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ABSTRACT
Motivation: DNA microarrays have been used extensively to study
the cell cycle transcription programme in a number of model organ-
isms. The Saccharomyces cerevisiae data in particular have been
subjected to a wide range of bioinformatics analysis methods, aimed
at identifying the correct and complete set of periodically expressed
genes.
Results: Here, we provide the first thorough benchmark of such meth-
ods, surprisingly revealing that most new and more mathematically
advanced methods actually perform worse than the analysis pub-
lished with the original microarray data sets. We show that this loss of
accuracy specifically affects methods that only model the shape of the
expression profile without taking into account the magnitude of regu-
lation. We present a simple permutation-based method that performs
better than most existing methods.
Supplementary information: Results and benchmark sets are
available at http://www.cbs.dtu.dk/cellcycle
Contact: brunak@cbs.dtu.dk

1 INTRODUCTION
It has been clear for many years that certain genes are expressed only
at specific stages of the cell cycle (e.g. the cyclins and the histones).
These genes consequently exhibit a periodic pattern of expression
when monitored during consecutive cell cycles. In 1998, the first
genome-wide DNA microarray studies were conducted in Sacchar-
omyces cerevisiae (Cho et al., 1998; Spellman et al., 1998) to reveal
a large number of periodically expressed genes which peak only
once per cycle, also referred to as cell cycle-regulated genes. Similar
investigations were later performed in human fibroblasts (Cho et al.,
2001) and HeLa cells (Whitfield et al., 2002) respectively. Most
recently, an extensive study has been carried out in Schizosaccharo-
myces pombe (Rustici et al., 2004). Each of these studies have aimed
at defining the cell cycle-regulated (or periodically expressed) sub-
set of the genome in each organism. Although the periodic signal is
strong in most data sets (Shedden and Cooper, 2002; Wichert et al.,
2004), the experimental noise is also considerable, as can be seen
from the poor overlap between the gene sets identified as periodic in
different experiments within the same organism (Zhao et al., 2001;
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Shedden and Cooper, 2002; Johansson et al., 2003; de Lichtenberg
et al., 2003; Luan and Li, 2004) as well as between organisms (Rustici
et al., 2004).

The budding yeast data sets in particular have driven the develop-
ment of various computational methods for identifying periodically
expressed genes, most of which have concluded the periodically
expressed subset of the yeast genome to comprise about 300–800
genes. However, the agreement is remarkably poor when differ-
ent computational methods are applied to the same data. In total,
nearly 1800 different genes have been proposed to be periodic—
that is almost every third gene in the S.cerevisiae genome. Here,
we provide the first benchmark of these computational methods by
comparing the gene sets identified by the different methods when
applied to three yeast experiments (Alpha, Cdc15 and Cdc28). A
fourth, elutriation-based experiment in yeast (Spellman et al., 1998)
was not used, since most published methods were not applied to this
data and because it only covers a single cell cycle. We benchmark
the methods by measuring their ability to identify genes from three
benchmark sets:

(B1) A total of 113 genes previously identified as periodically
expressed in small-scale experiments. The set encompasses the
104 genes used by Spellman et al. (1998) and nine genes added
by Johansson et al. (2003).

(B2) Genes whose promoters were bound (P -value below 0.01) by at
least one of nine known cell cycle transcription factors in both
of the Chromatin IP studies by Simon et al. (2001) and Lee et al.
(2002). To obtain a benchmark set that is independent of B1, we
removed all genes included in B1 (50). The resulting benchmark
set, B2, consists of 352 genes of which many should be expected
to be cell cycle regulated, since their promoters are associated
with known stage-specific cell cycle transcription factors.

(B3) Genes annotated in MIPS (Mewes et al., 2002) as ‘cell cycle
and DNA processing’. From these, we removed genes annotated
specifically as ‘meiosis’ and genes included in B1 (67), leaving
518 genes. As a large number of genes involved in the cell cycle
are not subject to transcriptional regulation (not periodic), and
because B1 was explicitly removed, a relatively small fraction
of these genes should be expected to be periodically expressed.

We thus define a good method as one that is able to repro-
duce previous findings (B1), extract genes whose promoters are
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associated with stage-specific cell cycle transcription factors (B2),
or enrich for genes that are known to play a role in the cell cycle
(B3). Included in the benchmark are six published methods as
well as a new permutation-based method that separately quanti-
fies both the periodicity and amplitude of periodically expressed
genes and estimates the time of peak expression for each gene.
Our benchmark analysis enables us to understand the strengths and
weaknesses of each computational approach, and to explain the
obvious disagreement between methods. We show that amplitude-
independent methods are outperformed by the amplitude dependent
ones, and that those methods that perform well in the bench-
mark also provide a better overlap in genes identified in different
experiments.

2 METHODS

2.1 Statistical tests for regulation
The standard deviation can be easily calculated for each log-ratio profile,
giving a measure of the spread of the samples around the mean. Heavily reg-
ulated genes will thus have large standard deviations, whereas genes without
significant regulation display little deviation from the mean. To test for the sig-
nificance of regulation, we therefore compare the observed standard deviation
for each expression profile to a randomly generated background distribu-
tion. A total of 1 000 000 random profiles were constructed by selecting at
each time point the log-ratio from a randomly chosen gene. A P -value for
regulation was calculated as the fraction of the simulated profiles with stand-
ard deviations equal to or larger than that observed for the real expression
profile.

2.2 Statistical tests for periodicity

To estimate a P -value for periodicity, we compared the Fourier score of
the observed gene expression profile for each gene to those of random per-
mutations of the same gene. For each gene, i, a Fourier score, Fi , was
computed as

Fi =
√√√√( ∑

t

sin(ωt) · xi(t)

)2

+
( ∑

t

cos(ωt) · xi(t)

)2

where ω = 2π/T and T is the interdivision time. Similarly, scores were
calculated for 1 000 000 artificial profiles constructed by random shuffling
of the data points within the expression profile of the gene in question. The
P -value for periodicity was calculated as the fraction of artificial profiles with
Fourier scores equal to or larger than that observed for the real expression
profile.

The P -value for regulation is thus a comparison between individual
genes and the global distribution, whereas the P -value for periodicity is a
comparison involving only data from the gene in question. To avoid any over-
estimation of the significance of the P -values, we normalized all P -values
within each data set by the median P -value (prior).

2.3 Combined tests for regulation and periodicity
For each gene, a combined P -value of regulation was calculated by mul-
tiplying the separate P -values of regulation from each of the three exper-
iments. Analogously, a combined P -value of periodicity was calculated.
Subsequently, the P -value of regulation and P -value of periodicity were
multiplied to obtain the total P -value. An undesirable feature of the total
P -value is that it may become very low (i.e. highly significant) due to only
one of the tests. Genes that are strongly regulated but not periodic (or vice
versa) will thus receive good scores. To address this, we multiply the total
P -value with two penalty terms that weight down genes that are either not
significantly regulated or not significantly periodic. The final score used for

ranking is:

Ptotal ·
[

1 +
(

Pregulation

0.001

)2
]

·
[

1 +
(

Pperiodicity

0.001

)2
]

The calculation was done for each experiment separately as well as for the
combined experiments.

2.4 Assigning the time of peak expression
Since we approximate each expression profile by a sine wave, the time of
peak expression for a gene in a single experiment is trivially defined as the
time where the sine wave is maximal. We refer to this as the peak time. Due
to differences in experimental conditions, the time it takes the cell to com-
plete a cycle (the interdivision time) varies greatly between the alpha, Cdc15
and Cdc28 experiments. In order to compare the timing of peak expression
across experiments, we therefore transformed the timescales from minutes to
percentage of the cell cycle by dividing with the interdivision times estimated
by Zhao et al. (2001).

Subsequently, differences in release point of the synchronization tech-
niques were corrected for by aligning the timescales of the three experiments.
The optimal offsets for the experiments were determined by minimizing an
error function, E1 = ∑

i E1i , that measures the disagreement in the time of
peak expression of the same gene in different experiments:

E1i = w
alpha
i wcdc15

i dist(talpha
i , tcdc15

i )2

+ w
alpha
i wcdc28

i dist(talpha
i , tcdc28

i )2

+ wcdc15
i wcdc28

i dist(tcdc15
i , tcdc28

i )2

As weights (walpha
i , wcdc15

i and wcdc28
i ), the negative logarithm of the respect-

ive total P -values were used. The function dist refers to the shortest possible
distance between two points on a circle. This alignment results in an arbitrary
zero time. We chose to define zero time as the M/G1 transition, i.e. the time of
cell division. This time point was estimated from the combined peak times of
19 known M/G1 genes (Fig. 5), all among the top 500 genes in our final gene
list. The resulting offsets for the alpha factor, Cdc15 and Cdc28 experiments
were 78, 84 and 93% respectively.

Combining peak times from different experiments into one is a non-trivial
task, since the assignment should not be trusted in those experiments where
the expression profile is not sufficiently periodic. To compensate for this, we
weighted the individual peak times when computing the global, combined
peak time. For each gene, a combined peak time (ti ) was calculated from
the three individual peak times (talpha

i , tcdc15
i , and tcdc28) by minimizing the

following error function:

E2i (ti ) = dist(talpha
i , ti )

2w
alpha
i /W

+ dist(tcdc15
i , ti )

2wcdc15
i /W

+ dist(tcdc28
i , ti )

2wcdc28
i /W

where W = w
alpha
i + wcdc15

i + wcdc28
i and the weights are defined as in E1i .

2.5 Renormalization of Cdc28 data
Cho et al. (1998) used the temperature-sensitive mutant strain CDC28-13
to produce a synchronized cell culture from which 17 samples were taken
at 10-min intervals and hybridized to Affymetrix chips. Getting the ori-
ginal images or scanner reads was not possible, but the final data were
downloaded from http://yscdp.stanford.edu/yeast_cell_cycle/full_data.html.
The paper contains no information on how these data were processed. We
therefore renormalized the data with the signal-dependent non-linear Qspline
method (Workman et al., 2002). Multiple probes against the same gene were
collapsed by taking the median of their intensities. To avoid negative expres-
sion values, the scale was shifted by +750. The data were log2 transformed
and the mean expression value over all time points was subtracted to centre
the profile at zero (as in Spellman et al., 1998).
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Fig. 1. Comparison of published methods. The fraction of the benchmark set that is identified is plottted as a function of gene rank for each method, experiment
and benchmark set. The different methods are coloured as follows: Cho et al. (1998) (M1, cyan), Spellman et al. (1998) (M2, black), Johansson et al. (2003)
(M3, blue), Zhao et al. (2001) (M4, green), Luan and Li (2004) (M5, magenta), Lu et al. (2004) (M6, orange) and our permutation-based approach (M7, red).
Random performance is shown as a black dotted line.

3 RESULTS
In our benchmark, we included six methods that have all been applied
to the data sets (Alpha, Cdc15 and Cdc28) published by Spellman
et al. (1998):

(M1) Cho et al. (1998) visually inspected the expression profiles
of all genes regulated more than 2-fold during the Cdc28
experiment, classifying 421 of them as ‘periodic’.

(M2) Spellman et al. (1998) computed a score for every gene that
was based partly on the correlation to one of five idealized
gene profiles, and partly on a Fourier-like score yielding the
signal strength at a period similar to the interdivision time.
The genes were ranked based on their combined score and
truncated to 800 genes as this corresponds to a sensitivity
of 90% on B1.

(M3) Johansson et al. (2003) used partial least squares regression
to analyse the three data sets individually and in combina-
tion. The approach was based on fitting of sine curves and
thus also yields an estimate of the time of peak expression.
Thresholds were estimated based on random permutations
of the data.

(M4) Zhao et al. (2001) reanalysed each of the three data sets indi-
vidually using a statistical single-pulse model. The resulting

score, describing how well a profile fits the model, is
independent of the magnitude of regulation. An appealing
feature of the model is that it also estimates the time of
activation and deactivation of the gene.

(M5) Luan and Li (2004) used a modelling approach based on
cubic splines, rather than sine waves. The sets were analysed
individually and the statistical nature of the method enabled
the authors to identify thresholds that satisfied a given false
discovery rate.

(M6) Lu et al. (2004) used Bayesian modelling techniques to
estimate a periodic–normal mixture model based on five
microarray time courses. The authors provide a ranked list
of 822 genes based on all five data sets.

In addition to the methods M1–M6, we also include a new and
simple statistical approach (M7) based on permutations. Its score is
composed of two terms: one quantifies only the magnitude of regu-
lation, whereas the other measures the periodicity of the expression
profile. The combined score ensures that high-ranking genes are both
significantly regulated and periodic (see Section 2 for details).

Figure 1 shows the performance of each method on each indi-
vidual microarray expression data set as well as on all three sets
in combination. Studies in which a ranked list was published are
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plotted as curves, showing the percentage of genes in a benchmark
set recovered (i.e. coverage) as a function of rank. Where only an
unranked list was proposed, the performance is represented as a
single point. The three benchmark sets and the lists of genes pro-
posed by each computational method are all available from the web
site http://www.cbs.dtu.dk/cellcycle

Although some methods are clearly better than others, there is no
single best method. All methods perform significantly better than
random on the two primary benchmark sets (B1 and B2), mean-
ing that they all enrich for genes previously identified as periodic
and genes associated with known cell cycle transcription factors.
The best performing methods across all data sets are M2, M3 and
our permutation-based approach M7. However, these methods all
show close to random performance on benchmark set B3, where the
methods M4–M6 seem to work slightly better. The sets of genes
identified as periodic from each of the individual experiments are
all highly enriched in genes from the benchmark sets B1 and B2,
indicating that all three experiments are valuable. The enrichment
of genes whose promoter regions are bound by known cell cycle
transcription factors (B2) demonstrates that the genes identified as
periodic in the microarray data are biologically meaningful. The
chromatin IP technique measures physical association of transcrip-
tion factors with the promoter regions of individual genes and the
experiments were performed in freely growing cells, unlike the small
scale and microarray experiments (Spellman et al., 1998) which
use various methods to synchronize the cells. The B2 set is thus
independent of the microarray experiments on cell cycle regulation
and the observed correlation between these two data sources is thus
reassuring.

For benchmark sets B1 and B2, the curves rise steeply in the begin-
ning with the fraction of benchmark genes gradually decreasing with
rank. Judging from the shape of the curves, there does not seem to
be one natural value for thresholding. Depending on the relative
importance of accuracy versus coverage, anywhere from 300 to 800
genes should be included. Ranked lists should therefore generally
be preferred over non-ranked ones. As a consequence, methods that
provide a combined score based on all experiments are preferable
over simple voting schemes.

The good performance of the method M2 on B1 was anticipated
since the scoring scheme makes use of the correlation with the expres-
sion profiles of these genes. Surprisingly, Figure 1 demonstrates that
this approach works equally well on the benchmark set B2, which
includes no genes from B1. However, it remains unclear whether the
performance should primarily be attributed to the Fourier term or to
the correlation term.

The performance of the visual analysis of Cho et al. (1998) on
the B1 and B3 sets is remarkable. None of the computational meth-
ods perform as well on these two benchmark sets, yet the results
of computational and visual analyses are comparable on B2. The
major difference between B2 and B1/B3 is that the latter sets con-
sist of genes known to be involved in the cell cycle. In contrast, B2
is not biased towards genes of known function. The visual inspec-
tion was not done blindly (L. Steinmetz, personal communication),
which has likely introduced an unintentional bias in the borderline
cases towards genes with known roles in the cell cycle.

Most surprising is the poor performance of M4–M6 on B1 and
B2. Particularly, the M6 analysis disappoints with respect to finding
cell cycle-regulated genes, considering that additional experimental
data were used. These methods differ from the better performing

methods in two respects: they model the peak shape more accurately
than simple sine waves and their scores only depend on the shape of
the expression profile, not on the magnitude of regulation. Whereas
the first is likely to yield improvements, the second discards relevant
information, which explains the poor performance (see below).

3.1 Shape versus magnitude
Our permutation-based scoring scheme combines two statistical
tests. One term measures the significance of regulation, i.e. simply
ranks genes according to the standard deviation of their expression
profiles. The other term is a magnitude-independent test that com-
pares the periodicity of the observed profile to that of permutations
of the profile.

To explore the relative importance of profile shape versus mag-
nitude of regulation, we benchmarked the regulation and periodicity
terms separately (Fig. 2). The simple ranking by regulation yields
strikingly good results and even outperforms the periodicity ranking
on some sets. As expected, the periodicity term alone yields results
that closely resemble those of the magnitude-independent methods
(M4–M6). In general, combining both terms significantly improves
the results, consistent with the better performance of all magnitude-
dependent methods. It is thus clear that taking into account both
regulation and periodicity is far more important than accurately
modelling the shape of the expression profile.

Comparison of the regulation and periodicity terms also reveals
compositional differences between the three benchmark sets. On B1,
regulation works well on its own, indicating that the genes identi-
fied in small-scale experiments are, not surprisingly, biased towards
genes that are both periodically expressed and strongly regulated. In
contrast, the B3 set is composed of genes that are annotated as cell
cycle related, but not necessarily periodically expressed. Addition-
ally, genes already included in B1 were specifically removed from
B3. On this set, periodicity alone works better than both regulation
and the combined score, indicating a bias towards periodic genes
that are only weakly regulated. In fact, regulation alone is poorer
than random expectation, showing that the most strongly regulated
genes that are not in B1 specifically belong to pathways not related
to the cell cycle. The B2 set is probably the least biased of our three
benchmark sets, since it is derived from genome-wide chromatin IP
data. This set is not biased by current biological knowledge and con-
tains a considerable proportion of genes of unknown function. From
the performance of the various methods, benchmark set B2 indeed
appears to be a compromise between the two other sets. To conclude,
we regard B1 and B2 to be the most informative benchmark sets.

Clear differences between the three experiments can also be
observed in Figures 1 and 2. The alpha factor and Cdc15 results
are generally better than those of the Cdc28 experiment. On the
alpha experiment, the regulation term alone significantly outper-
forms the periodicity term (and even the combined approach) on
benchmark sets B1 and B2 (Fig. 2). Our interpretation is that only
genes involved in the cell cycle are significantly regulated in this
experiment. In contrast, many of the most highly regulated genes
in the Cdc28 experiment are unrelated to the cell cycle. This is, to
a lesser extent, also true for the Cdc15 experiment. In the two lat-
ter experiments, cells are released from arrest by an abrupt drop in
temperature, which likely results in changes in expression of e.g.
heat shock genes. Taken together, this suggests alpha factor syn-
chronization to be the least perturbing of the three synchronization
methods.
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Fig. 2. Regulation versus periodicity. As in Figure 1, the fraction of the benchmark set that is identified is plotted as a function of gene rank for each method,
experiment and benchmark set. For the original data sets, the regulation score alone (blue), periodicity score alone (green) and combined score (red, also shown
in Fig. 1) are shown. Results using the renormalized Cdc28 data are shown in black. Also shown is the combined score with peak time consistency filter (cyan).
Random performance is shown as a black dotted line.

It is clear that the treatment of the cells can introduce artefacts that
would not occur in freely growing cells. These response genes are
only up- or down-regulated in the beginning of the experiments and
most likely specific to the arrest method used. Such profiles will not
receive high scores from the computational methods, although some
contamination with false positives should be expected for all meth-
ods. We have, however, found no indications or reasons to believe
that synchronization artefacts manifest themselves as periodic pat-
terns of expression reproduced over multiple cycles or in multiple
experiments.

3.2 Renormalizing expression data
Since the publication of the cell cycle gene expression data, extens-
ive research has gone into developing advanced bioinformatics
methods for normalizing microarray data to correct for systematic
biases. However, these techniques have not been utilized by any
of the groups developing methods for identification of periodic-
ally expressed genes. To test the possible benefits of renormalizing
the raw data prior to periodicity analysis, we applied the signal-
dependent non-linear Qspline method (Workman et al., 2002) to the
Cdc28 data. As shown in Figure 2 (black curve), this considerably
improved the performance of our permutation-based approach. It
thus appears that many of the errors in the Cdc28 experiment are due

to systematic array biases rather than artefacts of the syncronization
method.

We also attempted to renormalize the raw alpha factor and
Cdc15 data as obtained from Stanford Microarray Database (Gollub
et al., 2003). Unfortunately, this analysis was inconclusive due
to numerous discrepancies between the data deposited in SMD
and those originally published (http://genome-www.stanford.edu/
cellcycle/data/rawdata/).

3.3 Overlap between experiments
An alternative strategy for evaluating the performance of methods
for extracting periodically expressed genes is to examine the overlap
in genes identified in different experiments. For each of the methods
that provide a ranked list of genes for each individual experiment,
top 300 lists were extracted and their overlap visualized as Venn dia-
grams (Fig. 3). The results are consistent with those obtained from the
benchmark sets. The results of M4, a representative of the magnitude-
independent methods, show by far the least agreement between the
three experiments. In comparison, M3 and M7 identify almost twice
as many genes that agree in all three experiments. For all computa-
tional methods, the alpha factor experiment shows the best overlap
with the two other experiments, while the Cdc28 experiment overlaps
the least. This supports our previous observations with regard to the
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Fig. 3. Agreement across experiments. Venn diagrams based on the top 300
genes from each experiment are shown for the methods that provide ranked
lists for the individual experiments. The lower two diagrams show the results
of our analysis using the original and renormalized Cdc28 data respectively.

quality of the individual experiments. The lower right Venn dia-
gram in Figure 3 illustrates that a renormalization of the Cdc28 data
improves the agreement with the two other experimental data sets, in
addition to improving performance on the benchmark sets (Fig. 2).
When including the renormalized Cdc28 data in our analysis, two-
thirds of the genes detected from the alpha factor synchronization
are confirmed by at least one other experiment. The fact that the
overlap can be improved through renormalization and use of better
computational methods suggests that experimental noise, rather than
synchronization artefacts, accounts for much of the variation.

3.4 Consistent timing of expression
So far, we have addressed the issues of finding periodically expressed
genes and asked if the same genes are identified in different exper-
iments. It is, however, equally important to check that those genes
behave similarly across experiments, i.e. that their expression pro-
files peak at the same stage in the cell cycle. As a consequence
of differences in experimental protocols, the interdivision time var-
ies between experiments. Furthermore, the synchronization methods
release cells at different points in the cycle. To enable cross-
experiment comparisons, we represent time in percentage of the cell
cycle (0% being the time of cell division) and align the time axes of
the experiments relative to each other (see Section 2). For each gene,
we can thus assign a time of peak expression in each experiment
and compare these across experiments. To examine the degree of
consistency between these peak times in different experiments, we
computed the largest peak time difference for each gene. Figure 4
shows the distribution of these differences for the set of 89 genes
that were identified as periodic in all three experiments (see Fig. 3).

0 10 20 30 40 50
Maximum differenceintime of peakexpression

0

10

20

30 Maximumdifference

Fig. 4. Consistency of peak expression. For the 89 genes identified in all
three experiments (see bottom right diagram in Fig. 3) the largest difference
in peak time was computed and summarized as a histogram.

For 87 of the 89 genes, all three peak times fall within an interval
of 15% of a cell cycle, clearly demonstrating the reproducibility of
peak expression by different synchronization methods. For genes that
appear periodic in all three experiments, an average peak time could
easily be computed. At lower ranks, however, the genes may not
appear equally periodic or regulated in all experiments. To account
for this, we instead compute a weighted average of the three experi-
ments. This procedure also allows us to calculate a variance measure
to assess the reliability of each combined peak time.

As a final check of the reproducibility, we investigated the tim-
ing of peak expression for four sets of known phase-specific genes
across the three experiments. B1 was subdivided by Spellman et al.
(1998) into phase-specific groups according to their reported peak
expression in the small-scale experiments. The distribution of peak
times within each group is visualized in Figure 5, along with the dis-
tribution of our combined peak times. From this, it is clear that the
phases occur in the same order, with the same length, and at the same
time in all three experiments. It thus appears that the synchroniza-
tion methods cause no abnormalities of the cell-cycle transcriptional
programme. Together, Figures 4 and 5 show that the combined peak
time is a meaningful measure that accurately describes when, in the
cell cycle, a gene is expressed.

At lower ranks, we found a small number of genes with inconsist-
ent peak times. Removing these from the ranked list based on the
weighted variance score (see Section 2 for details) led to marginal
improvements in performance (Fig. 2, cyan curve). Among the top
300 genes, only four were removed by the filter, while 27 of the next
200 genes were discarded. In addition to improving the perform-
ance, the filter ensures that all remaining genes on the list can be
confidently assigned to a unique point in the cell cycle. This ranked
list is available from the web site http://www.cbs.dtu.dk/cellcycle. It
is based on renormalized Cdc28 data and only contains genes that
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Fig. 5. Expression of phase-specific genes. For the phase-specific gene sets
identified in small-scale experiments, the distribution of peak times is shown
for each experiment: cdc28 (black), cdc15 (blue), alpha (green) and the
three experiments in combination (red). The mode of the peak time distri-
bution for the M/G1 group was chosen to define the zero time point. Within
each experiment, only genes in the top 500 of our periodicity analysis were
included.

show consistency in their time of peak expression. In the bench-
marks analysis (Fig. 2), its performance is better than or comparable
to all other published lists. This analysis shows a steep increase in
the B1 and B2 curves for the first 300 genes identified. Beyond this
point, a clear enrichment is also seen in B3, which continues until
500–600 genes are included, at which point the B1 also set satur-
ates. Enrichment is still seen in B2, but dies out around 800. Based
on these observations, we chose to define a high-confidence set as
top-300, a medium-confidence at top-500, but also include the lower-
confidence top-800 set. Using the total P -values, we employed the
Benjamini-Hochberg multiple testing procedure (Reiner et al., 2003)
to estimate the false discovery rate (FDR) at different cut-offs. For
the highest scoring 300, 500 and 800 genes we estimate the FDR to
be 3 · 10−6, 4 · 10−4 and 8 · 10−3 respectively.

4 DISCUSSION
Naturally, the results of our benchmark (Figs. 1 and 2) depend on
the selected benchmark sets B1–B3. As none of the sets can be
assumed to be perfect gold standards, it is not possible to assess
how good each method is on an absolute scale. We are, however,
able to evaluate the computational methods relative to each other by
measuring their ability to recover genes from these sets. The methods
that perform best on B1–B3 also provide the best overlap between
genes identified across different experiments (Fig. 3). We thus believe
that our analyses together provide a fair and unbiased assessment of
the relative performance of the computational methods.

The budding yeast experiments (Alpha, Cdc15 and Cdc28) used
in our study were all synchronized by arrest-release techniques

(whole-culture synchronization). Such techniques block progression
at a certain point in the cell cycle, from which all cells can later
be released simultaneously, e.g. by lowering of the temperature.
Recently, the interpretation and validity of such block–release exper-
iments has been lively debated (Cooper, 2004a,b; Spellman and
Sherlock, 2004a,b).

From the perspective of our analysis, we can conclude that there
are many more genes that appear periodic than can be explained by
mere chance. The genes are largely the same across different exper-
iments, as shown in Figure 3 and by the overlap with B1 (Fig. 1).
With few exceptions, the genes peak at the same point in the cell
cycle across different experiments (Fig. 4). Also, the characteristic
cell cycle phases occur in the same, correct order in all experiments
and with the same relative length (Fig. 5). Finally, the genes that
appear periodic in the synchronized cell cultures are heavily over-
lapping (Figs. 1 and 2) with those physically associated with cell
cycle transcription factors in Chromatin IP experiments performed
on freely growing cells (Simon et al., 2001; Lee et al., 2002).

In summary, the microarray data obtained from the synchron-
ized cell cultures appear to draw a reproducible and biologically
meaningful picture of the yeast cell cycle that is consistent with
complementary experiments from freely growing cells. Both false
positives and false negatives should be expected from the experi-
ments and their subsequent analysis, given the considerable level
of noise and the large number of expression profiles investigated.
Artefacts that would not occur in freely growing cells may also
be introduced by synchronization methods, e.g. induction of stress
response genes. However, these would most likely be specific to each
arrest method and manifest themselves in the beginning of an exper-
iment. It is difficult to see how responses to different treatments of
the cells could induce consistent, periodic patterns of expression that
persists through several cycles, as proposed by Cooper (2004a,b).

5 CONCLUSIONS
Most surprisingly, our benchmark analysis reveals that most of the
new and more mathematically advanced methods for identifying
periodically expressed genes perform considerably worse than the
early method by Spellman et al. (1998) (M2). These results should
encourage developers of future computational methods to evalu-
ate the performance of their methods carefully. We show that the
performance gap is due to the magnitude independence of most
newer methods. This independence may improve their ability to
discover novel weakly regulated cell cycle genes. However, as the
magnitude of regulation contains a large part of the signal, this
should be exploited in order to derive the most accurate set of cell
cycle-regulated genes.

Using the periodicity score alone yields results similar to those
of other magnitude-independent methods, while our combined score
performs as well as the best existing methods. In comparison to
other methods, ours have two main advantages. First, genes ranked
high on our list are guaranteed to be both significantly regulated
and significantly periodic. Second, we require consistency in peak
time across experiments, which allows us to assign a time of peak
expression to each gene.
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