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Abstract:

The remove-compute-restore (RCR) technique for regional geoid determination implies that both topography and low-degree global
geopotential model signals are removed before computation and restored after Stokes’ integration or Least Squares Collocation (LSC)
solution. The Least Squares Modification of Stokes’ Formula (LSMS) technique not requiring gravity reductions is implemented here with
a Residual Terrain Modelling based interpolation of gravity data. The 2-D Spherical Fast Fourier Transform (FFT) and the LSC methods
applying the RCR technique and the LSMS method are tested over the Auvergne test area. All methods showed a reasonable agreement
with GPS-levelling data, in the order of a 3—3.5 cm in the central region having relatively smooth topography, which is consistent with the
accuracies of GPS and levelling. When a 1-parameter fit is used, the FFT method using kernel modification performs best with 3.0cm r.m.s
difference with GPS-levelling while the LSMS method gives the best agreement with GPS-levelling with 2.4 cm r.m.s after a 4-parameter
fit is used. However, the quasi-geoid models derived using two techniques differed from each other up to 33 cm in the high mountains
near the Alps. Comparison of quasi-geoid models with EGM2008 showed that the LSMS method agreed best in term of r.m.s.
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1. Introduction has been demonstrated in numerous cases in lowland areas with
dense gravity data coverage, so far no convincing case of attaining
acm-geoid in mountainous regions has been reported. Thisis likely

. . . L a consequence of insufficient gravity data coverage, theoretical
Nowadays, a major goal for physical geodesy is the determination . . L ) )
oo ) shortcomings and insufficient quality of the levelling data, used to
of the geoid with an accuracy on the cm level, matching the . . ) )
. . . compute "ground truth” geoid (or quasi-geoid) values.
accuracy of GPS height determination. Although the cm-geoid

The most commonly adopted and applied approach to regional

*E-mail: hasan.yildiz@hgk.msb.gov.tr, Phone: +90 312 5952216 gravimetric geoid determination today is probably the remove-
The manuscript solely reflects the personal views of the author and does not
necessarily represent the views, positions, strategies or opinions of Turkish
Armed Forces the remove step, a long-wavelength part (predicted by a global

compute-restore (RCR) technique (e.g., Schwarz et al.,, 1990). In
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gravity field model) and a short-wavelength part (predicted by
topography) are removed from the original gravity data. In the
compute step, the obtained band-pass filtered gravity anomalies
are transformed into quasi-geoid heights either using Stokes’ in-
tegration methods, e.g. 2-D spherical Fast Fourier Transform (FFT),
or using Least Squares Collocation (LSC). After having carried out
the compute step, the long-wavelength and the short-wavelength
parts are restored to the quasi-geoid. One advantage of the LSC
method is that it does not require gridded gravity anomalies as
the FFT method and provides error estimates for the resulting
quasi-geoid models.

Alternatively, least squares modification of Stokes’ formula (LSMS),
developed at the Royal Institute of Technology, does not require
gravity reductions and includes a least squares kernel modification
with additive corrections for the topography, downward contin-
uation, the atmosphere and the ellipsoidal shape of the Earth
(Sjoberg 2003). A detailed theoretical discussion about RCR and
LSMS techniques can be found in Sjoberg (2005).

This study aims to numerically compare the RCR and LSMS tech-
niques in the Auvergne test area. A number of studies have already
reported results using different quasi-geoid determination meth-
ods in the same test area (Barzaghi and Sanso, 2009; /:\gren et al,
2009b; Forsberg, 2010). However, this study differs from the pre-
vious studies because identical input data have been used for all
methods, and the quasi-geoid models are not only compared with
the GPS-levelling data, but also among each other and with the
EGM2008 (Pavlis et al., 2008). Geodetic Gravity Field Modelling Pro-
grams (GRAVSOFT) (Forsberg and Tscherning, 2008) and Scientific
Software for Precise Geoid Determination Based on the Least-
Squares Modification of Stokes’ Formula (LSMS-GEOLAB) (Kiamehr
and Sjoberg, 2010) are used for the practical implementations of
the RCR and LSMS techniques, respectively.

Section 2 briefly describes the test area, data and the quasi-
geoid determination methods. Section 3 gives the details of the
computation of regional quasi-geoid models and comparison with
GPS-levelling data. Quasi-geoid difference analyses are given in
Section 4. Finally, the results are discussed and some conclusions
are presented in Section 5.

2. Data and methodology

2.1. Data

The Auvergne data set was distributed in 2008 by Institut Géo-
graphique National (IGN), France, on behalf of the International
Geoid Service (IGeS), as a "ground truth" example for precise geoid
determination methods (Duquenne, 2007).

The Auvergne data set consists of about 240.000 gravity data points
from the Bureau Gravimetrique, covering a 6° X 8°area including
most of France; a digital elevation model (DEM) based on 3" Shuttle
Radar Topography Mission (SRTM) height data (version 3) covering
a somewhat larger 8°x10°area (see Fig 1(a)); and a set of 75
GPS-levelling points in the "Massif Centrale" area, all with 1st order

v
VERSITA

52" = : L -
50 I
48 ]
et A L
Levellad b p
46 | ops L_"i -
U points 192 kmi

Figure 1. a) The data coverage for quasi-geoid determination
(Duquenne, 2007); b) Distribution of GPS-levelling points
(black circles) in the central region with the heights (in
metre) of quasi-geoid computational points selected at
0.02°x0.025°resolution (approximately at 2km spacing)
from 3" Shuttle Radar Topography Mission (SRTM) height
data over the quasi-geoid comparison area

levelling connections (see Fig 1(b)), and a quoted GPS ellipsoidal
height accuracy of 2—3 cm (RBF points) or "slightly better" (NIVAG
points) (Duquenne, 2007).

Duquenne (2007) suggested that these GPS-levelling points were
linked to the French national levelling network (NGF-IGN69) by
precise levelling with redundant observations, with the total stan-
dard deviation of the difference in heights between points in the
GPS-levelling area better than 2 cm, including the uncertainties of
the basic network and of the local ties. The NGF-IGN69 uses normal
height system and is tied to Marseille tide gauge. Considering
the suggested accuracy of GPS ellipsoidal heights as 2.5cm and
the accuracy of precise levelling measurements as 2 cm, an accu-
racy of 3.2cm can be attained for the quasi-geoid heights of the
GPS-levelling points through the error propogation law assuming
uncorrelated observations.

The elevations of the GPS-levelling points range from 206 to
1235 m, and the highest mountain in the central area is 1886 m; it
is therefore a relatively moderate mountainous area (Fig 1(a), 1(b)).
The heights of quasi-geoid computational points selected at
0.02° x0.025°resolution (approximately at 2 km spacing) from 3"



Shuttle Radar Topography Mission (SRTM) height data over the
quasi-geoid comparison area are shown in Fig 1(b)). The eleva-

tions of the quasi-geoid computational points range from 21 m to
1823 m whereas the elevations of the free-air gravity anomalies
range from 19 m to 1715 m over the quasi-geoid comparison area
(Fig 1(b)).

2.2. Methodology

2.2.1. Remove Compute Restore Technique

In the RCR technique, the anomalous potential T is split into three
parts:

T =Tecm + Trrm + Tres, (1

where Tegw is the contribution of an Earth Geopotential Model
(EGM). Tr1pm are the terrain effects from Residual Terrain Modelling
(RTM), and Tres the residual gravity field. T is treated as a spatial
function. One reason for subtracting an EGM is to represent the
gravity field outside the area covered with data.

For the terrain-reduction, the terrain effects are reduced relative
to a mean elevation surface. The terrain potential is subtracted
from the observations using a prism integration, i.e. representing
the mass between the actual topography and the mean elevation
surface as mass prisms of either positive or negative density,
nominally 2670 kg/m3. The prism implementation of the RTM
method has an inherent problem: the method leaves a point above
the mean elevation surface in the mass-free domain, whereas a
point below the mean elevation surface after the reduction would
correspond to the value inside the reference topography mass. As
all geodetic gravity field modeling methods require observations
derived from a harmonic function, i.e. in a mass-free environment
above the geoid, the harmonic correction is applied to the gravity
anomaly points below the mean elevation surface; for details see
Forsberg (1984). The geoid "restore" signal is computed by Fourier
methods (for details see Forsberg, 1984, 1985). In RTM method
the resolution of the mean elevation surface is controlled by the
user, through a suitable low-pass filter. Ideally such a filter should
correspond to the equivalent resolution of the highest spherical
harmonic expansion degree in the reference potential.

The Stokes/Molodensky’ formula (Moritz, 1980, p. 387) is

R
(= [[@g+ gnstide, @

where ( is quasi-geoid, R is the mean Earth radius, y is the normal
gravity at the normal height, ¢ is the unit sphere, S(¢) is the
Stokes’ function with argument ¢ as the geocentric angle, Ag is
the surface gravity anomalies, g1 is the first termin the Molodensky
expansion. Equation (2) is modified using reduced surface gravity
anomalies (Ag.s), obtained removing the contribution of an EGM
and terrain effects from the surface gravity anomalies (A g), instead
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of Ag to obtain the residual quasi-geoid contribution () by the
formula,

Goe= 4o [[ B0+ g0 )

a

4y

When the RTM reduction is used, the Molodensky g4 term will
generally be insignificant (Forsberg and Sideris, 1989; Schwarz
et al, 1990) and the formula converts into the conventional
Stokes’ formula for the geoid, in principle applied to gravity field
quantities at the geoid. The evaluation of Stokes’ formula is done
using 2-D spherical FFT for details of the methods see Schwarz et
al. (1990) and Forsberg and Sideris (1993). In the 2-D spherical
FFT method, Stokes’ integral is evaluated over the whole gravity
anomaly area by a series of convolutions, each accurate around a
certain reference latitude. To keep the inherently highly accurate
Gravity Recovery And Climate Experiment (GRACE) gravity field
information in EGM2008 (Pavlis et al., 2008) from being overruled
by the influence from terrestrial gravity data, the integral should
use modified Stokes’ kernels, e.g., as the modified Wong-Gore
kernel (Wong and Gore, 1969) described by Forsberg and Olesen
(2010).

The LSC method also uses the RCR technique (Forsberg and
Tscherning, 1981), as the data to be used for covariance function
estimation and the subsequent LSC step are required to be smooth
with small variance in order to properly interpret the error esti-
mates. The LSC method can handle heterogeneous observations
to estimate gravity field components and their standard errors,
such as geoid heights (Tscherning, 1982). The LSC method takes
into account data located at different altitudes through the use
of a spatial covariance function. In the LSC method, a limitation,
however, has been that as many equations as the number of
data have to be solved. Therefore, we used a limited number
of gravity data selected at approximately 2 km resolution for the
impementation of the LSC method concerning computational ca-
pabilities, which are also used by the 2-D FFT and LSMS methods
as identical data. First, emprical covariances are computed and
subsequently these values are fitted to the model covariance func-
tion of Tscherning-Rapp (Tscherning and Rapp, 1974). The residual
quasi-geoid undulations are determined by the LSC method, where
the required auto- and cross-covariance functions are computed
by covariance propagation from the analytically modelled local
covariance function represented as follows:

N RE i+1
cov(Tp, TQ)=GZ[ 2 ] o’ P(cosy)
i=2

rprq

N 1 RB 1 A
+Z[ 2] (i—1)(i—2)(i+4)Pi(C05‘/’)r 4)

rpr,
i—2 L'PTO

where P and Q are two points seperated by a spherical distance
) from each other and rp, ro are the distances of the two points
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from the geocenter, Rp is the radius of Bjerhammar sphere and

,»2 is the error degree variance. The covariance parameters a
(scale parameter), A (a constant parameter in units of (m/sn)*y
and the Bjerhammar radius R are determined using an iterative

non-linear adjustment (Knudsen, 1987).

2.2.2. Least Squares Modification of Stokes’ Formula (LSMS)

The least squares modification of Stokes’ formula (LSMS) (Sjoberg,
2003) to compute a gravimetric model, includes a least squares
(stochastic) kernel modification with additive corrections for the
topography, downward continuation, the atmosphere and the el-
lipsoidal shape of the Earth. The LSMS method has been presented
under several different versions during the years (see e.g. Sjoberg,
2003). Agren et al. (2009a) clearly describes the LSMS method for
the estimation of geoid heights, as well as the transformation of
the method to estimate height anomalies. As we aim to determine
height anomalies, we used the version applied by Agren et al.
(2009a}) by using the combined estimator for the height anomaly:

M

R
M My A L EGM
47_[ //5 () AgdU-l-fng 2(Sn-l-Q )Ag,
+ 8¢coms + 0Cpwe + 0CSAE + 8¢k, (5)

where 0y is the spherical cap, R is the mean Earth radius, y is
mean normal gravity, S™ (i) is the modified Stokes’ function, s,,
are the modification parameters, M is the maximum degree of the
EGM, QM are the Molodensky truncation coefficients and Ag£ M
is the Laplace surface harmonic of the gravity anomaly determined
by the EGM of degree n. The four additive corrections are shown
to the right in equation (5), where the combined topographic
effect 0{comp = 0 (Sjbberg, 2000) and 0{pwc, 051y COMB 3nd
0{g;; represent the downward continuation effect, atmospheric
and ellipsoidal corrections, respectively. See Agren et al. (2009a)
for the formulas of the atmospheric and ellipsoidal corrections.
The downward continuation effect 0 {pyy ¢ is

cO
OCowc(P) =3 Hp

M R n+2
an+oM [(r) —1]AgEGM(P)
— P

47TY /j

where P is the computation point, rp = R + HP,ZE, is an

oA
(Trgb(HP - HQ)) dag,  (6)

approximate value of the quasi-geoid height and Q is the running
point in Stokes’ integral, gy is the spherical cap, R is the mean
Earth radius, y is mean normal gravity, SM()) is the modified
Stokes’ function, s, are the modification parameters, M is the
maximum degree of the EGM, Q,A,” are the Molodensky truncation

coefficients and AgEM

v
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is the Laplace surface harmonic of the

gravity anomaly determined by the EGM of degree n (Agren et al,,
2009a).

Agren et al. (2009a) points out that Equations (5) and (6) are
equivalent to analytical continuation to point level using the g4
term in Moritz (1980, p. 387) except that they differ from Moritz’ in
that least squares modification of Stokes’ formula is utilised with

improved atmospheric and ellipsoidal corrections.

One problem with using the combined quasi-geoid estimator in
Eq. (5) is that Stokes’ quadrature is made on the rough surface
gravity anomaly, which results in large discretisation errors (Agren
et al., 2009a).
compute-restore philosophy for the gridding of a comparatively

However, by taking advantage of the remove-

dense gravity anomaly grid using a smoothing topographic correc-
tion, such errors can be counteracted (Sjoberg, 2003). This makes
it possible to take advantage of the high-frequency information
available in the Digital Elevation Model (DEM). However, a practical
drawback here is that dense gravity anomaly grids are required
in rough mountain areas (Agren et al.,, 2009a). One advantage of
the LSMS method is that the "real" magnitude of the corrections
becomes apparent, ie. the sum of the additive corrections is
equal to the quasi-geoid errors obtained in case no corrections are

applied at all (/:\gren et al., 2009a).

Choosing a suitable EGM and modification parameters s, are
essential steps in the determination of a quasi-geoid model using
the LSMS formula.
degree variances of the EGM and terrestrial gravity to be able to

We need to estimate the signal and error

estimate the least-squares modification coefficients. The signal
degree variances for the degrees above the EGM are generated
using the Tscherning and Rapp (1974) model. In this study, the
error degree variances are chosen for a model consisting of band
limited white noise and correlated noise with a reciprocal distance
covariance function. Another important parameter is the spherical
radius of the integration cap gy in Eq. (5).

3. Computation of regional quasi-geoid models

As previously mentioned, concerning the computational ca-
pabilities for the implementation of the LSC method, A lim-
ited number of 59097 gravity points are randomly selected at
0.02° x0.025°resolution (pixel binning to approximately 2 km res-
olution) (Fig. 2), to be used as identical input data for all three
quasi-geoid determination methods. This computational strategy
can be critized, as in reality only LSC needs to be limited by the
number of observations.

3.1. Regional Quasi-Geoid Model Determination Using the RCR Tech-
nique

The EGM2008 is computed to degree 360. The terrain effects
are computed using 3" SRTM data with respect to a mean eleva-
tion surface of 30’, constructed by a Gaussian filter corresponding
to the resolution of highest spherical harmonic expansion de-
gree of the EGM. The EGM and terrain effects are subsequently



Figure 2. The selected 59097 surface gravity anomalies at
0.02° x0.025°resolution (pixel binning to approx. 2 km res-
olution) used as identical input for the implementation of all
three quasi-geoid determination methods

subtracted from the gravity data. The reduced gravity data are
subsequently gridded in the data coverage region (Fig. 2) to a grid
of 0.02° x0.025°resolution by LSC.

The 2-D spherical FFT conversion was done using zero-padding in
a zero-padded grid of dimension 600X 640 data points, using 3
reference latitude parallels. The RTM geoid terrain effects are sub-
sequently restored using height anomaly terrain effects computed
by FFT in a similar grid, and finally the gravimetric quasi-geoid
was obtained by adding the geoid EGM2008 effects, computed
at the level of the topographic surface. We first computed the
quasi-geoid without using any modification of Stokes’ formula.
In this case, we found a standard deviation of 3.9cm between
the 2-D FFT derived quasi-geoid model and GPS-levelling data
using a 1-parameter fit (Table 3). Subsequently, the modification
parameters are investigated in comparison with the GPS-levelling
data which results in a selection of an optimal degree band of
80-90, in good agreement with the estimated accuracy of GRACE
(Tapley et al., 2005). In this case, a standard deviation of 3.0 cm is
found between estimated gravimetric quasi-geoid model and the
GPS-levelling data using a 1-parameter fit (Table 3).

For the computation of quasi-geoid model by the LSC method,
residual gravity anomalies are used for the empirical covariance
function estimation. Subsequently, the model covariance function
is estimated using the covariance function model of Tscherningand
Rapp (1974) through the program the COVFIT (Knudsen, 1987). It is
found to be a quite good compromise for the covariance function
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Figure 3. Signal empirical (blue) and model (red) regional covariance
function of reduced gravity anomalies after the removal of
the contribution of EGM2008 to degree 360 and terrain ef-
fects with respect to a mean elevation surface at 30’ reso-
lution

Table 1. The fitted covariance function parameters, Rg is the mean
radius of the Earth

Description of Dataset Re — Rp Scale factor Variance
(km) () (mgal®)

Reduced gravity anomaly -7.4 2.05 69.4

of the entire area as it is evident from Fig. 3. The estimated
covariance function parameters are shown in Table 1.

These parameters (Table 1) are used as input for GEOCOL17
program of GRAVSOFT package (Forsberg and Tscherning, 2008).
In addition, the observation standard error of the reduced gravity
anomalies is set to 1.0 mgal as Duquenne (2007) suggested the
accuracy of gravity values as 0.25 0.75 mGal which could worsen
up to 1 or 2 mGal due to errors in position or inconsistencies with
the digital terrain model. The final quasi-geoid model is obtained
after restoring the geoid restore effects from RTM and EGM to
the residual quasi-geoid model obtained from the LSC method.
A standard deviation of 3.4 cm is found between the quasi-geoid
model determined by the LSC method and the GPS-levelling data
using a 1-parameter fit (Table 3).

3.2. Regional Quasi-Geoid Model Determination Using the LSMS
Method

A remove-grid-restore strategy is utilised to reduce the discreti-
sation errors during the gridding operation while preparing the
input data for the LSMS method (Agren et al, 2009a). After
adding the EGM2008 effects to degree and order 360 and the
RTM effects to the gridded reduced gravity anomalies used by
T~
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Figure 4. The gridded free air gravity anomalies (mgal) preapared as
input for the LSMS method

2-D Spherical FFT method, the gridded surface gravity anomaly
data at 0.02° X 0.025°resolution (approximately at 2 km resolution)
(Fig. 4) are obtained as input data for the LSMS method. The spher-
ical harmonic coefficients for the global topography are needed
to compute the combined atmospheric correction. A worldwide
15°x 150°DEM s first derived from SRTM30plus spherical har-
monic coefficients are then estimated to the maximum degree 720
using numerical integration according to the midpoint rule (Agren
et al., 2009a).

We implemented the LSMS method using EGM2008 to degree 360,
setting the cap size using the radius 5 = 1°. We used a relatively
small cap size, as the LSMS method results in final quasi-geoid
computation area smaller than the gravity coverage area, omitting
the borders as large as the radius of the cap size. A larger cap
size would make the quasi-geoid model to be determined at a
very limited part of the test area (only in the central area). We
keep the difference between the east-west borders of gravity data
and quasi-geoid target area as 1.5°since the meridians converge
towards the poles. This implies that the Stokes’ integration is
made over the whole spherical cap. Therefore, the choosen cap
size (o = 1°) resulted in a quasi-geoid model area for the LSMS
method of 44°—48°to 0.5°—5.5°E, which is the same quasi-geoid
area as is used for all three methods. We adopt the modification
approach used by /:\gren et al. (2009a) based on the determination
of the crossing point K of the error degree variances of the EGM
and terrestrial gravity. The choice of K amounts to specifying the
upper degree for which the GRACE model is believed to be better
than the terrestrial gravity anomalies. This corresponds to the
specification of the degree in the use of modified Wong and Gore
kernel used by 2-D spherical FFT method (Forsberg and Olesen,
2010). We found that K =85 yielded a standard devitation of 3.5cm
between LSMS derived quasi-geoid model and GPS-levelling using
a 1-parameter fit, indicating that K =85 is realistic taking into
account the error characteristics of GRACE (Tapley et al., 2005). The
corresponding degree variance models are specified in detail in
InZd
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Figure 5. Downward continuation correction (m)

Table 2. Degree variance models used in the quasi-geoid determina-
tion based on the method used by Agren et al. (2009a)

Type of degree Description

Variance

Signal Tscherning and Rapp (1974). Degree vari-
ances rescaled using the factor 0.52

EGM error Published ones for EGM2008 (Pavlis et al.
2008). Degree variances rescaled using the
factor 0.4°

Terrestrial gravity Combination of the reciprocal distance and

error white noise models (Agren et al., 2009a).

The reciprocal distance part is specified by
the standard deviation 1 mGal and the cor-
relation length 0.2.

The white noise part is specified by the
standard deviation 1 mGal and the Nyquist
degree 10800

Table 2. The downward continuation (DWC) correction is shown
in Fig. 5. DWC correction is maximum in the mountainous areas
(up to 10 cm) and small (at a few c¢m level) in areas with smooth
topography. The atmospheric and ellipsoidal corrections are at
1—2 mm level and therefore they are considered to be neglible for
the study area and not shown.

The standard deviation of 3.5 cm of the differences between the
LSMS derived quasi-geoid model and quasi-geoid heights of the
GPS-levelling data is slightly larger than the value of 3.3 cm found
by Agren et al. (2009b) using the LSMS method over the same test
area. This is most likely due to the use of data having different
resolution and the differences in the choice of the parameters of
the LSMS method. Agren et al. (2009b) adopted the LSMS method
using a reference model of EIGEN_GLO4C up to degree and or-
der 360 with modification parameters obtained chosing M =360
(see Eq. (5)), without implementing the modification method sug-
gested by Agren et al. (2009a). Furthermore, Agren et al. (2009b)
used free-air gravity anomalies selected at 0.01° X 0.01°resolution,
set the standard error of the gravity anomalies to 0.5mgal and



Journal of Geodetic Science  »

Table 3. Comparison of quasi-geoid models with GPS-levelling. Statistics for the 75 GPS-levelling residuals after a 1- and a 4-parameter fit. Note
that max, min vales are given after the mean value is subtracted from differences for the 1-parameter fit. (1) denotes that no modication
of Stokes’ integral is applied for the FFT method, while () indicates that the FFT method applies the modification. Unit is in metre

Quasi-geoid models # par Mean Max. Min. Std. dev.
FET 1 -0.183 0.068 -0.118 0.039
4 0.000 0.067 -0.065 0.031
FET 1 -0.133 0.058 -0.076 0.030
4 0.000 0.058 -0.067 0.029
LSMS 1 -1.040 0.079 -0.078 0.035
4 0.000 0.095 -0.051 0.024
LsC 1 -0.154 0.070 -0.086 0.034
4 0.000 0.064 -0.065 0.031
1 -0.109 0.098 -0.073 0.036
EGM2008 4 0.000 0.138 -0.068 0.029

Table 4. Inter-comparison of quasi-geoid models. Note that max.,
min vales are given after the mean value is subtracted from
differences. (') denotes that no modication of Stokes’ inte-
gral is applied for the FFT method, while ? indicates that
the FFT method applied modification. Unit is in metre

Quasi-geoid models Mean Max. Min. Std. dev.
FFT(—LSC 0.03 0.09 -0.05 0.03
FFT@ —LsC -0.03 -0.12 -0.13 0.04
LSMS—FFT() 0.94 0.19 -0.33 0.08
LSMS—LSC 0.90 0.23 -0.20 0.07

Table 5. Comparison of quasi-geoid models with EGM2008. Note
that max, min vales are given after the mean value is sub-
tracted from differences. (') denotes that no modication of
Stokes’ integral is applied for the FFT method, while @) indi-
cates that the FFT method applied the modification. Unit is

in metre
Quasi-geoid models Mean Max. Min. Std. dev.
FFT)—EGM2008  0.06 0.26 -0.25 0.08
FFT®—EGM2008  -0.01 0.31 -0.18 0.07
LSC—EGM2008 0.03 0.22 022 0.06
LSMS—EGM2008  0.93 0.06 -0.20 0.03

used a cap size of Yy = 2°that was achieved extending the
gravity anomaly coverage area from 43°—49°N and 1°W—7°E to
42°—50°N and 3°W—9°E. This was carried out by generating free-
air gravity anomalies from EIGEN_GLO4C up to degree and order
360 and RTM effect outside the area covered with data. In the
present study, we did not prefer to extend the gravity anomaly cov-
erage area using a similar approach and therefore selected the cap
size as Yy = 1°. We sampled the quasi-geoid model computed by
/:\gren etal. (2009b) using the LSMS method at the same resolution
as the quasi-geoid model computed by the LSMS method in the
present study. The differences of the two quasi-geoid models
showed a standard deviation of 2 cm, with corresponding values
of 4cm, -5 cm and 13 ¢cm for the mean, minimum and maximum
values.

4. Quasi-geoid defference analysis

In order to test the performance of the three different quasi-
geoid determination methods, their corresponding quasi-geoid
undulations are compared with the quasi-geoid heights of the 75
GPS- levelling points situated in the central area (Fig. 1(b)). Except
a mean difference between the gravimetric quasi-geoid models
and the quasi-geoid heights of the GPS-levelling points, all three
methods agree well with the GPS-levelling data in the order of
3—3.5cm using a 1-parameter fit provided that the modification
of the Stokes' integral isimplemented by the FFT method (Table 3).

Thereisalarge difference between LSMS and RCRmethods interms
of mean difference between the gravimetric quasi-geoid models
and GPS-levelling quasi-geoid undulations. This is due to the dif-
ferences in the coordinate reference system used. The agreement
between FFT derived quasi-geoid model and the GPS-levelling
quasi-geoid heights drastically improves when the modification is
used (FFT(Z)). In case of using a 1-parameter fit to the differences
between the gravimetric and GPS-levelling quasi-geoid heights,
the FFT method using kernel modification (FFT!?) performs best
with 3.0 cm r.m.s whereas the LSC method, the LSMS method and
EGM2008 quasi-geoid heights shows 3.4cm, 3.5cm and 3.6cm
(Table 3).

In order to investigate the tendencies of the residuals between the
gravimetric quasi-geoid models and quasi-geoid heights of GPS-
levelling points after a 1-parameter fit, the differences between the
quasi-geoid models and the quasi-geoid heights of GPS-levelling
in the observation points are shown in Figs. 6(a)— 6(d), where it can
be seen that the agreement is good. The pattern of the residuals
forthe FFT (Fig. 6(a)) and the LSC (Fig. 6(b)) methods are similar, not
showing any systematic tendency. On the other hand, the residuals
for the LSMS method (Fig. 6(c)) and EGM2008 model (Fig. 6(d)) have
a similar pattern, showing a remaining significant systematic slope
in the direction from north-east to south-west, which is not the
case in the FFT residuals (Fig. 6(a)). Therefore, we use 4-parameter
transformation to model the residuals between the quasi-geoid
models and the GPS-levelling quasi-geoid heights at observation
points. The statistics after a 4-parameter transformation are given

v
VERSITA



s Journal of Geodetic Science

0 200 400 600 800 1000 1200

Y Y 1
0 200 400 GO0 800 1000 1200

Figure 6. GPS-levelling residuals after a 1-parameter transformation using for the quasi-geoid models obtained using: a) FFT?; b) LSC; c) LSMS
methods; d) EGM2008 to degree and order 2190. The scale is given by the 5cm arrow to the South-East. In the background heights
(unit is in metre) of quasi-geoid computational points selected at 0.02° x 0.025°resolution (approximately at 2 km spacing) from 3" Shuttle
Radar Topography Mission (SRTM) over the quasi-geoid comparison area are shown

in Table 3. The 4-parameter fit corresponds to estimating the zero
and first spherical harmonic degree terms using the observation
equation (Section 2—18 in Heiskanen and Moritz, 1967),

CCPS—Levering - cGravimetre —€=

X1 + x2005¢cosA + x3cos¢psinA + xgsing,  (7)

where x1, X2, x3 and X4 are the four parameters, ¢ is the latitude
and A is the longitude. In the 1-parameter fit only the x1 term is
estimated. Using a 4-parameter fit, the LSMS method performs
best with a 2.4cm, whereas the FFT method, LSC method and
EGM2008 show 2.9, 3.1 and 3.1 cm, respectively, in terms of the
standard deviation between gravimetric and GPS-levelling quasi-
geoid heights at observation points. The significant systematic
—~
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slope shown on Fig. 6(c) is absorbed in the 4-parameter fit, leading
to better fit for LSMS than for FFT.

The mean differences and the standard deviations of the quasi-
geoid differences between the methods are shown in Table 4. The
standard deviation of the differences between the FFT method
without applying the modification of Stokes' integral (FFT"y and
the LSC method is 3 cm. When the Stokes’ modification is applied
by the FFT method (FFT(Z)), in the spectral band of 80—90 of
the EGM2008, a standard deviation of 4 cm is obtained. This is
potentially due to the fact that the LSC method is a prediction
method and does not use Stokes’ integral and thus the use of
modification kernel is not possible. The standard deviation of
the differences between the LSMS method and the FFT!? method
is 8cm, which is relatively large. Similarly, standard deviation
between the quasi-geoid models of the LSMS and the LSC methods
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Figure 7. Inter-comparison of the quasi-geoid models. a) FFT() minus LSC; b) FFT® minus LSC; ¢) LSMS minus FFT®; f) LSMS minus LSC.

Unit is in metre

is 7cm.

Furthermore, we used EGM2008 as a 'standard’ over the study
area, against which the performance of quasi-geoid models based
on the three different methods are compared. Table 5 shows
that the best agreement between the quasi-geoid models and the
EGM2008 is observed for the LSMS method, showing a standard
deviation of 3 cm. The worst agreement is for the FFT(") method
with a standard deviation of 8 cm while the LSC method gives a
standard deviation of 6 cm. Obviously, this says nothing about
the real accuracy of the models, as EGM2008 also has errors (but
actually performs remarkably well, cf. Table 3).

In order to investigate the spatial variation of the differences
between the quasi-geoid models obtained the by three methods
with and without applying modification of Stokes’ function for the
FTT method are shown in Figs. 7(a)— 7(d). The differences between
quasi-geoid models obtained from the FFT method without the
use of modification (FFT(”) and from the LSC method has a pattern
indicating a slope in the north-south direction (Fig. 7(a)). This may

potentially be due to theinherent periodicity assumptionin the FFT
method, while collocation implicitly assumes zero values outside
the data area. Fig. 7(b)} shows that the differences between
the FFT and the LSC methods increases when a modification
is implemented by the FFT method (FFT(Z)). There is a large
differerence between the FFT?) and the LSMS methods reaching
to 33 cm in a mountainous area (Fig. 1(b) and Fig. 7(c)). Fig. 7(d)
shows the differences between the LSMS and the LSC methods,
indicating large differences also in some flat areas. Maximum
differences between the RCR and the LSMS methods occur in the
mountainous area around 45°N—5°E. As we do not have GPS-
levelling data over this area which is near the Alps, it is not possible
to detect which method is the best here.

On the other hand, it is not clear whether the differences between
the quasi-geoid models are due to data gaps or to problems with
the methods over mountainous regions or both. A potential source
of discrepancy between the FFT and the other two methods is that
the Stokes'’ integration by the FFT method is carried out using the
"
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Figure 8. Comparison of the quasi-geoid models with EGM2008 quasi-geoid heights. a) FFT(") minus EGM2008; b) FFT® minus EGM2008; c)
LSC minus EGM2008; d) LSMS minus EGM2008. Unit is in metre

reduced surface gravity anomalies ignoring the g1 term in Eq. (2).
However, this termis known to be small when terrain-reduced data
are used (Forsberg and Sideris, 1989; Schwarz et al., 1990). Another
issue is the fact that the LSMS method requires a comparatively
dense surface gravity anomaly grid, which is computed from
the observed gravity anomalies using a remove-compute-restore
method for the gridding; see further Section 2.2.2. Here the grid
resolution in question was chosen to approximately 2 km, which is
likely too sparse in the high mountains. Notice that this does not
mean that the LSMS method requires denser gravity observations
than the other two methods.

Furthermore, we compare the quasi-geoid model EGM2008 to
degree 2190 with the quasi-geoid models by the three methods in
Figs. 8(a)— 8(d). The differences between the quasi-geoid models
obtained by the FFT method, when no modification is used,
and EGM2008 are relatively large both in flat and mountainous
areas (Fig. 8(a)). When the FFT method is used with the use of
modification (FFT(Z)), the differences decrease in the flat areas but
still exist over the mountains (Fig. 8(b)). The differences between
—~~
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the LSC derived quasi-geoid heights and the EGM2008 have a
similar pattern with the differences between FFT™ and EGM2008
(Fig. 8(c)). The differences between the LSMS derived quasi-geoid
heights and the EGM2008 quasi-geoid heights are relatively small,
except in the mountainous areas where the differences reach to
20 cm (Fig. 8(d)). However, these differences are mostly of a high
frequency nature, corresponding to the different resolutions of the
two models (0.02°for LSMS and x0.08°for EGM2008).

5. Conclusions

In this study, two methods using the RCR technique (2-D Spherical
FFT and LSC) and the LSMS technique are numerically tested
over Auvergne test region. As a result, all three methods give
comparable results when compared to GPS-levelling data, with
the FFT method giving best results after a 1-parameter fit. The
standard deviations for the differences between the quasi-geoid
models and GPS-levelling data are 3.0cm, 3.5 and 3.4 cm for the
2-D Spherical FFT, LSC and LSMS methods after a 1-parameter fit,
consistent with the accuracies of GPS-levelling (3.2 cm). In case of



using a 4-parameter fit, the LSMS method gives the best agreement

with GPS-levelling with 2.4 cm standard deviation. The reason for
the remarkable improvement of LSMS after using a 4-parameter
fit instead of 1-parameter fit is that the significant north-east to
south-west slope in the residuals of the 1-parameter fit is absorbed
by the 4-parameter fit.

These results provide only marginally better agreement with GPS-
levelling than EGM2008 shows. This illustrates the remarkably high
quality of EGM2008 in well-covered gravity data areas like France.
When the quasi-geoid models are compared with each other,
although they agree well over the more central areas, they differ
up to 33 cmover the mountainous areas near the Alps. Comparison
of quasi-geoid models with EGM2008 quasi-geoid heights suggest
that the LSMS method gives the best agreement with EGM2008
in term of the standard deviation over the mountainous region
near the Alps. It would therefore be useful to extend the present
investigations to the Alps, if gravity and precise GPS-levelling data
could be released from this region as well in order to properly
understand the large differences between the methods which is a
very important future work.
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