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Abstract

Background: In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have 

been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-

based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the 

geotemporal spreading pattern found by different modeling approaches may differ and depend on the different 

approximations and assumptions used.

Methods: We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based 

model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a 

large and geographically heterogeneous European country. The agent-based model is based on the explicit 

representation of the Italian population through highly detailed data on the socio-demographic structure. The 

metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census 

data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. 

The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their 

initial conditions by using the same disease parameterization, and by defining the same importation of infected cases 

from international travels.

Results: The results obtained show that both models provide epidemic patterns that are in very good agreement at 

the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The 

relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the 

metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the 

differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis 

shows that similar attack rates are obtained for the younger age classes.

Conclusions: The good agreement between the two modeling approaches is very important for defining the tradeoff 

between data availability and the information provided by the models. The results we present define the possibility of 

hybrid models combining the agent-based and the metapopulation approaches according to the available data and 

computational resources.

Background
Computational approaches for the detailed modeling of

epidemic spread in spatially-structured environments

make use of a wide array of simulation schemes [1,2]. In

recent years, two major classes of methodologies

emerged in the simulation of influenza-like illnesses

(ILIs) and other emerging infectious diseases. The first

one is the very accurate epidemic description with agent-

based models, which keep track of each individual in the

population in an extremely detailed way [3-14]. The sec-

ond scheme relies on metapopulation structured models

that consider in a detailed way the long range mobility
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scheme at the inter-population level while using coarse-

grained techniques at the intra-population level [15-25].

Agent-based models provide a very rich data scenario,

but the computational cost and, most importantly, the

need for very detailed input data has limited its use to

country level [6-11] or continental level [12] scenarios so

far. On the opposite side, the structured metapopulation

models are fairly scalable and can be conveniently used to

provide worldwide scenarios and patterns with thousands

of stochastic realizations [18,20,21,23-25]. While on the

one hand, the level of information that can be extracted

in this latter case is less detailed than those of agent-

based models, the spatial and temporal ranges and the

number of realizations that can be computationally ana-

lyzed is much larger. Also, the amount of data to be inte-

grated is less massive than in agent-based frameworks.

From this perspective, it is clearly important to assess the

level of agreement that the two different approaches can

provide with respect to the quantities accessible, the

respective data needed, and the computational costs

associated with both approaches.

Comparing different models is often a hard task. While

on one side one would like to assess the role of the differ-

ences inherent to each of the modeling frameworks, it is

important to establish a common ground between the

two frameworks in order to discount unwanted effects

due to different parameterization (see for example the

discussion of the estimation of the reproductive number

for the SARS epidemic obtained from a variety of models

in Ref. [26]). An attempt in this direction was presented

in Ref. [10] where three individual-based models with dif-

ferent assumptions and data - one at the description level

of a city and two at the description level of a country -

were compared through their predictions in the case of

interventions against a new pandemic influenza strain.

However, the comparison was constrained to each

model's assumptions and to the available simulated sce-

narios, without explicitly defining a common set of

parameters and approximations to be shared by all mod-

els. The low transmission scenario was compared in dif-

ferent models by using different values for the

reproductive number, with the risk of not being able to

discount the effect of this difference in the obtained

results.

Here we provide for the first time a side-by-side com-

parison of the results obtained at the level of a single

country by using state-of-the-art structured metapopula-

tion and agent-based models developed independently

and employed in previous works to analyze pandemic

events [8,9,11,12,18,24,25,27]. Both models have been

used in realistic scenarios [14,27] and incorporating

actual data in relation to the H1N1 pandemic [24,28].

However, comparing simulation results with real data

would require a thorough discussion and analysis of the

disease parameters, the identification of the initial condi-

tions, the assessment of the reliability of reporting and

notification systems that are the sources of the empirical

data. This is not the object of this paper. Instead, we focus

on the differences generated by the two modeling

approaches.

For the sake of clarity we compare the two models in a

clean synthetic experiment of a hypothetical pandemic

event for which we assume the same parameterization

with regards to the modeling aspects that the models

share, such as disease progression and initial conditions.

The country used for the study is Italy, a large European

country that provides the necessary geographic and pop-

ulation heterogeneity to assess the models' performance

in the case of highly-structured populations. The two

approaches access different granularity levels and we use

as a comparison the finer spatial resolution accessible by

both models. This allows us to analyze 39 major subpop-

ulations and project data at the administrative level of

municipality.

We find that both models, despite the difference in the

data integration and model structure, provide epidemic

profiles with spatio-temporal patterns in very good

agreement. The epidemic size profile shows an expected

overall mismatch of 5-10% depending on the reproduc-

tive rate, which is induced by the homogeneous assump-

tion of the metapopulation strategy. Breaking down data

at the level of age-structured compartments shows that

both models provide very similar results with the excep-

tion of the elderly population (60 + age bracket), which

show larger epidemic sizes in the metapopulation

approach. The good agreement of the two approaches

reinforces the message that computational approaches

are stable with respect to different data integration strate-

gies and modeling assumption. On the other hand, the

agent-based model approach may access information not

available to the coarser metapopulation approach, and

relevant for individually based or targeted intervention

measures. This is at the price of a higher computational

cost and the availability of fine resolution data, whereas

the metapopulation approach is less dependent on

detailed data and is computationally cheaper. The pre-

sented results hint to the possibility of combining the two

methodologies in order to devise multiscale approaches

that use the data parsimony of the metapopulation

approaches at the global level and the high resolution of

the agent-based model in specific locations of interest

where detailed data are available.

Methods
The agent-based modeling scheme

The considered agent-based model is a stochastic, spa-

tially-explicit, discrete-time, simulation model where the

agents represent human individuals. The infection can
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spread among individuals through contacts with house-

hold members, school and workplace colleagues, and by

random contacts with the general population [5,6]. One

of the key features of the model is the characterization of

the network of contacts among individuals based on a

realistic model of the socio-demographic structure of the

Italian population [8,9].

Population data for Italy — 56,995,744 individuals — is

obtained from the census of 2001 [29] (382,534 census

sections). According to the administrative borders of the

country under study, the population is hierarchically

grouped by municipalities (8,101), provinces (103) and

regions (20), which also provide the spatial structure of

the model (see Figure 1 and the Additional 1 File for

details). Census data on age structure and frequencies of

household type and size are jointly used with specific sur-

vey data on Italian households [30] to assign age and to

co-locate individuals in households. For each municipal-

ity, an appropriate number of households (and individu-

als) is generated to match the actual resident population.

Demographic, school, and industry census data from

2001 [31,32] are used for assigning an employment cate-

gory (student, worker, or unemployed/retired) to individ-

uals on an age basis. The legal working age in Italy is 15.

Data on school attendance is available for individuals

aged ≤ 14 years for any one-year age class. For individuals

aged ≥ 15 years, data on school attendance and employ-

ment rate is available for any one-year age class. An

employment category is assigned to any individual by

sampling from the age-dependent distribution of the fre-

quencies of employment as obtained from the analysis of

the data described above. In the model we first assign a

size to schools and workplaces on the territory (schools

and workplaces are spatially-distributed proportionally to

the population). Then we locate students and workers in

the different places in such a way that the probability den-

sity function of travel distances complies with available

commuting data for Italy.

Data on the proportion of individuals with age ≥ 15

working or attending school in the same municipality of

residence is available for each municipality, together with

the number of individuals traveling either to a municipal-

ity of the same province they live in, outside the province

but within the same region, and outside the region. For

determining the probability of commuting from munici-

pality to municipality we use a general gravity model used

in transportation theory [33,34] of the form

where Ni and Nj are the number of individuals living in

municipality i and j respectively, dij is the distance

between the two municipalities, θ is a proportionality

constant, τf = 0.28 and τt = 0.66 tune the dependence of

dispersal on donor and recipient sizes, and ρ = 2.95 tunes

the dependence on the distance. Here we assume a power

law functional form for the distance dependence, as in

[35], although other functional forms — such as an expo-

nential decay — can be considered [25,33,34].

The epidemic transmission model assumes that the

infection can be transmitted within households, schools,

workplaces, and by random contacts in the general popu-

lation. Any susceptible individual i at any time t of the

simulation has a probability

of being infected, where Δt is the time step of the simu-

lation and λi is the instantaneous risk of infection. The

latter is the sum of the risks coming from the three

sources of infection: (1) contacts with infectious mem-

bers of the household, (2) contacts with infectious indi-

viduals working in the same workplace or attending the

same school, and (3) random contacts with infectious

individuals in the population. While we assume homoge-

neous mixing in households, schools and workplaces,

random contacts in the general population are assumed

to depend explicitly on distance. Specifically, the contri-

bution to the force of infection determined by an infec-

tious individual k is weighted by the following kernel

a decreasing function of the geographical distance dik.

Parameters a and b were optimized by employing Eq. (3)

for generating a synthetic population of commuters such

that the resulting probability density function of travel

distances matches that obtained by using the gravity

model of Eq. (1). The estimated parameters are a = 3.8 km

and b = 2.32. As in [5,8,9], the model is parameterized so

that 33% of transmission occurs in households, 33% in

schools and workplaces and 33% in the general commu-

nity. The epidemic transmission dynamics is based on an

ILI compartmentalization as described in the subsection

Models calibration (full details on the detailed formula-

tion of the model are provided in the Additional File 1).

Metapopulation modeling scheme

The Global Epidemic and Mobility (GLEaM) model is

based on a metapopulation approach [15-21] in which the

world is divided into geographical regions defining a sub-

population network where connections among subpopu-

lations represent the individual fluxes due to the

transportation and mobility infrastructure [24,25]. Infec-
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Figure 1 Agent-based model and GLEaM. Top: The agent-based model is a stochastic and spatially-explicit simulation model where the agents rep-

resent individuals. The basic spatial structures considered in the model are the municipalities. The force of infection in the general population is as-

sumed to decrease with the geographic distance among municipalities. The dependence on the distance is modeled by a gravity model as derived 

by the analysis of data on travel to school or work (grouped by all hierarchical administrative levels, from the national level down to the municipality 

level). The inset shows the explicit representation of individuals in the model enabling the simulations of the most important contacts for diseases 

transmission, i.e. household, school, and workplace contacts. The spatial spread of the epidemic is determined by i) transmission in the general pop-

ulation at the national scale and ii) transmission in schools and workplaces at a more local scale. Bottom: GLEaM, GLobal Epidemic and Mobility model. 

The world surface is represented in a grid-like partition where each cell — corresponding to a population value — is assigned to the closest airport. 

Geographic census areas emerge that constitute the subpopulations of the metapopulation model. The demographic layer is coupled with two mo-

bility layers, the short-range commuting layer and the long-range air travel layer.
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tion spread occurs inside each urban area and is

described by compartmental schemes in which the dis-

crete stochastic dynamics of the individuals among dif-

ferent compartments depends on the specific etiology of

the disease and the containment interventions consid-

ered. GLEaM integrates a highly detailed population

database worldwide with the air transportation infra-

structure and short-range mobility patterns [24,25]. Air

travel mobility is obtained from the International Air

Transport Association (IATA [36]) database that contains

the list of worldwide airport pairs connected by direct

flights and the number of available seats on any given

connection [37]. The resulting worldwide air-transporta-

tion network is a weighted graph composed of 3,362 ver-

tices denoting airports in 220 different countries and

16,846 weighted edges whose weight, ωjl, represents the

number of passengers flying between airports j and l,

accounting for 99% of worldwide traffic. Each airport is

associated to a geo-referenced census area as obtained

from a Voronoi tessellation on the population database

[25]. GLEaM is based on the high-resolution population

database of the "Gridded Population of the World" proj-

ect of SEDAC [38] (Columbia University), which esti-

mates the population with a granularity given by a lattice

of cells covering the whole planet at a resolution of 15 ×

15 minutes of arc. We define the geographical census

areas centered on IATA airports by assigning each cell to

the closest airport as long as the distance between the

center of the cell and the airport is less than 200 km. This

is the characteristic length scale of the cell/airport distri-

bution as well as the scale for the intensity of the ground

commuting flows [24]. Such a procedure divides Italy into

39 distinct areas (subpopulations) that define the meta-

population structure we use. A schematic illustration of

the model and of the layers considered is reported in Fig-

ure 1.

The geo-referenced nature of the subpopulations allows

for the integration of short-scale mobility between adja-

cent subpopulations into the model. GLEaM considers

commuting and mobility patterns of various means of

land transportation (bus, cars, train, etc.). National com-

muting data available at administrative levels are then

mapped into the geographic census areas obtained from

the tessellation procedure [25,33,34]. In the present study

we use real mobility data for Italian municipalities as pro-

vided by the Italian National Statistics and Census Bureau

(ISTAT) to obtain the commuting flows among the cen-

sus areas defining the Italian subpopulations.

GLEaM is fully stochastic and can simulate the long-

range mobility of individuals from one subpopulation to

another subpopulation by means of the airline transpor-

tation network in a manner similar to the models pre-

sented in Refs. [15-25]. In particular, in each city j the

number of passengers traveling on each connection j T l

at time t defines a set of stochastic variables that follow a

multinomial distribution [22]. The calculation can be

extended to include transit traffic as well, e.g. up to one

connection flight [39]. Short-range, multi-modal trans-

portation between subpopulations is modeled with a

time-scale separation approach that defines an effective

force of infection in connected subpopulations based on

the real commuting flow data between adjacent subpopu-

lations integrated in the model [25,40,41]. The discrete

nature of individuals is also preserved in compartmental

transitions and in short-range mobility processes. The

transmission model within each geographical census area

follows an ILI compartmentalization common to the

agent-based model, as shown in the following section.

The contagion process (i.e. the generation of new latent

individuals from the contact of infectious and susceptible

individuals) and the spontaneous transitions (e.g. from

latent to infectious or from infectious to recovered) are

modeled with multinomial distributions. The actual

expressions used for the force of infection contain several

terms, as they have to discount non-traveling infectious

individuals and second order terms generated by the

interactions of individuals from neighboring subpopula-

tions. Here we also introduce the age structure of the

population by defining a contact matrix specifying the

force of infection across different age brackets. We adopt

the contact matrix formalism and the age classes defined

by Wallinga and collaborators [42]. In this case the basic

reproduction number R0 is determined by the largest

eigenvalue of the modified next generation matrix. The

full derivation of the epidemic model and its implementa-

tion is reported in the Additional File 1.

Models calibration

In order to study the effect of the assumptions related to

the different approaches exclusively, we align the set of

parameters for the disease transmission model and the

initial conditions in both models (see Table 1). The agent-

based and metapopulation models are stochastic, spa-

tially structured, and based on discrete time simulations.

Though the social and mobility structure changes across

the models, both GLEaM and the agent-based model are

based on the same transmission dynamics. The models

adopt a compartmentalization for an ILI defined in terms

of susceptible (S), latent (L), asymptomatic infectious (Ia),

symptomatic infectious (I), and permanently recovered/

removed (R) (see Figure 2).

A susceptible individual in contact with a symptomatic

or asymptomatic infectious person can contract the

infection and enter the latent compartment where he is

infected but not yet infectious. The transmission occurs

at different rates that take into account the reduced infec-

tiousness of asymptomatic individuals and additional

effects, e.g. those induced by absenteeism that are consid-
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ered in the agent-based model (a full discussion is

reported in the Additional File 1). At the end of the

latency period, each latent individual becomes symptom-

atic with probability 1 - pa or becomes asymptomatic

with probability pa. All infectious individuals recover

permanently (i.e. become immunized from further infec-

tion) and enter the recovered compartment at rate μ. We

fix the average latency period ε-1 = 2 days and the average

infectious period μ-1 = 3 days [4,18,43] equal in the two

models. Given that infection has occurred, both GLEaM

and the agent-based model assume that individuals

become asymptomatic with probability pa = 0.33

[4,18,43], with a relative infectiousness equal to rβ = 0.5.

In addition, both models assume that clinical disease

affects individual behavior. GLEaM assumes that symp-

tomatic individuals avoid traveling with probability 1- pt

= 0.5 [18,43], whereas the agent-based considers the

reduction of school and work attendance [5,6,8] (see the

Additional File 1 for details). The spreading rate of the

disease is governed by the basic reproduction number

(R0) which is defined as the average number of infected

cases generated by the introduction of a typical infectious

person into a fully susceptible population [44]. For the

proposed compartmentalization, its value can be

obtained for GLEaM by evaluating the largest eigenvalue

of the Jacobian or next generation matrix of the infection

dynamics in a disease-free equilibrium [45], yielding R0 =

βμ-1(1 - pa + rβpa) if the age structure is not considered.

In the case of the agent-based model, it is computed as

where r is the intrinsic growth rate of the simulated epi-

demic.

The two models are calibrated to the same value of the

reproductive number R0. In addition, GLEaM and the

agent-based model are also dynamically calibrated in that

they share exactly the same initial/boundary conditions.

GLEaM is defined at the worldwide scale and allows the

study of an emerging epidemic under a variety of geo-

graphical and temporal initial conditions based on any

geographical census area of the model at any time of the

year. The agent-based model is defined at the level of the

country, and, as in other individual-based stochastic sim-

ulations describing the scale of a given region [3,6,7], it is

based on the importation of cases from abroad. The case

importation is generally modeled through a global

unstructured SEIR compartmental model that simulates

the epidemic worldwide and feeds the country of interest

through cases arriving at the international airports pro-

portional to the traffic of the airports.

R r r0
1 11 1= +( ) +( )− −e m , (4)

Table 1: Model parameters

Model parameters GLEaM Agent-based

Initial conditions

Origin of pandemic Hanoi Hanoi

Arrival of infection in country Simulating global pandemic Provided by GLEaM

Transmission dynamics (common to both models)

Basic reproductive ratio, R0 1.9 [1.5, 2.3]

Average latency period, ε-1 2.0 days

Average infectious period, μ-1 3.0 days

Probability of asymptomatic disease, pa 33%

Reduction in disease transmission due to asymptomatic disease, rβ 50%

Mobility

Long/short range travel Explicit air travel with 70% daily average 

occupancy of flights.

Commuting model used for geographically 

locating schools and workplaces.

Implicit commuting through effective force of 

infection with τ = 3 day-1 return rate and real 

commuting fluxes.

Implicit within country through random 

contacts in the general population.

Impact of symptomatic disease on individual 

behaviour

Stop travelling when ill with probability 1-pt = 50% Reduction in school and work attendance, 

ranging from 90% in daycare centers to 50% in 

workplaces.

Model assumptions and parameter values used as baseline [and sensitivity analysis] are summarized both for GLEaM and the agent-based model.
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Several procedures can be modeled, including both

those with stationary initial conditions in which the sim-

ulations let the epidemic progress after the first seeding

has occurred with no additional importation of cases [9],

and those with dynamic initial conditions in which the

importation of cases is not stopped by the beginning of

the epidemic in the country under study [6,8]. In order to

align GLEaM and the agent-based model under the same

initial conditions, we assume dynamic importation of

cases in the agent-based model as provided by GLEaM.

We choose Hanoi, Vietnam, as the seed of the epidemic

for GLEaM and study the geotemporal spreading pattern

of the epidemic at the worldwide scale. The number of

infected individuals imported into Italy at each interna-

tional airport is tracked in time in each stochastic realiza-

tion and provides the set of the dynamic initial conditions

for the agent-based model. This approach allows us to

study the evolution of the epidemic in Italy with the two

models side-by-side, discounting the effects that relate to

different seeding at the boundary of the country.

Here we study a pandemic baseline scenario, assuming

no seasonality as in Refs. [6-8], taking on three values for

the reproductive number, R0 = 1.5, 1.9, and 2.3, in the

range of expected values for a newly-emerging influenza

pandemic as based on estimates for previous pandemics

[15,46]. We do not implement intervention strategies

because our aim is to explore the effect of two different

modeling frameworks in shaping the epidemics, assessing

analogies and differences induced by each model's

assumptions.

All results in the following section are based on 50 sto-

chastic realizations per model, each realization feeding

the two models with equal dynamic initial conditions.

Results are reported at different resolution scales, includ-

ing the country level, the geographical census areas

around major transportation hubs, and the smallest scale

of municipalities. Italy includes 8,101 municipalities that

are grouped in 39 GLEaM geographical census areas.

Results
Country scale

Figure 3 shows the timeline of the incidence profile and of

the epidemic size obtained with GLEaM and with the

agent-based model. Time is expressed in days, and the

first importation of infectious individuals into Italy is

used to synchronize the two models. Thanks to the initial

alignment, Figure 3 shows the epidemic unfolding side-

by-side in the same time window explored by the two

models, so that it is possible to assess the timing and syn-

chronization of the simulated epidemics. The incidence

profiles show that on average the two temporal patterns

are in very good agreement, despite the very different

data integration and assumptions of the two models. The

two peaks are just a few days apart from each other, with

GLEaM on average reaching the peak of the epidemic

slightly later than the agent-based model. The value of the

epidemic incidence at the peak in the simulations

obtained with the agent-based model is lower than in the

simulations with the GLEaM model. This difference has

to be expected since we are comparing an individual-

based approach with a spatially-structured model based

on an assumption of homogeneous transmission rates for

the interactions of people in the subpopulations. Indeed,

as observed in earlier works, models with heterogeneous

Figure 2 Disease compartmental structure. Diagram flow of the in-

fection transmission structure adopted by both models. The transition 

from the susceptible class to the latent class is induced by the interac-

tion between the susceptible individuals and the infectious individuals 

(see text).
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Figure 3 Comparison of the epidemic incidence and size. Inci-

dence profiles and epidemic size for GLEaM and the agent-based 

model at the global level. Time is expressed in days since the first im-

portation of infected individuals in Italy. Results for three values of the 

reproductive number are shown from left to right: R0 = 1.5, R0 = 1.9, R0 

= 2.3. Average profiles (lines) and 95% CI (shaded areas) are shown.
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transmission rates across population groups present dif-

ferent attack rates - usually lower - than those with

homogenous mixing, even for the same overall value of R0

(See for instance the discussion in [47,48] and references

therein). Changes in attack rates and even epidemic

thresholds are also observed when the full interaction

pattern of individuals is considered [49-51]. While the

GLEaM model just considers the spatial structure and the

age structure, the agent-based model used here is highly

structured and considers households, schools, etc. The

two models therefore are expected to present different

attack rates. The difference in the peak amplitudes

decreases for increasing values of the reproductive num-

ber and the same effect is also evident from the curves of

the epidemic size. At the end of the epidemic outbreak,

the average size predicted by GLEaM ranges from 36% for

R0 = 1.5 to 56% for R0 = 2.3, as compared to the one

observed in the agent-based model which ranges from

26% for R0 = 1.5 to 49% for R0 = 2.3, with an absolute dif-

ference of about 10% for R0 = 1.5 and 7% for R0 = 2.3.

Fluctuations are comparable in the two models, as shown

by the shaded areas around the average values, represent-

ing the 95% reference ranges obtained from the stochastic

runs.

The subpopulation structure of GLEaM and its cou-

pling with mobility processes preserves accurate timing

in different geographical areas. However, when attack

rate is considered we still see differences, as the house-

hold and workplace structure are important in differenti-

ating the impact on different age brackets. GLEaM

includes a spatial substructure that subdivides the global

populations into subpopulations around major transpor-

tation hubs. Inside each census area the subpopulation is

divided into age classes. The frequency of interaction

among individuals in different age classes is governed by

a specific matrix such that within each age class the indi-

viduals are all considered equivalent and a homogenous

assumption is used for the evaluation of the force of

infection. The agent-based model is more refined in the

definition of the social/spatial/age structure in the popu-

lation, being defined at the level of the single individual.

In this case each individual is tagged with the appropriate

social bracket by assigning the household structure,

workplace size, etc.

As we will see in the next sections, the main differences

in the two models are observed for the 60+ age class.

Indeed, this is the age class with the most marked differ-

ences in household structure and workplace habits; such

differences cannot be taken into consideration in the

metapopulation level. It is however difficult to state

which of the two predictions is the most accurate. On one

hand the high level of realism of the agent-based model

should make the prediction reliable. On the other hand

this high realism is not free of modeling assumptions, as

for instance in the definitions of Eqs. (1) and (3). The cor-

rect value should be in between the prediction of the

models, as supported by the fact that the difference

between the models decreases as R0 increases, with the

models converging to the same value for the attack rate.

For large R0 in fact, the local epidemics - in census areas

for GLEaM, and in households/workplaces in the agent-

based model - become more widespread across all the

layers of the population and thus the differences in the

population structure are less relevant. In the Additional

File 1 we also report the results for a simple single SLIR

population model aligned with the agent-based and

metapopulation models. As expected such a simple

model is not able to recover the variability of the inci-

dence profile and the final attack rate of the epidemic.

The peak delay between the two models is defined as

the absolute difference between the activity peak time

TGLEaM and TAB of the metapopulation and agent-based

models, respectively. The difference (TGLEaM - T AB) is

expressed in days and calculated for each pair of stochas-

tic realizations. Figure 4 shows the probability distribu-

tions of this quantity, calculated for the three values of R0

explored. We consider both negative and positive differ-

ences corresponding to one model anticipating the other

or vice versa. GLEaM more likely reaches the peak later

than the agent-based model, with a most probable delay

of about 2-4 days, explaining the very good agreement in

the timing observed in Figure 3. Fluctuations around

these values are reduced for increasing values of R0, being

-3 to 8 days for R0 = 1.5 and -2 to 6 days for R0 = 2.3, show-

ing how higher transmission scenarios would lead to

more synchronized epidemics in the two models.

Census area scale

Given the high spatial definition of both models, it is pos-

sible to further investigate differences in the observed

epidemic patterns by looking at the results obtained in

different spatial regions of Italy. In particular, we focus on

the geographical census areas defined in GLEaM and

aggregate the simulation results of the agent-based model

from the scale of municipalities to the scale of the geo-

graphical census areas. Figure 5A reports the average

incidence profiles of a selected number of geographical

census areas in Italy distributed from North to South, and

the large islands. Results are shown for R0 = 1.9, whereas

additional results for the other two values explored are

reported in the Additional File 1. The plots show hetero-

geneous variations in the comparison of the profiles, with

geographic census areas where the two models are syn-

chronized and others in which the agent-based profile is

shifted before or after the GLEaM model by a few days.

Also, the differences in the peak amplitude vary across
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the country. We thus explored possible relations between

the observed differences in the timing and size of the epi-

demic and some features at this resolution scale that are

common to both models. In particular, we considered: (i)

the North-South position of the geographic census area

as indicated by the latitude of its centroid, around which

the area was defined in GLEaM through the tessellation

procedure; (ii) the population size of the geographic cen-

sus area; and (iii) the airline traffic of the geographic cen-

sus area, defined as the number of passengers per day

traveling through its airports.

Results in Figure 5B show that the differences in the

epidemic size tend to be stable from North to South, and

to decrease with increasing population size and increased

airport traffic. This can be explained by the fact that

larger numbers in population and traffic (on average large

population sizes are associated to large traffic airports

[22]) smooth out differences and the effect of fluctua-

tions, which are instead more pronounced in populations

of small size. If we look at the timing, we observe that

there is a pronounced anticipation of the GLEaM model

with respect to the agent-based model in the Southern

regions (especially in the Islands), reaching a good syn-

chronization in the Center and a stationary small delay in

the North of the country. Because of the stationary

behaviors in the relations between the peak shift and the

population size or airport traffic of the geographical cen-

sus areas, the results observed with respect to latitude

appear to indicate a genuine difference between the two

frameworks. Both models consider commuting patterns -

GLEaM integrates the commuting network among geo-

graphic census areas obtained from the Italian origin-des-

tination commuting data, and the agent-based model

integrates a synthetic commuting network among munic-

ipalities reproducing the statistics of commuters

throughout the country from coarse-grained information

on destination data. Though built on different levels of

detail, both commuting networks are expected to repro-

duce the geographical fluctuations observed in the mobil-

ity of the Italian population, with a percentage of

commuters increasing from 15% in Southern Italy to 60%

in Northern Italy. Long distance travel seems instead to

be responsible for the observed behavior in the peak shift

vs. the latitude. The distance kernel for random contacts

in the population considered in the agent-based model

might be unable to reproduce some of the complex prop-

erties that are found in the air travel flows with North-

South heterogeneities. In this respect, the introduction of

long-distance travel in the agent-based model [9] could

contribute to smooth out differences.

Municipality scale

By increasing the spatial resolution even further, it is pos-

sible to monitor the geotemporal spread of the disease at

the level of the 8,101 municipalities in the country. The

results by GLEaM at the level of the geographic census

areas are mapped into the administrative boundaries of

the municipalities to be comparable with the simulation

results produced by the agent-based model. The observed

epidemic pattern is shown in Figure 6 for three different

snapshots of the simulations in terms of average values of

the new number of clinical cases per municipality. The

visualization confirms the above results, showing a very

good agreement of the geographic distribution of cases at

the finest resolution scale available.

Age class breakdown

The age structure of GLEaM comprises 6 classes of age,

namely 0-5, 6-12, 13-19, 20-39, 40-59, and 60 + years old.

Results on the incidence by age as obtained by the agent-

based model have been aggregated according to the age

structure of GLEaM, which allows us to compare the sim-

ulations' results broken down by age classes. Figure 7

shows the epidemic size by age class as obtained by the

Figure 4 Activity peaks difference in the two models. Histogram of the activity peak difference (TGLEaM - TAB) (measured in days) between GLEaM 

and the agent-based model at the global level. The histogram is obtained by comparing each pair of stochastic realizations in the two models and 

considering negative and positive differences when the GLEaM activity peak occurs before or after the agent-based model, respectively. Results for 

three values of the reproductive number are shown from left to right: R0 = 1.5, R0 = 1.9, R0 = 2.3.
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Figure 5 Epidemic profiles and geography. Geographic variation of the epidemic profiles for GLEaM and the agent-based model at the level of the 

major urban areas in Italy: a) profiles for a selected number of Italian subpopulations distributed from North to South and in the Islands. Time is ex-

pressed in days since the first importation of infected individuals in Italy. Average profiles for the scenario with R0 = 1.9 are shown; b) difference of the 

epidemic size as a fraction the population size (top row) and peak shift measured in days (bottom row) between GLEaM and the agent-based model 

at the level of GLEaM geographical census areas as functions of: the latitude of the geographical census area (left); its population size (center); and the 

traffic of the airport associated to the geographical census area (right). Results for R0 = 1.9 are shown.
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two models for the three values of R0 investigated. In all

cases the agreement is higher in the younger age classes

(0-5, 6-12, and 13-19 years old), and deviations start to be

more pronounced for the young adult, adult, and older

age classes. However, as seen before when considering all

age classes, deviations are reduced by the increasing val-

ues of R0. The largest deviations observed are in the 60+

age class, with 28% against 16% of the average epidemic

size obtained for R0 = 1.5 with GLEaM and with the

agent-based model, respectively; 40% against 27% for R0 =

1.9; and 49% against 35% for R0 = 2.3. This is indeed the

age class with the most marked difference in household

structure and workplace habits that cannot be taken into

consideration in the metapopulation level, thus generat-

ing the largest discrepancy between the two models.

Discussion and conclusions
We studied a structured metapopulation model and an

agent-based model to provide a side-by-side comparison

of the modeling frameworks and assess the epidemic pre-

dictions that they can achieve. Starting from a shared

parameterization of the disease progression and using

identical initial conditions, we investigated and quanti-

fied similarities and differences in the results at different

scales of resolution, and related those to the assumptions

of the frameworks and to their integrated data. We found

the two models to display a very good agreement in the

timing of the epidemic, with a very limited variation in

the time of the simulated epidemic activity peaks. In the

metapopulation approach the fraction of the population

affected by the epidemic is larger (by 5% to 10%) than in

the agent-based approach. This difference is due to the

assumption of homogeneity and thus the lack of detailed

structure of contacts (besides the age structure) in the

metapopulation approach with respect to the agent-

based approach.

Our results highlight advantages and disadvantages of

using the two approaches. On one side the detailed

mobility networks considered in the metapopulation

Figure 6 Geotemporal spreading pattern of the epidemic. Comparison of the spatial epidemic evolution in GLEaM (top) and in the agent-based 

model (bottom) at three different snapshots of the simulation for R0 = 1.9. From left to right snapshots show: 127 days, 148 days, and 176 days after 

the first importation of infected individuals in Italy. Maps reproduce the average number of cases at the resolution scale of the Italian municipalities.
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scheme provide an accurate description of the spreading

pattern of the unfolding epidemic, identifying the major

channels of transportation responsible for spreading the

disease at the global level and quantifying the seeding

events. On the other side, detailed estimations of the

impact of the disease at a more local level are hampered

by the lower level of detail contained in the metapopula-

tion modeling scheme. The agent-based approach is

extremely detailed but suffers from the difficulties in

gathering high confidence datasets for most regions of

the world. The good match between the two approaches

in predicting the geotemporal spreading pattern of an

epidemic demonstrates the feasibility of a hybrid

approach that combines and integrates the two modeling

schemes. Thanks to the heterogeneity of the transporta-

tion network, the spatio-temporal spread of an epidemic

could be predicted at the global scale by employing a

metapopulation approach. Taking advantage of the

explicit representation of individuals in the model, the

impact at a more local scale and the effects of individu-

ally-targeted interventions in specific areas could be pre-

dicted by employing an agent-based approach.
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