiae with other

Mycoplasma species, other than M. synoviae (Table S4). We suppose

that there might be a common ancestor shared by M. bovis and M.

agalactiae, as the putative HGT genes may have been transferred

between their ancestor and other Mycoplasmas species, and then

passed along by both strains.

Interestingly, among the above HGT orthologs, 76 might have

been putatively transferred between M. bovis and the phylogenet-

ically remote mycoides cluster, including M. mycoides subsp. mycoides

SC, M. mycoides subsp. capristr and M. capricolum subsp. Capricolum, as

may be the case in M. agalactiae PG2 (Table S5) [37], in which 18

were putatively transferred only between M. bovis and the

mycoides cluster (Table S3), while 58 may have been transferred

between the mycoides cluster and both M. bovis and M. agalactiae

(Table S4). Among these 18 orthologs, most genes function in

replication, recombination and repair activities, such as transpos-

ases ISMbov2, ISMbov3 and ISMbov7, DNA-methyltransferase

(Mbov_0202, Mbov_0727, Mbov_0755 and Mbov_0708), DNA

adenine methylase (Mbov_0709), and DNA and RNA helicases

(Mbov_0647). In addition, there were four orthologs (Mbov _0253,

Mbov _0340, Mbov _0380, and Mbov _0381) encoding putative

transmembrane proteins and three encoding putative lipoproteins

(Mbov_0049, Mbov_0473, Mbov_0350 and Mbov_0505) that may be

responsible for immune adaptation.

Of the 58 orthologs previously mentioned, there were genes that

played important roles in transportation or utilization of environ-

mental nutrients such as oligopeptides, phosphonates, lactates and

glycerol. They include an oligopeptide ABC transporter

(OppFDCBA, Mbov_0033-0037), a phosphonate ABC transporter

locus (phnDCE, Mbov_0306-0308), a D-lactate dehydrogenase

(Mbov_0160), two clusters of glycerol ABC transporters

(Mbov_0271-0273, Mbov_0740-0742) and a glycerol kinase (glpK,

Mbov_0325). In addition, there was a set of genes reportedly

involved in energy production, synthesis of amino acids or

coenzymes including ATPase (atpDA, Mbov_0508-0509), and

some ligases, including aspartate–ammonia ligase (asnA,

Mbov_0071) and lipoate-protein ligase A (lplA, Mbov_0009 and

Mbov_0010). Furthermore, some transferred genes responsible for

Figure 3. Genomic Comparison of M. bovis strains HB0801, PG45 and Hubei-1. (A) Complete genome comparison between HB0801 and
PG45. A-1 and A-2 represent the upstream and downstream regions of the inversion breaking sites. (B) Genome comparison between HB0801 and
Hubei-1. The middle blue region of HB0801 represents the large inverted fragment compared to PG45. The numbers 1–7 represent ISMbov1-ISMbov7,
respectively (black triangles); lp: putative lipoprotein gene (green dots); tm: putative transmembrane protein gene (red dots); hsd: type I restriction
modification system (purple dots); dcm: DNA-methyltransferase gene (orange dots); vsp: variable surface lipoprotein (blue dots); hp: hypothetical
protein gene (hollow dots). The asterisks mark pseudo genes.
doi:10.1371/journal.pone.0038239.g003
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environmental adaption were involved, such as the exodeoxyr-

ibonuclease V (recD, Mbov_0238), which was associated with

recombination and repair, a peptide methionine sulfoxide

reductase (MsrAB, Mbov_0488), endopeptidase O (pepO,

Mbov_0428), periplasmic proteases with unknown function

(Mbov_0658) and an ABC-2 type transporter ATP-binding protein

(Mbov_0535), which was related to the multidrug transporter

system. Further, what interested us were some virulence-associated

genes, the NADH oxidase (hcaD, Mbov_0286) which might cause

oxidative damage to the cellular membrane and two putative

abortive infection proteins AbiGII (Mbov_0799-0800). There were

also some putative lipoproteins and some transmembrane proteins,

which were membrane-associated might play a role in pathogen-

esis.

Sequence confirmation for inversion and vsp cluster
PCR analysis specific to the adjoining regions at both ends of

the inversion was performed and the products were sequenced. As

expected, two fragments of 2307 bp and 2893 bp were obtained

upstream and downstream of the inversion, respectively. After

sequencing, both fragments showed 99.9% identities to the

corresponding sequences of the HB0801 genome. These results

confirmed an inversion in HB0801, a strain isolated from the lung

of a pneumonic beef cattle (Figure 5A). To determine whether this

inversion was specific to a pneumonia-causing M. bovis strain, we

subsequently investigated strain HB1007 from milk of a dairy cow

in Hubei-like M. bovis PG45 by PCR and sequencing. The results

demonstrated that the inversion also occurred in HB1007

(Figure 5A).

The much shorter region for the vsp gene cluster in HB0801 was

also verified by PCR. The PCR specific to the two flanking regions

produced a fragment of 9263 bp and the size was consistent with

Figure 4. Phylogenetic Analysis and Orthologous Gene Detection. (A) Phylogenetic relationships of consensus sequences of 17 Mycoplasma
strains with complete genomic sequences. The phylogenetic groups, mycoides, pneumoniae and hominis, are indicated by M, P and H, respectively.
(B) Frequency of orthologous genes within the 13 genomes of different Mycoplasma species included in this analysis are listed in Table 1 (marked
with *). The figures 1 to 13 on the right panel represent the number of genomes where the common orthologous genes were found. The rates in
different parts of the circle represent the frequency of genes present in a single genome or shared by different genomes. The figures surrounding the
circle represent orthologous gene numbers in individual parts. The 39% of genes including 887 present in a single genome represent lineage specific
genes, while 10% of the genes including 224 were found in all 13 genomes, which represent the Mycoplasma core genome.
doi:10.1371/journal.pone.0038239.g004

Figure 5. PCR Confirmation of Inversion and vsp Gene Cluster.
(A) PCR amplification specific to the upstream and downstream
connection sites of the M. bovis HB0801 inversion region. Lanes 1–3
represent PCR products using the primer Inv-1 specific to upstream
connection region of the inversion. Lanes 4–6 represent PCR products
using primer Inv-2 specific to the downstream connection region of the
inversion. Lanes 1 and 4 used the HB0801 genome with pneumonia
origin as the template, Lanes 2 and 5 used the HB1007 genome with
mastitis origin as the template, and Lanes 3 and 6 represent PCR
products using the M. bovis ATCCH 25523TM/PG45 genome with
mastitis origin as the template. (B) PCR product of the vsp region in the
HB0801 genome.
doi:10.1371/journal.pone.0038239.g005
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the HB0801 sequencing results, indicating that the vsp region was

sequenced correctly (Figure 5B).

Virulence of M. bovis PG45 and HB0801 in cattle
The mock-infected control group did not have obvious clinical

signs and their rectal temperatures fluctuated less than 0.5uC. In

contrast, the two infected groups experienced fever between days 3

and 7 post-challenge with temperatures increasing slightly more

than 1uC. In addition, the calves from both infected groups had a

mild increase of thin nasal discharge.

The gross pathological lesions of the inner organs were scored

according to severity. The total score of the control group and the

PG45- and HB0801-infected groups were 3, 13 and 9, respec-

tively. The infected groups had apparently more serious lesions

than the control calves (Table 4).

The pathological bronchial lesions were further scored by

evaluating the lesions in sliced lung tissues. The total scores of the

PG45 and HB0801 groups were 70 and 69, respectively, while that

of control group was 36, which was significantly lower than those

of PG45- (P,0.01) and HB0801- (P,0.01) infected groups

(Table 5).

Next, we immunohistochemically detected M. bovis antigens in

lung tissue and lymph nodes. Both tissue sections from the infected

animals possessed many positive cells (stained brown). In lymph

nodes, the positive cells were mainly located in the cytoplasm of

macrophages (data not shown), while in lung tissue, positive cells

were situated in the bronchiole epithelia (Figure 6). Quantitative

analysis demonstrated that average IOD values of positive cell

signals from lymph node sections for the PG45- and HB0801-

infected groups, and controls were 22634.09, 25108.00 and

243.48, respectively. There was an apparent difference between

both infection groups and the negative control (P,0.01), but no

significant difference existed between the infected groups

(P=0.78). The results indicated that the two M. bovis strains had

a similar capability to successfully invade and colonize these

tissues.

Discussion

Genomic plasticity can be expressed by gene acquisition and

loss for an evolutionary advantage. This evolution follows a

reductive mechanism that leads to the loss of non-essential genes,

but not genes responsible for key functions within the hosts for

competitive survival [38]. The evidence from this paper supports

this view. Compared to M. bovis ATCCH 25523TM/PG45, the

genome size of M. bovis HB0801 in this study decreased by

11702 bp, which was mainly characterized by fewer vsp genes and

ICE. Even between two Chinese strains HB0801 and Hubei-1,

which were isolated during the same year and in the same

province, we found a great divergence, including genome size, vsp

gene family and 122 SNPs.

In addition, we found and confirmed with PCR a large inverted

fragment (580 kb) in the Chinese strains compared to PG45. Since

we demonstrated that this inversion existed in both pneumonia-

causing strains (HB0801 and mastitis-causing strain HB1007) and

the Chinese strain Hubei-1 isolated from the lesioned lung tissue

[6], it was concluded that this inversion was not related to tissue

segregation of M. bovis. As strain PG45 was isolated in America in

the early 1960s, while HB0801 was identified in China in 2008, it

is hypothesized that the interval of approximately 50 years and the

geographical difference might be responsible for this inversion.

Furthermore, this high genomic plasticity is in agreement with

the results of comparative genome analysis for 19 strains from 13

differentMycoplasma species. From this analysis, we found that only

10% of the total orthologous genes were core genes, which

indicated that most Mycoplasma genes had been laterally trans-

ferred between inter- or intra-species. Consequently, Mycoplasma

species such as M. bovis have been actively evolving.

The difference between strains HB0801 and Hubei-1 may be

partially related to their geographical locations because they were

isolated from diseased cattle introduced from different regions of

China to Hubei province. However, we could not exclude the

limitation of sequencing techniques leading to loss of some genetic

information such as the entire vsp gene cluster and some insertion

fragments.

Although M. bovis was originally identified as early as 1961 [1],

we actually know very little about its pathogenesis and virulence

genes. We analyzed the implication of gene acquisition and loss on

pathogenesis of different stains and explored mechanisms under-

lying these phenomena such as the potential contribution of

mobile IS elements, RM systems, variation in vsp gene cluster,

lipoproteins, transmembrane proteins, and ICEs. However, there

is no confirmatory evidence to support our hypotheses.

For the first time, we connected genomic differences of M. bovis

strains to their phenotypes by comparing PG45 and HB0801

virulence in cattle. We successfully showed that both strains were

pathogenic to cattle by invading lung and lymph nodes, and

causing lung lesions, pleural adhesion, and pleural effusion, which

are common clinical signs of M. bovis infection. Furthermore,

PG45 seemed more virulent than HB0801 in cattle, as determined

Table 4. The Gross Pathological Assessment of Inner Organs.

Groups

PG45 HB0801 Control

Calves(heads) 3 3 3

Lung serosal surface 6 3 0

Lung color 2 0 1

Pleural adhesion 3 1 1

Pleural effusion 2 4 1

Pericardial wall 0 1 0

Joint effusion 0 0 0

Total score 13 9 3

doi:10.1371/journal.pone.0038239.t004

Table 5. The Assessment of Lung Lesions.

Groups

PG45 HB0801 Control

Calves(heads) 3 3 3

Left apical 10 8 4

Left cardiac 8 4 4

Left diaphragmatic 8 9 6

Right apical 13 15 6

Right cardiac 8 10 2

Right diaphragmatic 12 13 5

Right accessory lobe 11 10 9

Total score 70 69 36

doi:10.1371/journal.pone.0038239.t005
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by the large difference of gross pathogenic scores and small

difference in lung lesion scores. However, there was no statistically

significant difference (P.0.05). Theoretically, two possibilities may

exist in this situation. First, the disadvantages of our animal model

might underestimate this difference. The number of animals was

too few (only three) for statistical analysis. In addition, the calves

were purchased from a local market may not be very sensitive to

the challenge of this pathogen. We chose local calves because they

were slow-growing, small and inexpensive. The exotic Simmental

cattle were more susceptible toM.bovis infection and comprised the

main population possessing M. bovis pneumonia in China [4].

Another possibility would be that although variance accumulation

in the HB0801 genome generated a trend of virulence modifica-

tion, it was not sufficient to significantly affect the virulence of the

strain. Therefore, more work needs to be done to elucidate the

underlying connection between genome plasticity and virulence.
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