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Objective: Our aim was to review empirical stud-
ies of complacency and bias in human interaction with 
automated and decision support systems and provide 
an integrated theoretical model for their explanation. 

Background: Automation-related complacency 
and automation bias have typically been considered 
separately and independently. 

Methods: Studies on complacency and automation 
bias were analyzed with respect to the cognitive pro-
cesses involved. 

Results: Automation complacency occurs under con-
ditions of multiple-task load, when manual tasks compete 
with the automated task for the operator’s attention. 
Automation complacency is found in both naive and 
expert participants and cannot be overcome with sim-
ple practice. Automation bias results in making both omis-
sion and commission errors when decision aids are 
imperfect. Automation bias occurs in both naive and expert 
participants, cannot be prevented by training or instruc-
tions, and can affect decision making in individuals as well as 
in teams. While automation bias has been conceived of as a 
special case of decision bias, our analysis suggests that it 
also depends on attentional processes similar to those 
involved in automation-related complacency. 

Conclusion: Complacency and automation bias repre-
sent different manifestations of overlapping automation-
induced phenomena, with attention playing a central role. 
An integrated model of complacency and automation bias 
shows that they result from the dynamic interaction of per-
sonal, situational, and automation-related characteristics. 

Application: The integrated model and attentional 
synthesis provides a heuristic framework for further 
research on complacency and automation bias and design 
options for mitigating such effects in automated and deci-
sion support systems. 

Keywords: attention, automation-related compla-
cency, automation bias, decision making, human-com-
puter interaction, trust

INTRODUCTION

Human interaction with automated and deci-
sion support systems constitutes an important 
area of inquiry in human factors and ergonomics 
(Bainbridge, 1983; Lee & Seppelt, 2009; Mosier, 
2002; Parasuraman, 2000; R. Parasuraman, 
Sheridan, & Wickens, 2000; Rasmussen, 1986; 
Sheridan, 2002; Wiener & Curry, 1980; Woods, 
1996). Research has shown that automation 
does not simply supplant human activity but 
rather changes it, often in ways unintended and 
unanticipated by the designers of automation; 
moreover, instances of misuse and disuse of 
automation are common (R. Parasuraman & 
Riley, 1997). Thus, the benefits anticipated by 
designers and policy makers when implement-
ing automation—increased efficiency, improved 
safety, enhanced flexibility of operations, lower 
operator workload, and so on—may not always 
be realized and can be offset by human perfor-
mance costs associated with maladaptive use of 
poorly designed or inadequately trained-for 
automation.

In this article, we review research on two 
such human performance costs: automation-
related complacency and automation bias. These 
have typically (although not exclusively) been 
considered in the context of two different para-
digms of human-automation interaction, super-
visory control (Sheridan & Verplank, 1978) and 
decision support, respectively. We discuss the 
cognitive processes associated with automation 
complacency and automation bias and provide a 
synthesis that sees the two phenomena as repre-
senting different manifestations of overlapping 
automation-induced phenomena, with attention 
playing a central role.

AUTOMATION COMPLACENCY

Definitions

The term complacency originated in references 
in the aviation community to accidents or incidents 
in which pilots, air traffic controllers, or other 
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operators purportedly did not conduct sufficient 
checks of system state and assumed “all was 
well” when in fact a dangerous condition was 
developing that led to the accident. The National 
Aeronautics and Space Administration Aviation 
Safety Reporting System (ASRS) includes 
complacency as a coding item for incident 
reports (Billings, Lauber, Funkhouser, Lyman, 
& Huff, 1976). ASRS defines complacency as 
“self-satisfaction that may result in non-
vigilance based on an unjustified assumption of 
satisfactory system state” (Billings et al., 1976, 
p. 23). Wiener (1981) discussed the ASRS defi-
nition as well as several others, including com-
placency defined as “a psychological state 
characterized by a low index of suspicion” (p. 
119). Wiener proposed that empirical research 
was necessary to go beyond these somewhat 
vague definitions so as to gain an understanding 
of the mechanisms of complacency and to make 
the concept useful in enhancing aviation safety.

Currently, there is no consensus on the defi-
nition of complacency. However, there is a core 
set of features among many of the definitions 
that is common both to accident analyses and to 
empirical human performance studies that could 
be used to derive a working definition. The first 
is that human operator monitoring of an auto-
mated system is involved. The second is that the 
frequency of such monitoring is lower than 
some standard or optimal value (see also Moray 
& Inagaki, 2000). The third is that as a result of 
substandard monitoring, there is some directly 
observable effect on system performance. The 
performance consequence is usually that a sys-
tem malfunction, anomalous condition, or out-
right failure is missed (R. Parasuraman, Molloy, 
& Singh, 1993). Technically, the performance 
consequence could also involve not an omission 
error but an extremely delayed reaction. However, 
in many contexts in which there is strong time 
pressure to respond quickly, as in an air traffic 
control (ATC) conflict detection situation (Metzger 
& Parasuraman, 2001), a delayed response would 
be equivalent to a miss.

Accident and Incident Reports

Operator complacency has long been impli-
cated as a major contributing factor in aviation 
accidents (Hurst & Hurst, 1982). Wiener (1981) 

reported that in a survey of 100 highly experi-
enced airline captains, more than half stated that 
complacency was a leading factor in accidents. 
Initially, complacency was used to refer to inad-
equate pilot monitoring in relation to any air-
craft subsystem. With the advent of automation, 
however, first in the aviation industry and later 
in many other domains, the possibility arose of 
automation-related complacency. Consistent with 
this trend, in a more recent analysis of aviation 
accidents involving automated aircraft, Funk 
et al. (1999) also reported that complacency 
was among the top five contributing factors.

Complacency has also been cited as a con-
tributing factor in accidents in domains other 
than aviation. A widely cited example is the 
grounding of the cruise ship Royal Majesty off 
the coast of Nantucket, Massachusetts (Degani, 
2001; R. Parasuraman & Riley, 1997). This ship 
was fitted with an automatic radar plotting aid 
(ARPA) for navigation that was based on GPS 
receiver output. The GPS receiver was connected 
to an antenna mounted in an area where there 
was heavy foot traffic of the ship’s crew. As a 
result, the cable from the antenna frayed, lead-
ing to a loss of the GPS signal. At this point, 
the ARPA system reverted to “dead reckoning” 
mode and did not correct for the prevailing tides 
and winds. Consequently, the ship was gradually 
steered toward a sand bank in shallow waters. 
The National Transportation Safety Board (1997) 
report on the incident cited crew overreliance 
on the ARPA system and complacency associ-
ated with insufficient monitoring of other sources 
of navigational information, such as the Loran 
C radar and visual lookout.

Automation complacency has been similarly 
cited in several other analyses of accidents and 
incidents (Casey, 1998). The dangers of com-
placency have been described in many com-
mentaries and editorial columns, including 
those in leading scientific journals, such as Science 
(e.g., Koshland, 1989). Perhaps as a result of read-
ing such anecdotal reports and opinion pieces 
(which have a tendency to overgeneralize and 
draw very broad conclusions), Dekker and col-
leagues (Dekker & Hollnagel, 2004; Dekker & 
Woods, 2002) proposed that terms such as com-
placency and situation awareness do not have 
scientific credibility but rather are simply “folk 
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models.” R. Parasuraman, Sheridan, and 
Wickens (2008) disputed this view, pointing to 
the growing scientific, empirical literature on 
the characteristics of both constructs.

Accident and incident reports clearly cannot 
be held to high scientific standards, but they pro-
vide a useful starting point for scientific under-
standing of any phenomenon. Describing the 
characteristics of complacency through empiri-
cal research would therefore appear to be an 
important goal. In the three decades since the 
early anecdotal reports and accident analyses 
mentioning complacency, a number of investiga-
tors have followed Wiener’s (1981) call for such 
empirical research.

Early Empirical Evidence for  
Complacency Effects in Monitoring 
Automated Systems

Thackray and Touchstone (1989) conducted 
an early yet ultimately unsuccessful attempt to 
obtain evidence of complacency. They had par-
ticipants perform a simple ATC task requiring 
detection of aircraft-to-aircraft conflicts (e.g., 
those within 5 nautical miles of each other) with 
or without a simulated automation aid that indi-
cated that a conflict would occur. The automa-
tion failed twice, once early and once late during 
a 2-hr session. Although observers were some-
what slower to respond to the first failure when 
using the automation, this was not the case for 
the later failure. Moreover, participants were as 
accurate at monitoring for conflicts with auto-
mation as they were when performing the task 
manually, if not more so.

Thackray and Touchstone (1989) indicated 
that their failure to obtain reliable evidence of 
complacency might be related to their use of a 
relatively short test session, even though their 
testing period was 2 hr long and their ATC task 
was so simple and monotonous that many par-
ticipants experienced considerable boredom 
(Thackray, 1981). However, subsequent studies 
in which complacency effects have been found 
in shorter periods and with more complex tasks 
indicate that the short test duration was unlikely 
to have been the major reason for their failure. 
A more likely factor is the extremely simple 
nature of the assignment given to the partici-
pants in their study, who, unlike controllers 

conducting real ATC operations, did not have 
any competing tasks, only conflict detection.

R. Parasuraman et al. (1993) provided the 
first empirical evidence for automation compla-
cency and for the contributing role of high task 
load. They had participants perform three con-
current tasks from the Multiple Task Battery 
(MATB): a two-dimensional compensatory track-
ing and an engine fuel management task, both 
of which had to be carried out manually, and a 
third task involving engine monitoring that 
required participants to detect abnormal read-
ings on one of four gauges; this task was sup-
ported by an automated system that was not 
perfectly reliable. In different conditions, the 
automation had either high (88%) or low 
(52%) reliability in detecting engine malfunc-
tions. Complacency was operationally defined 
as the operator’s not detecting or being slow to 
detect failures of the automation to detect engine 
malfunctions. 

The variability of automation performance 
over time was also manipulated on the basis of 
Langer’s (1989) concept of “premature cogni-
tive commitment,” defined as an attitude that 
develops when a person first encounters a 
device in a particular context and that is then 
reinforced when the device is reencountered in 
the same way. Langer (1982) proposed that 
repeated exposure to the same experience 
leads people to engage in “automated” or 
“mindless” behavior. R. Parasuraman and col-
leagues (1993) therefore reasoned that auto-
mation that is unchanging in its reliability is 
more likely to induce complacency than is 
automation that varies. In this case, partici-
pants will be more likely to develop a prema-
ture cognitive commitment regarding the 
nature of the automation and its efficiency. On 
the other hand, participants encountering 
inconsistent automation reliability should have 
a more open attitude concerning the efficiency 
of the automation and hence should be less 
likely to be complacent. Finally, to examine 
the effects of multiple-task load, Parasuraman 
et al. also conducted a second experiment in 
which participants had to perform only the 
engine-monitoring task with automation sup-
port under either the constant-reliability or the 
variable-reliability condition.
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The results showed that complacency effects 
were linked both to the consistency of automa-
tion reliability and to task load. The mean detec-
tion rate of automation failures was markedly 
higher for the variable-reliability condition (82%) 
than for the constant-reliability condition (33%) 
(see Figure 1). The magnitude of the effect—a 
149% difference in detection rate—is dramatic, 
considering that under single-task conditions, 
detection of engine malfunctions was quite easy, 
averaging about 97%.

R. Parasuraman et al. (1993) also found that 
detection of automation failures was significantly 
poorer in the multitask condition than in the 
single-task condition. When participants had 
simply to “back up” the automation routine with-
out other duties, monitoring was efficient and 
near perfect in accuracy (~100%).

These results indicate that automation-
ind uced complacency is more easily detect-
able in a multitask environment when operators 
are responsible for many functions and their 
attention is focused on their manual tasks. 
Impor tantly, the findings suggest that compla-
cency is not a passive state that the operator 
falls into (as the usage in everyday parlance 
would suggest). Rather, automation complacency 
represents an active reallocation of attention 

away from the automation to other manual tasks 
in cases of high workload.

Factors Influencing Automation 
Complacency

There have been a number of additional studies 
examining the characteristics of automation 
complacency following the original study by 
R. Parasuraman et al. (1993). One question is 
whether the spatial location of the automated 
task is an important factor in automation com-
placency. In the Parasuraman et al. study, the 
automated task was always presented in the 
periphery, away from the primary manual tasks 
that were centrally displayed. It is possible that 
the peripheral location led participants to 
neglect the automated task. Singh, Molloy, and 
Parasuraman (1997) accordingly examined whether 
centrally locating the automated engine-moni-
toring task would boost performance and reduce 
or eliminate the complacency effect. They had 
participants perform the same three tasks and 
the same conditions as in Parasuraman et al., 
with the single change that the engine-monitor-
ing task was moved to the center of the display, 
with the tracking and fuel management tasks 
located below it. Singh et al. found that monitor-
ing for automation failure was inefficient when 
automation reliability was constant but not when 
it varied over time, replicating Parasuraman 
et al. Thus, the automation complacency effect 
was not prevented by centrally locating the auto-
mated task.

Automation reliability. In the automation 
complacency studies described thus far, the 
automation failure rate was relatively high, for 
example, 12% in the “high” reliability condi-
tion of R. Parasuraman et al. (1993). Such high 
(and even higher) values of failure rate were 
needed for the study so that a sufficient number 
of data points could be generated for estimating 
the detection performance of individual partici-
pants on the engine-monitoring task. But an 
obvious drawback is that such high failure rates 
are unrepresentative of any real automated sys-
tem or at least any system that human operators 
would use.

To address this criticism, Molloy and 
Parasuraman (1996) conducted a study in which 
the automation failed on only a single occasion 
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Figure 1. Detection of automation failures under 
constant-reliability and variable-reliability condi-
tions. Adapted from “Performance Consequences 
of Automation-Induced ‘Complacency,’” by  
R. Parasuraman, R. Molloy, and I. L. Singh, 1993, 
International Journal of Aviation Psychology, 3, 
p. 10. Copyright 1993 by Taylor and Francis. Adapted 
with permission.
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during a test session. Participants performed the 
same MATB simulation as in the R. Parasuraman 
et al. (1993) study. Two groups of participants 
performed the MATB under either a multitask 
or a single-task condition, and a third group per-
formed a simple line discrimination task; within 
each group, participants performed two 30-min 
sessions separated by a rest break. For the two 
groups performing the MATB, the automation 
failed only once in each session, either early 
(first 10 min) or late (last 10 min); for the group 
given the simple vigilance task, only one signal 
was presented, either early or late in the 30-min 
session.

The authors found that in the single-task 
MATB condition, most participants detected the 
automation failure, whether it occurred early or 
late. Under multitask conditions, however, only 
about half the participants detected the automa-
tion failure, and an even smaller proportion 
detected the failure if it occurred late than if it 
occurred early (see Figure 2). Bailey and Scerbo 
(2007) replicated this finding using a somewhat 
different multitask flight simulation based on 
the MATB.

De Waard, van der Hulst, Hoedemaeker, and 
Brookhuis (1999) provided additional confir-
matory evidence in a study of automation in 
driving. They had participants in a simulator drive 
a vehicle fitted for operation in an automatic 
highway system (AHS), in which steering and 
lateral control were automated but could be 
overridden by depressing the brake. Toward the 
end of the scenario and on a single occasion, a 
vehicle merged suddenly into the same lane in 
front of the participant’s AHS vehicle. The AHS 
failed to detect the intrusion (automation fail-
ure). De Waard and colleagues found that half 
of the drivers did not detect the failure, depress 
the brake, and retake manual control, and 14% 
did not respond quickly enough to avoid a 
collision.

These findings provide additional evidence 
for the view that automation complacency 
occurs for highly reliable systems in which 
automated control fails on only a single occa-
sion. One could argue that even the single fail-
ure during a 30-min session is not representative 
of real systems, in which even lower failure 
rates might be seen. For example, in a review of 

various industrial monitoring and inspection jobs, 
Craig (1984) estimated that a critical signal might 
occur about once every 2 weeks. However, given 
the impracticality of empirically testing partici-
pants in a laboratory setting with such low signal 
rates, and given that detection of an unexpected 
event typically decreases with reductions in sig-
nal probability (Davies & Parasuraman, 1982), 
these findings indicate that monitoring for auto-
mation failures is likely to be even poorer for 
very low failure rates representative of real but 
imperfect automated systems.

These considerations also suggest that 
decreases in automation reliability should reduce 
automation complacency, that is, increase the 
det ection rate of automation failures. In the 
R. Parasuraman et al. (1993) study, two auto-
mation reliability levels were compared, low 
and high, and although participants detected 
more automation failures at the low reliability, 
the difference was not statistically significant, 
possibly because of low power.  In a replication 
study, however, Bagheri and Jamieson (2004) 
did find that participants detected significantly 
more automation failures at low than at high 
automation reliability. Moreover, they confirmed 
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Parasuraman et al.’s finding that detection per-
formance was better under variable-reliability 
than under constant-reliability automation. Finally, 
May, Molloy, and Parasuraman (1993) varied 
automation reliability across a range of values 
under the same multitask condition used in 
Parasuraman et al. They found that the detec-
tion rate of automation failures varied inversely 
with automation reliability, but no evidence was 
found for a lower limit of automation reliability 
below which automation complacency did not 
occur. Rather, detection of automation failures 
was still worse than manual performance even 
at a low level of automation reliability.

Complacency represents a cost that can off-
set the benefits that automation can provide. 
One would presume that when the reliability 
level of an automated system falls below some 
limit, that there would be neither benefits nor 
costs associated with automation. Wickens and 
Dixon (2007) proposed that this cutoff value is 
approximately 70% (with a standard error of 
±14%), on the basis of studies examining the 
beneficial effects of automation support. If this 
objective standard was followed, then observers 
should not rely on imperfect automation whose 
reliability falls below this value, but Wickens 
and Dixon reported that some continue to do so. 
Congruent with this finding, May et al. (1993) 
also found that participants continued to show 
complacency effects even at low automation 
reliability. Moreover, other researchers have found 
that even automation with reliabilities lower 
than the 70% cutoff value can support human 
operators who also have access to the “raw” 
information sources, which they can combine 
with the automation output to improve overall 
performance (de Visser & Parasuraman, 2007; 
St. John, Smallman, Manes, Feher, & Morrison, 
2005).

Automation reliance appears to be strongly 
context dependent, with the 70% threshold 
being important primarily under high workload 
(Wickens & Dixon, 2007). Multiple-task condi-
tions are also where the automation compla-
cency effect is strongest. Whether there is a fixed 
lower bound of automation reliability, below 
which neither benefits nor costs accrue, and the 
influence of contextual factors on such a thresh-
old are issues that need further investigation.

First-failure effect. In addition to the overall 
automation failure rate, the temporal sequence 
of failures and the time between failures may be 
important factors to consider as well. If compla-
cency reflects an operator’s initial attitude toward 
high-reliability automation based on high trust, 
then a failure to monitor is perhaps to be 
expected the first time the automation fails. Lee 
and Moray (1992, 1994) showed that the reduc-
tion in operator trust following an automation 
failure was followed by a recovery in trust but 
at a slow rate. If so, then one would expect the 
complacency effect to be high for the first fail-
ure but to dissipate thereafter, a phenomenon 
Merlo, Wickens, and Yeh (2000) referred to as 
the first-failure effect. Some evidence for the 
effect was reported in a recent study by Rovira, 
McGarry, and Parasuraman (2007) in which 
participants had to make simulated battlefield 
engagement decisions under time pressure with 
the aid of imperfect automation. Performance 
declined the first time automation failed but 
improved on subsequent failures.

These findings suggest that complacency is 
associated with a cognitive orientation toward 
very-high-reliability automation prior to the 
first time it has failed in the user’s experience 
(R. Parasuraman & Wickens, 2008). Subsequent 
exposure to automation failures may allow for 
better calibration to the true reliability, so that 
detection performance improves. However, 
whereas Rovira et al. (2007) did find some cor-
roborative evidence, other studies using differ-
ent tasks have not found consistent evidence for 
the first-failure effect (Wickens, Gempler, & 
Morphew, 2000). 

Expertise and automation realism. Although 
the evidence for the first-failure effect is equiv-
ocal, the phenomenon raises the issue of whether 
complacency-like effects stem from insufficient 
experience with the automation or from inade-
quate practice in performing the automated task. 
With respect to the first issue, it is noteworthy 
that the complacency studies described thus far 
all involved artificial types of automation not 
found in real systems. Furthermore, college 
students were used as participants. What of 
exp erienced, skilled workers who are tested with 
automation more closely resembling real auto-
mated systems? Do they exhibit automation 
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complacency? Three studies have provided a 
positive answer to this question.

First, using the MATB simulation, Singh, 
Molloy, Mouloua, Deaton, and Parasuraman 
(1998) compared the performance of pilots with 
an average of approximately 440 hr of flight 
experience with that of nonpilots in the same 
paradigm developed by R. Parasuraman et al. 
(1993). Clear complacency effects were obtained 
for both groups, although the pilots detected more 
automation failures than did the nonpilots.

Second, Galster and Parasuraman (2001) tested 
general aviation pilots with several hundred 
hours of flight experience on a multitask flight 
simulation involving Instrument Flight Rated 
flight using an actual cockpit automation sys-
tem, the Engine Indicator and Crew Alerting 
System (EICAS). Clear evidence of a compla-
cency effect was found, with pilots detecting 
fewer engine malfunctions when using the EICAS 
than when performing this task manually.

In a third study, by Metzger and Parasuraman 
(2005), experienced air traffic controllers were 
tested on a high-fidelity simulation of a future 
ATC (Free Flight) scenario requiring detection 
of conflicts among “self-separating” aircraft. 
Controllers were supported by a “conflict probe” 
automation that pointed to a potential conflict 
several minutes before its occurrence. The auto-
mation failed once toward the end of the sce-
nario. The authors found that significantly 
fewer controllers detected the conflict when the 
conflict probe failed than when the same con-
flict was handled manually. This result was con-
sistent with an earlier finding from this group 
showing that conflict detection performance was 
better when controllers were actively involved 
in conflict monitoring and conflict resolution 
(“active control”) than when they were asked to 
be passive monitors in a simulated Free Flight 
scenario involving pilot self-separation (Galster, 
Duley, Masalonis, & Parasuraman, 2001; Metzger 
& Parasuraman, 2001).

Training. Notwithstanding these findings with 
expert pilots and controllers, another aspect of 
experience is familiarity with the simulation, 
automation, and task setting per se. Could the 
complacency effect simply reflect insufficient 
practice at performing the automated task in 
conjunction with other manual tasks? Singh, 

Sharma, and Parasuraman (2001) found that the 
automation complacency effect obtained in the 
standard paradigm described by R. Parasuraman 
et al. (1993) was not reduced by up to 60 min of 
training.

Although extended practice does not eliminate 
automation complacency, other training proce-
dures may provide some benefit. In particular, 
given that complacency is primarily found in 
multitasking environments and represents atten-
tion allocation away from the automated task, 
training in attention strategies might mitigate 
complacency.

One such training procedure is the variable-
priority method proposed by Gopher (1996; 
Gopher, Weil, & Siegel, 1989). For example, in 
a dual-task setting, observers are trained to 
devote greater priority to one task (say, 80%) 
and less to the other (20%) in one block of train-
ing trials, followed by the reverse priority in a 
subsequent block. Compared with fixed, equal-
priority training (50% and 50%), variable-priority 
training results in faster acquisition of dual-
task skills. Accordingly, Metzger, Duley, Abbas, 
and Parasuraman (2000) trained participants in 
the three subtasks of the MATB using either 
the variable- or the fixed-priority method and 
examined both overall performance and detec-
tion of failures in the automated task (compla-
cency). Variable-priority training led to better 
multitasking performance, and a trend for a 
reduction in the automation complacency effect 
was observed. An additional training method 
that might reduce complacency includes experi-
ence of automation failures (Bahner, Huper, & 
Manzey, 2008). We consider this method in a 
later section of this article, where studies of 
automation bias are discussed.

Automation Complacency, Attention, 
and Trust

The studies discussed thus far have shown 
that automation complacency—operationally 
defined as poorer detection of system malfunc-
tions under automation control compared with 
manual control—is typically found under con-
ditions of multiple-task load, when manual tasks 
compete with the automated task for the opera-
tor’s attention. The operator’s attention alloca-
tion strategy appears to favor his or her manual 
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tasks as opposed to the automated task. This 
strategy may itself stem from an initial orienta-
tion of trust in the automation, which is then 
reinforced when the automation performs at the 
same, constant level of reliability.

The finding that variable-reliability automa-
tion, fluctuating between high and low and back 
again, is associated with the elimination of 
complacency is certainly compatible with the 
notion that reduced operator monitoring of the 
automation could be linked to trust. Thus, as 
Moray (2003; Moray & Inagaki, 2000) pointed 
out, an attention strategy devoted primarily to 
manual tasks and only occasionally to the auto-
mated task can be considered rational (see also 
Sheridan, 2002). Moray (2003; Moray & 
Inagaki, 2000) also suggested that complacency 
could be inferred only if the operator’s rate of 
sampling of the automated task was below that 
of an optimal or normative observer. Moray’s 
views are considered further later in this article, 
but for now, we simply note that these consider-
ations reinforce a close link between automa-
tion complacency, attention, and trust. Figure 3 
shows a schematic of these links. The operator 
uses an attention allocation strategy to sample 
his or her manual tasks, with attention to the 
automated task being driven in part by trust.

The original R. Parasuraman et al. (1993) study 
also discussed the finding of automated com-
placency under constant-reliability conditions in 
terms of attentional and trust factors. However, 
that study did not obtain independent measures 
either of attention or of trust. Subsequent stud-
ies have used eye movement recordings to 
examine attention allocation under conditions 
of manual and automation control. In particular, 
Metzger and Parasuraman (2005) used different 
measures of eye movements to examine the 
attentional theory of automation complacency.

In this study, experienced air traffic control-
lers were required to detect aircraft-to-aircraft 
conflicts either manually or with the aid of auto-
mation (a “look-ahead” conflict probe). Toward 
the end of the scenario, the automation failed on 
a single occasion. A greater proportion of con-
trollers missed detecting the conflict with the 
automation than when, in a separate session, 
they handled the same conflict (rotated in sector 
geometry to reduce familiarity effects) without 
the help of automation. Among controllers who 

detected the conflict in both the automation and 
the manual conditions, there were no differences 
in the number of fixations of the primary radar 
display where the conflicting aircraft were shown. 
Among controllers who missed the conflict, 
however, there were significantly fewer fixa-
tions of the radar display under automation sup-
port than under manual control. This finding 
provides strong evidence for a link between the 
automation complacency effect and reduced 
visual attention to the primary information sources 
feeding automation which must be monitored to 
detect an abnormal event (for related eye move-
ment evidence on complacency, see Baghieri & 
Jamieson, 2004, and Wickens, Dixon, Goh, & 
Hammer, 2005).

Although these studies point to a role for 
attention allocation in the automation compla-
cency effect, their interpretation depends on the 
assumption of a close link between eye move-
ments and attention. There is considerable evi-
dence for a link between the two (Corbetta, 
1998; Shepherd, Findlay, & Hockey, 1986), and 
studies of covert shifts of attention show that 
such attention shifts typically precede an eye 
movement (Hoffman & Subramaniam, 1995). 
However, attention and eye movements can 
also be dissociated, and the phenomena of “inat-
tentional blindness” or “change blindness” 
(Mack & Rock, 1998; Simons & Rensink, 2005) 
indicates that relatively salient items of infor-
mation in the environment can be missed even 
if they are fixated (R. Parasuraman, Cosenzo, & 
de Visser, 2009; Thomas & Wickens, 2006). 
Thus, although an eye fixation generally indi-
cates that a location was attended, it need not 
always do so, because attention may have moved 
to another location—the so-called looking-but-
not-seeing phenomenon.

Task A

Task B

Task C

Task D
(Automated)

Attention
Allocation
Strategy

Trust

Human
OperatorSystem

Indicators

Figure 3. Attention allocation and trust in manual and 
automated tasks.
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Duley, Westerman, Molloy, and Parasuraman 
(1997) reexamined the automation complacency 
effect to see whether it could be reduced or 
eliminated by forcing eye fixations on the auto-
mated task. They did this by superimposing the 
(automated) engine-monitoring task on the 
manual tracking task in the MATB simulation, 
carefully interleaving the display elements of 
each task so that they did not mask each other. 
They chose the tracking task for superimposition 
because it was a high-bandwidth task (cf. Moray 
& Inagaki, 2000) that needed to be frequently 
visually sampled for successful performance. 
Thus, operators would repeatedly have to fixate 
the tracking task, and by doing so, the auto-
mated task would also fall within foveal vision 
at the same time. Surprisingly, Duley et al. 
found that the standard complacency effect of 
R. Parasuraman et al. (1993) was again found: 
Participants were poorer in detecting engine 
malfunctions under automation than when they 
did the task manually. Tracking performance was 
equally good under both conditions. Thus, the 
automation complacency effect could not be 
attributed to insufficient sampling of the auto-
mated task. These findings suggest that atten-
tion allocation away from the automated task 
associated with complacency may include not 
only fixation failures but attention failures as well.

In addition to visual attention, automation 
complacency has been linked to an initial atti-
tude of high trust toward the automation. 
Trust was not directly measured in the original 
R. Parasuraman et al. (1993) study. However, 
subjective measures of trust were obtained in 
two subsequent studies, by Baghieri and 
Jamieson (2004) and by Bailey and Scerbo 
(2007). Consistent with Parasuraman et al., 
Baghieri and Jamieson found that constant-reli-
ability automation led to poorer detection of 
automation failures than did variable-reliability 
automation, but this effect was not associated 
with higher subjective trust. However, in two 
experiments conducted by Bailey and Scerbo 
using the single-failure paradigm of Molloy and 
Parasuraman (2006), an inverse relationship 
was observed between subjective trust (mea-
sured with a 12-item questionnaire) and moni-
toring performance, although the relationship 
emerged only when data from the two separate 
experiments were combined. In a review of 

trust and automation studies, Lee and See 
(2004) did not find convincing links between 
poor automation monitoring and high trust in 
automation, and currently, the Bailey and 
Scerbo study provides the only, somewhat ten-
tative, evidence.

One reason for the weak evidence for a rela-
tionship between complacency and trust is the 
potential discrepancy between subjective and 
objective measures of trust. Overt behavioral 
indicators of trust, as revealed, for example, in 
verification activities (St. John et al., 2005), 
may provide stronger evidence of a closer link. 
We consider this issue further later, when we 
discuss a study by Bahner et al. (2008).

Individual Differences 

There are considerable individual differences 
in the performance effects associated with auto-
mation complacency. R. Parasuraman et al. 
(1993) found that in the experimental group that 
exhibited this effect, the mean detection rate of 
automation failures was quite low, 33%. But 
there was considerable variability around this 
mean, and as many as half of the participants in 
the group did not detect any malfunctions (0% 
detection) on one of the blocks of the test ses-
sion. Clearly, some participants exhibit the 
effect to a greater extent than others. What is the 
source of these individual differences?

In an initial examination of individual differ-
ences, Singh, Molloy, and Parasuraman (1993a) 
distinguished between complacency potential 
and behavior. Although an attitude of trust toward 
automation can foster overreliance, this may 
not in itself lead to complacent behavior but 
may indicate only a potential for complacency. 
Complacent behavior—as reflected in poor 
monitoring of automation—may occur only 
when complacency potential coexists with other 
conditions, such as high task load. Individuals 
may differ both in the potential they “bring” to 
a task setting as well as in their response to that 
setting.

Singh et al. (1993a) developed a 20-item 
scale, the Complacency Potential Rating Scale 
(CPRS), with items covering attitudes toward 
commonly encountered automated devices (such 
as automatic teller machines). Factor analysis 
of questionnaire responses in a psychology 
college population and a different sample of 
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engineering students (R. Parasuraman, Singh, 
Molloy, & Parasuraman, 1992) revealed factors 
with good internal consistency and test-retest 
reliability, suggesting that the CPRS might be 
useful in validation studies examining individ-
ual differences in complacent behavior.

Singh, Molloy, and Parasuraman (1993b) rep -
orted one such study. They administered the CPRS 
to two groups of participants who performed 
the MATB simulation in the same conditions of 
the R. Parasuraman et al. (1993) study. There 
was some evidence that complacent behavior—
poor detection of automation failures—was asso-
ciated (r = –.42) with higher complacency 
potential as measured by the CPRS. However, 
this correlation emerged only when the partici-
pants were subdivided by a median split of 
CPRS scores into low- and high-compla-
cency-potential groups, with the association 
being found only for high-complacency-poten-
tial participants. Singh et al. suggested that 
there is perhaps a threshold of complacency 
potential, with a link between general attitudes 
of reliance and trust toward automation being 
reflected in complacent performance only in indi-
viduals who exhibit such attitudes to a strong 
degree. Very similar findings were reported in a 
replication study by Prinzel, DeVries, Freeman, 
and Mikulka (2001), who found that individuals 
scoring high on the CPRS were particularly 
poor in monitoring automation under constant- 
than under variable-reliability automation.

Singh et al. (1993a) proposed that compla-
cency potential represents an attitude toward 
automation rather than an enduring trait. Con-
sistent with this view, Singh et al. (1993b) found 
no relationship between the automation com-
placency effect and the personality trait of 
extraversion-introversion. Prinzel et al. (2001) 
also found no association with measures of 
boredom proneness or absentmindedness, 
although in a subsequent study, they did find 
some evidence for a negative correlation 
between automation complacency and self-
efficacy (Prinzel, 2002). In general, however, 
strong associations between personality or 
related indices of personal variability and auto-
mation complacency have not been found. 
However, the currently available database is 
very small and therefore does not warrant any 
decisive conclusions. 

With respect to other sources of individual or 
group differences, there do not appear to be any 
gender differences in complacency. However, 
adult age differences in automation complacency 
have been reported, with older adults exhibiting 
greater automation-related complacency but only 
under very high workload conditions (Hardy, 
Mouloua, Dwivedi, & Parasuraman, 1995; 
Vincenzi, Muldoon, Mouloua, Parasuraman, & 
Molloy, 1996).

Summary

The studies discussed thus far have shown 
that automation complacency—operationally 
defined as poorer detection of system malfunc-
tions under automation compared with under 
manual control—is typically found under con-
ditions of multiple-task load, when manual tasks 
compete with the automated task for the opera-
tor’s attention. Several factors modulate this 
effect: It is largely eliminated when automation 
reliability is varied over time as opposed to 
when reliability remains constant. Automation 
complacency is also reduced when the automa-
tion failure rate is increased, but the issue of 
whether there is a threshold reliability level 
below which automation complacency does not 
occur remains unresolved. Conversely, compla-
cency occurs for highly reliable (yet imperfect) 
automation and even when the automation 
fails on only a single occasion in the operator’s 
experience.

Finally, experience and practice do not app-
ear to mitigate automation complacency: Skilled 
pilots and controllers exhibit the effect, and 
additional task practice in naive operators does 
not eliminate complacency. It is possible that 
specific experience in automation failures may 
reduce the extent of the effect. Automation 
complacency can be understood in terms of an 
attention allocation strategy whereby the opera-
tor’s manual tasks are attended to at the expense 
of the automated task, a strategy that may be 
driven by initial high trust in the automation. 

AUTOMATION BIAS

Automated Decision Aids

Automated decision aids are devices that 
support human decision making in complex 
environments. A dichotomous alarm system 
that alerts human operators to a potential hazard 
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represents the most basic example (Wiegmann, 
2002). More complex examples include the 
Traffic Conflict and Alert System (TCAS) and 
the Ground Proximity Warning System (GPWS), 
which are installed in many commercial air-
craft. Other examples include navigation aids in 
cars, fault diagnosis and management systems 
in process control, and expert systems for phy-
sicians or computer-based aids for surgeons in 
the medical domain.

Such systems are meant to support human 
cognitive processes of information analysis 
and/or response selection by providing auto-
matically generated cues to help the human user 
correctly assess a given situation or system state 
and to respond appropriately. Two different 
functions of decision aids can be distinguished: 
alerts and recommendations. The alert function, 
which is the main feature of simple alarm sys-
tems and is embedded in more complex deci-
sion aids, makes the user aware of a situational 
change that might require action. In a car navi-
gation aid, for example, this function is acti-
vated whenever a turn must be made. The 
recommendation function involves advice on 
choice and action. For example, navigation aids 
provide specific recommendations of where to 
drive; cockpit warning systems, such as TCAS 
or GPWS, provide pilots with specific com-
mands (e.g., “Pull up! Pull up!”) to avoid colli-
sion; and medical expert systems provide 
recommendations about appropriate treatment 
of patients and choice of drug doses.

Definition and Characteristics of 
Automation Bias

Automated decision aids are meant to enhance 
human decision-making efficiency. This is of 
particular value in areas where incorrect deci-
sions have high costs in terms of either economic 
consequences (e.g., in the area of manufactur-
ing) or safety outcomes (e.g., aviation, medi-
cine, process control). If the benefit of a decision 
aid is to be realized, it needs to be used appro-
priately. Quite often, however, decision aids are 
misused, for two main reasons. First, the auto-
matically generated cues are very salient and 
draw the user’s attention. Second, users have a 
tendency to ascribe greater power and authority 
to automated aids than to other sources of advice. 

Consequently, Mosier and Skitka (1996) defined 
automation bias as resulting from people’s 
using the outcome of the decision aid “as a heu-
ristic replacement for vigilant information seek-
ing and processing” (p. 205). Such a definition 
treats automation bias as similar to other biases 
and heuristics in human decision making (e.g., 
confirmation bias), with the qualification that 
the bias stems specifically from interaction with 
an automated system.

Automation bias eventually can lead to deci-
sions that are not based on a thorough analysis 
of all available information but that are strongly 
biased by the automatically generated advice. 
Whereas automation bias is inconsequential 
when the recommendations are correct, it can 
compromise performance considerably in case 
of automation failures, that is, if the aid does not 
alert the user to become active or if the aid pro-
vides a false recommendation or directive. An 
error of omission, whereby the user does not 
respond to a critical situation, is related to the 
alert function. An example from everyday expe-
rience is a driver who misses the correct exit 
from a highway because the navigation aid 
failed to notify the driver. The second type of 
error is a commission error, which is related to 
the specific recommendations or directives pro-
vided by an aid. In this case, users follow the 
advice of the aid even though it is incorrect. An 
example is a driver who falsely enters a one-way 
street from the wrong side because the naviga-
tion aid (which may not have had the one-way 
information in its database) tells the driver to do 
so. Another example is following the advice of 
an expert flight planner although its recom-
mendations are wrong or less than optimal for 
a particular situation (e.g., Layton, Smith, & 
McCoy, 1994).

Three main factors have been assumed to 
contribute to the occurrence of automation 
bias (Dzindolet, Beck, Pierce, & Dawe, 2001; 
Mosier & Skitka, 1996). One is the tendency of 
humans to choose the road of least cognitive 
effort in decision making, the so-called cogni-
tive-miser hypothesis (Wickens & Hollands, 
2000). Instead of basing complex decisions on a 
comprehensive analysis of available informa-
tion, humans often use simpler heuristics and 
decision rules (Gigerenzer & Todd, 1999; 
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Kahneman, Slovic, & Tversky, 1982). Well-
known examples of this tendency include the 
heuristics of representativeness and availability 
(Tversky & Kahneman, 1974). It has been argued 
that recommendations and directives of automated 
aids might serve as a strong decision-making heu-
ristic used by the human user as a replacement for 
more effortful processes of information analysis 
and evaluation (Mosier & Skitka, 1996).

A second factor is the perceived trust of 
humans in automated aids as powerful agents 
with superior analysis capability (Lee & See, 
2004). As a consequence, users might tend to 
overestimate the performance of automated aids. 
More specifically, they may ascribe to the aid 
greater performance and authority than to other 
humans or themselves. Some evidence for this 
effect was provided by Dzindolet, Pierce, Beck, 
and Dawe (2002). In this study, participants had 
to predict the performance of an automated aid 
compared with the expected performance of 
another human supporting them in a decision-
making task. It turned out that the majority of 
participants initially expected the automated aid 
to perform considerably better than a human aid.

A third contributing factor to automation bias 
is the phenomenon of diffusion of responsibil-
ity. Sharing monitoring and decision-making tasks 
with an automated aid may lead to the same 
psychological effects that occur when humans 
share tasks with other humans, whereby “social 
loafing” can occur—reflected in the tendency 
of humans to reduce their own effort when 
working redundantly within a group than when 
they work individually on a given task (Karau 
& Williams, 1993). Similar effects occur when 
two operators share the responsibility for a 
monitoring task with automation (Domeinski, 
Wagner, Schoebel, & Manzey, 2007). To the 
extent that human users perceive an automated 
aid as another team member, they may perceive 
themselves as less responsible for the outcome 
and, as a consequence, reduce their own effort 
in monitoring and analyzing other available 
information.

Evidence for Automation Bias

Aviation studies. Several studies examining 
pilot interaction with expert systems or with 
advanced cockpit automation have provided 
empirical evidence for automation bias (Layton 

et al., 1994; McGuirl & Sarter, 2006; Mosier, 
Palmer & Degani, 1992; Mosier, Skitka, Heers, 
& Burdick, 1998; Sarter & Schroeder, 2001). 
Layton et al. (1994) compared the impact of 
electronic flight planning tools on the quality of 
the en route flight planning decisions of pilots. 
The aids differed in their level of automation 
(LOA): The low LOA left most of the planning 
decisions to the pilots and provided only an 
evaluation of different plans, whereas the high 
LOA specified and recommended a plan. Pilots 
working with the high LOA aid spent less time 
and effort in generating and evaluating alterna-
tive plans than the group working with the low-
LOA aid. This result is consistent with the 
cognitive-miser hypothesis of automation bias. 
In addition, a majority of these pilots also 
tended to accept the plan provided by the auto-
mation in cases in which the plan for a number 
of reasons actually represented a suboptimal 
solution.

Mosier et al. (1992) studied pilot decision 
making in simulated engine fire situations, in 
particular when a decision aid provided wrong 
advice. An automated electronic checklist was 
implemented that recommended that the pilot 
shut down the wrong engine (i.e., the one not 
affected by fire). Mosier and colleagues found 
that 75% of pilots followed the wrong recom-
mendation and neglected to check relevant 
information available from other indicators. In 
contrast, only 25% of pilots using a traditional 
paper checklist committed the same type of 
commission error.

In another study, Mosier et al. (1998) had 
experienced commercial pilots perform a sim-
ulated flight in a trainer equipped with adv-
anced cockpit automation systems (e.g., Flight 
Management System, EICAS). During the sim-
ulated flight, various automation failures 
occurred; each provided opportunities to com-
mit either omission or commission errors. 
Examples of the first kind included an altitude 
clearance that did not get loaded correctly, a 
heading change that was not executed properly 
by the flight system, and a frequency change 
misload. In addition, one opportunity for a com-
mission error was presented in the form of a 
falsely released engine fire warning that occurred 
without being supported by any other readings 
of engine parameters or indications available 
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from relevant cockpit displays, gauges, and 
indicators. Although all of these automation 
failures were, in principle, easily detectable by 
monitoring the relevant information available 
from different cockpit displays (e.g., the pri-
mary flight display,), the omission error rate 
was considerable and reached 55%.

The results for the commission error event 
were even more dramatic: All the pilots decided 
to shut down the engine in response to the false 
EICAS alert. This action corresponds to a 100% 
commission error rate. This result was in con-
trast to the indication by the same pilots in a 
debriefing interview that an EICAS message 
alone would not be sufficient to shut down an 
engine completely and that it would be safer 
under these circumstances to just reduce the 
power to idle. Clearly, the automatically gener-
ated warning must have led the pilots to either 
ignore (or discount) the contradicting informa-
tion available from other displays and engine 
indicators or to believe that it would be in line 
with the warning, as in a confirmation bias 
effect. The debriefing interview with the par-
ticipants provided confirmatory evidence for 
the latter explanation: 67% of the pilots reported 
that they had seen at least one more indication 
supporting the fire warning from the EICAS 
(which in fact was absent), an effect termed 
“phantom memory” by Mosier et al. (1998).

Additional evidence for automation bias was 
provided in a laboratory experiment comparing 
the performance of nonpilots in a low-fidelity 
flight simulation task with and without auto-
mation support, the Workload/Performance 
Simulation (W/PANES; Skitka, Mosier & 
Burdick, 1999). Participants had to perform 
three tasks simultaneously, including a compen-
satory tracking task, a waypoint task, and a 
gauge-monitoring task. Both of these latter 
tasks had to be performed either manually or 
with the support of an automated aid. During 
the experiment, automation failures occurred, 
six in which the automation failed to prompt the 
participants of a critical event and another six in 
which it gave a wrong directive. Only 59% of 
the former were correctly identified and responded 
to by the participants, which corresponds to a 
41% omission error rate. In contrast, almost 
97% of participants working without automa-
tion detected them correctly.

A similar result emerged for commission 
errors. In cases in which the automated aid pro-
vided a wrong recommendation, approximately 
65% of the participants committed a commis-
sion error by following this advice without 
taking into account the clearly disconfirming 
evidence directly available from the relevant 
gauges. All of these effects emerged although 
the participants were informed that all readings 
from indicators and gauges were always per-
fectly valid and provided a reliable basis for 
cross-checking the automation.

Sarter and Schroeder (2001; see also McGuirl 
& Sarter, 2006) examined the performance of 
pilots interacting with automated decision aids 
that supported decision making in case of in-
flight icing events. Such events represent a seri-
ous threat to flight safety and must be handled 
promptly. Consequently, an in-flight icing event 
is characterized by time pressure and uncer-
tainty: Pilots need to respond rapidly without 
always being able to verify directly whether 
icing in fact has taken place. Two types of deci-
sion aids were compared in a simulator study. 
The first involved a status display that provided 
information about the icing condition (i.e., wing 
icing vs. tailplane icing) but left the selection of 
appropriate responses with the pilots. The sec-
ond one involved a command display that in 
addition to the information about the icing con-
dition provided recommendations for proper 
actions (e.g., concerning appropriate pitch atti-
tude and settings of flaps and power). Performance 
data assessed included, among others, how long 
the pilots needed to respond to the ice accretion 
and whether they responded in a way that effec-
tively prevented serious consequences indicated 
first by a buffet of the airframe and eventually 
by a stall.

Compared to a baseline condition in which 
pilots had to manage in-flight icing encounters 
without any automation support, that is, by just 
relying on their own kinesthetic perception of 
changed flight dynamics, the availability of the 
aids increased the number of correct decisions 
in response to different icing encounters consid-
erably. This finding was reflected in a signifi-
cantly lower frequency of early buffets (7.87% 
compared with 20.56% without support) as well 
as fewer stalls (18.08% vs. 30.00%). However, 
this performance benefit was observed only 
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when the aid provided correct recommendations. 
In case of inaccurate information, the availabil-
ity of the aid resulted in clear performance dec-
rements compared with the baseline condition, 
with the frequency of early buffets increasing 
up to 73.61% and those of stalls even to 88.89%.

This impairment of performance was mainly 
related to the pilots’ inadvertently following the 
aids’ recommendation even though the avail-
able kinesthetic cues contradicted it, hence indi-
cating a clear tendency toward automation bias. 
Moreover, a significant interaction effect was 
found between the type and accuracy of the 
decision aid. Whereas both aids led to worse 
performance when the information provided 
was inaccurate compared with an accurate con-
dition, this effect was somewhat stronger for 
command than for status displays. However, the 
effect could not be replicated in a follow-up 
study to this research (McGuirl & Sarter, 2006), 
thus raising some doubts as to its generality.

Health care. Evidence of automation bias has 
also been reported in the health care domain 
(Alberdi, Povyakalo, Strigini, & Ayton, 2004; 
Alberdi, Povyakalo, Strigini, Ayton, & Given-
Wilson, 2008; McKibbon & Fridsma, 2006; 
Tsai, Fridsma, & Gatti, 2003; Westbrook, Coiera, 
& Gosling, 2005). McKibbon and Fridsma 
(2006) and Westbrook et al. (2005) explored the 
effects of electronic information systems on 
decisions made by primary care physicians. In 
controlled field trials, they compared the cor-
rectness of answers to a set of standardized 
clinical questions provided by physicians before 
and after searching different electronic sources, 
such as PubMed, Medline, and Google. They 
found a small to medium (2% and 21%, respec-
tively) increase in the rate of correct answers 
attributable to the use of these sources com-
pared with the answers provided before its con-
sultation. Yet, in 11% (McKibbon & Fridsma, 
2006) and 7% (Westbrook et al., 2005) of all 
cases, the search of electronic sources misled 
the physicians, who changed an initially correct 
answer to an incorrect one after consulting the 
electronic information source.

Although these results provide evidence that 
physicians make commission errors when using 
electronic aids, the studies did not use a control 
group given nonelectronic resources, making 

any clear-cut interpretation in terms of automa-
tion bias difficult.

However, Alberdi et al. (2004, 2008) con-
ducted more carefully designed studies on the 
effects of automated aids on clinical decision 
making. Experienced radiologists examined a 
set of mammograms either with or without the 
support of a detection aid that suggested areas 
containing lesions. Half of the mammograms 
contained signs of cancer, whereas the other 
half was free of pathology. Four different kinds 
of cases were compared: (a) cases in which the 
detection aid provided valid advice, either by 
correctly placing a prompt on a critical feature 
or by leaving a mammogram without pathologi-
cal findings unmarked; (b) cases in which the 
aid failed to prompt critical features, that is, left 
a mammogram unmarked although there were 
signs of cancer; (c) cases in which the aid incor-
rectly placed a prompt in an area away from an 
actual sign of cancer; and (d) cases in which the 
aid incorrectly placed a prompt on a mammo-
gram where in fact no signs of cancer were pres-
ent. Cases of Types b and c represented false 
negatives that provoke omission errors if the 
film reader’s decision making was biased by 
the aid’s suggestion. Cases of Type d provided 
the opportunity for a commission error.

The results provided clear evidence for auto-
mation bias in terms of omission errors. The 
detection rate for “unmarked” cancers (Case b) 
dropped from 46% in conditions without the aid 
to 21% in the aided conditions, and incorrectly 
marked cases (c) reduced the detection rate of 
cancer from 66% to 53%. Clearly, the film read-
ers tended to take the absence of a computer 
prompt as strong evidence for the absence of 
cancer. The authors interpreted this finding as 
evidence for complacency, which they further 
attributed to a lack of vigilance, following the 
interpretation offered by Mosier and Skitka 
(1996) for omission errors.

In contrast to the strong evidence for omission 
errors, Alberdi et al. (2004) did not find evidence 
for commission errors in case of falsely placed 
prompts (Case d). However, this kind of bias was 
further investigated in a follow-up study (Alberdi 
et al., 2008). On the basis of a reanalysis of data 
available from a large-scale clinical trial in the 
United Kingdom focusing on the effectiveness of 
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automated detection aids in breast screening 
(Taylor, Champness, Given-Wilson, Potts, & 
Johnston, 2004), the authors explored the possi-
ble consequences of falsely placed prompts. The 
results provided some evidence, albeit weak, for 
automation bias in terms of commission errors. 
Falsely placed prompts significantly raised the 
probability by 12.3% that the prompted areas 
actually were marked as malignancy compared 
with an unaided condition.

Process control. Even stronger effects of 
automation bias have been reported in a recent 
series of studies investigating performance 
consequences of an automated decision aid in a 
simulated process control task (Bahner, Elepfandt, 
& Manzey, 2008; Bahner, Huper, et al., 2008; 
Manzey, Reichenbach, & Onnasch, 2008, 2009). 
In this research, the automated aid supported 
fault identification and management tasks by 
providing operators with automatically gener-
ated diagnoses for system faults and recommen-
dations for how to deal with them. Evidence for 
both omission and commission errors was 
found, with 20% to 50% of participants com-
mitting a commission error in case the aid pro-
vided a wrong fault diagnosis for the first time 
(first-failure effect). Because these studies 
also addressed possible links between compla-
cency and automation bias, we describe them in 
more detail in a subsequent section in which the 
two issues are discussed jointly.

Command and control. Finally, automation 
bias has also been recognized to represent an 
important issue with respect to intelligent deci-
sion support systems for command-and-control 
operations in the military domain (e.g., Crocoll 
& Coury, 1990; Cummings, 2003, 2004; Rovira 
et al., 2007). According to Cummings (2004), 
automation bias effects in interaction with auto-
mated decision aids have contributed to several 
fatal military decisions, including inadvertent 
killing of friendly aircrews by U.S. missiles 
during the Iraq War. Research in this domain 
has addressed issues of the appropriate LOA 
that decision support systems should be set at 
and its impact on decision making in case of 
inaccurate recommendations (Crocoll & Coury, 
1990; Cummings, 2003; Rovira et al., 2007).

Although these studies did not provide detailed 
information about the frequency of omission or 

commission errors, their results provide additional 
indirect evidence for the existence of automation 
bias effects. For example, Rovira et al. (2007) 
investigated the effects of different automated 
aids on military decisions under time pressure. 
Specifically, they explored to what extent auto-
mated aids differing in LOA (information automa-
tion vs. three levels of decision automation) and 
overall reliability (60% vs. 80%) affect the speed 
and quality of command-and-control decisions 
involving the identification of most dangerous 
enemy targets and deciding which friendly unit 
might be the best choice to combat it.

As expected, all of the automated aids imp-
roved performance when they provided accu-
rate advice. However, in case of inaccurate 
recommendations, clear performance costs were 
identified compared with an unsupported (man-
ual) control condition. Decision accuracy declined 
from 89% in the manual condition to 70% in 
supported conditions when the aid provided 
incorrect recommendations, pointing to a sub-
stantial number of commission errors in the lat-
ter condition. Furthermore, some evidence was 
found that these effects were moderated by the 
LOA and the overall reliability of the aid. 
Performance impairments in case of inaccurate 
automation were most pronounced if the aid 
provided a high level of support of decision-
making functions (i.e., provided a specific rec-
ommendation for an optimum decision) and 
when the overall level of reliability was high. 
Whereas the former effect parallels the findings 
concerning the impact of status versus com-
mand displays on automation bias in aviation 
(Crocoll & Coury, 1990; Sarter & Schroeder, 
2001; see earlier discussion), the latter corre-
sponds to the impact of reliability on compla-
cency effects in supervisory control (Bailey & 
Scerbo, 2007; R. Parasuraman et al., 1993).

Factors Influencing Automation Bias

Compared to research on automation-related 
complacency, considerably less is known about 
relevant factors that modulate the degree of 
automation bias. Factors to be taken into account 
include different aspects of system properties as 
well as the task context.

System properties. As should be evident from 
the foregoing review of research, the strength of 
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automation bias effects seems to depend at least 
to some extent on the LOA and the reliability of 
an automated aid. Specifically, there is evidence 
that automated aids that only support processes 
of information integration and analysis may 
lead to lower automation bias effects (in terms 
of commission errors) than aids that provide 
specific recommendations for certain actions 
based on an assessment of the available infor-
mation (Crocoll & Coury, 1990; Rovira et al., 
2007; Sarter & Schroeder, 2001).

Another factor that may have an impact on 
automation bias effects includes the provision 
of system confidence information together with 
an automatically generated recommendation, as 
suggested by another study addressing effects 
of an automated aid on responses to in-flight 
icing encounters (McGuirl & Sarter, 2006). 
Using a similar paradigm as in the study of 
Sarter and Schroeder (2001), they investigated 
effects of decision aids that not only provided 
information about the icing condition (status 
display) or specific recommendations for proper 
actions (command display) but also confidence 
values for each. The confidence information 
was updated on a trial-by-trial basis and was 
presented to the participants in a separate trend 
display. Providing this additional information 
led to less performance decrements in case of 
inaccurate aid recommendations compared with 
a condition in which the additional confidence 
information was not available, that is, the pilots 
received only information concerning the over-
all reliability of the aid. Clearly, pilots sup-
ported by the advanced aid were better able to 
assess the validity of the aids’ single recommen-
dations and to make less biased decisions about 
whether to comply with the aid.

Task context. Most of the available knowl-
edge about the impact of task context factors on 
automation bias, thus far, has been obtained in a 
series of studies conducted by Mosier, Skitka, 
and colleagues (Mosier, Skitka, Dunbar, & 
McDonnell, 2001; Skitka, Mosier, & Burdick, 
2000; Skitka, Mosier, Burdick, & Rosenblatt, 
2000). Specifically, three different factors were 
investigated, including social accountability, 
teams versus individuals, and instruction and 
training interventions.

Skitka, Mosier, and Burdick (2000) exam-
ined the impact of accountability on the basis of 

an earlier observation that suggested that the 
strength of automation bias in terms of omis-
sion errors might be influenced by the degree to 
which pilots perceive themselves as account-
able for the automated tasks (Mosier et al., 
1998). The experiment involved 181 nonpilots 
who had to complete five trials with the same 
W/PANES simulation described earlier. In the 
nonaccountable condition, participants were told 
that their performance would not be recorded 
and that the main objective of the experiment 
was to obtain their subjective evaluation of the 
task environment. Four other groups were ins-
tructed to be particularly accountable so as to 
reach different performance objectives (e.g., 
maximize overall performance, tracking perfor-
mance, or speed or accuracy in the waypoint 
and gauge-monitoring tasks) and that they would 
have to justify their performance in a debriefing 
interview after the experiment.

The authors found that participants who were 
instructed to be accountable for overall perfor-
mance or the accuracy in the waypoint and 
gauge-monitoring tasks committed significantly 
less omission and commission errors than did 
the participants of the nonaccountable group or 
the groups who particularly were made account-
able for quick responses or their specific per-
formance in the tracking task. Furthermore, 
par ticipants who felt responsible for overall per-
formance or accuracy also showed more atten-
tive automation verification behavior than did 
participants in all the other groups. The latter 
effect was shown by providing participants a 
second monitor with which they could actively 
check the validity of any recommendations pro-
vided by the aid in case of doubts. Participants 
in the nonaccountable group made significantly 
less use of this device than participants feeling 
accountable for overall performance or the 
accuracy of the automated tasks. An even smaller 
tendency to cross-check the automation was 
found in groups who felt particularly account-
able for response speed or tracking performance, 
respectively. Although these results may be taken 
as evidence that accountability might be a rele-
vant factor reducing automation bias, the results 
are not fully conclusive in this respect. An alter-
native view is that the results might reflect a 
higher level of motivation and effort in the account-
able groups induced by providing participants 
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of these groups with some specific performance 
goals (Locke & Latham, 1990).

Another set of two experiments explored to 
what extent the presence of a second crewmem-
ber in combination with several training inter-
ventions or explicit prompts to cross-check the 
automation would moderate the degree of auto-
mation bias (Mosier et al., 2001; Skitka, Mosier, 
Burdick, et al., 2000). The first of these studies 
(Skitka, Mosier, Burdick, et al., 2000) again 
involved nonpilots working on the W/PANES 
task. In the two-person conditions, both crew-
members had individual tasks but were instructed 
to work redundantly on the waypoint or gauge-
monitoring task. Training interventions included 
various briefings, ranging from just alerting 
participants to verify the automation to a detailed 
briefing about the nature of omission and com-
mission error as risk factors in human-automation 
interaction. In addition, conditions were com-
pared in which the participants did or did not 
receive explicit prompts to verify the automation, 
which in the first case were presented along 
with the aid’s directive.

The presence of a second crewmember did 
not affect the strength of automation bias for 
either omission or commission errors. This over-
all pattern of effects was replicated in a second 
study involving 48 experienced glass cockpit 
pilots (Mosier et al., 2001). The pilots were 
required to perform missions in a part-task 
flight simulator similar to those in the previ-
ously described study of Mosier et al. (1998). 
Neither detrimental nor beneficial effects of 
crew versus individual performance were found 
with respect to omission and commission errors. 
Furthermore, neither of the training and instruc-
tion interventions had any effect on the strength 
of automation bias. However, what was found is 
that the rate of omission errors varied between 
individual participants and with the criticality 
of events in terms of possible consequences if 
they were missed. The latter effect confirms 
earlier results of Mosier et al. (1998) and may 
be taken as evidence that automation bias might 
not be related just to an automation-induced 
vigilance decrement but to a reallocation of 
attentional resources attributable to a delegation 
of responsibility to the automated aid. However, 
this reallocation of resources does not seem to 
be used to improve performance in concurrent 

tasks, a finding that provides some support for the 
cognitive-miser hypothesis of automation bias.

Summary

Human decision making can be biased when 
supported by imperfect automated decision aids. 
Whereas this bias is relatively benign and actu-
ally can be beneficial when a decision aid pro-
vides correct recommendations (e.g., by speeding 
up decision making), it results in omission and 
commission errors when the decision aid is 
wrong. Evidence of both kinds of errors has been 
reported from several domains, including avia-
tion, medicine, process control, and command-
and-control operations in military contexts.

The results show that automation bias repre-
sents a robust phenomenon that (a) can be found 
in different settings, (b) occurs in both naive 
and expert (e.g., pilots) participants, (c) seems 
to depend on the LOA and the overall reliability 
of an aid, (d) cannot be prevented by training or 
explicit instructions to verify the recommenda-
tions of an aid, (e) seems to be depend on how 
accountable users of an aid perceive themselves 
for overall performance, and (f) can affect deci-
sion making in individuals as well as in teams. 
Interestingly, the first four of these results have 
also been found in studies of automation-related 
complacency (the fifth, that is, impact of account-
ability on complacency, and sixth, that is, com-
placency in teams, have not yet been systematically 
investigated). The common findings suggest 
that complacency and bias might be linked, a 
possibility that we discuss in more detail in the 
next section.

TOWARD AN INTEGRATED MODEL OF 
COMPLACENCY AND BIAS

Theoretical Links

Although the concepts of complacency and 
automation bias have been discussed separately 
as if they were independent, they share several 
commonalities, suggesting they reflect different 
aspects of the same kind of automation misuse 
(cf. R. Parasuraman & Riley, 1997). Omission 
errors with decision-aiding systems provide the 
most obvious link between the two concepts, 
given that they occur when decision makers fail 
to act because they were not informed of an 
imminent system problem by the automation. 
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Human operators thus rely on the alerting func-
tion of the aid at the expense of attentive moni-
toring of important environmental cues. Such 
inadequate monitoring clearly corresponds to 
automation-induced complacency (Mosier & 
Skitka, 1996).

Similarly, complacency-like effects may also 
be responsible for the occurrence of commis-
sion errors. According to Skitka et al. (1999), 
“Commission errors can be the result of not 
seeking out confirmatory or disconfirmatory 
information, or discounting other sources of 
information in the presence of computer-generated 
cues” (p. 993). The latter alternative, discount-
ing of contradictory information, reflects bias in 
decision making in a strict sense. Having con-
tradictory information from different sources, the 
operator, for some reason, cedes greater author-
ity to the automated aid than to the other sources. 
This attitude could reflect greater trust in auto-
mation than in one’s own ability or difficulties 
to comprehend the perceived information 
correctly.

However, the former alternative, following 
the aid’s recommendation without verification, 
reflects a qualitatively different kind of decision 
bias. In this case, the bias in favor of an auto-
mated aid is expressed in operators’ relying so 
much on the proper function of an aid that they 
neglect their own sampling of information and 
become more selective in attending to different 
information sources. This kind of automation 
bias resembles what has been referred to as 
automation complacency in supervisory control 
tasks, given that the failure to verify (not attend-
ing to the raw data) indicates a reallocation of 
attention.

Furthermore, the cognitive-miser hypothesis 
of automation bias in high task load situations 
could also reflect complacency in addition to a 
strict decision bias. Similar to the operator who 
tends to monitor an automated process inade-
quately if the workload is high, the user of a 
decision aid may trust it to the extent that he or 
she directly follows the automatically generated 
advice without making the attentionally demand-
ing effort of cross-checking its validity against 
other available and accessible information. This 
view points to an overlap between the concepts of 
automation complacency and bias and suggests 

that at least some instances of commission 
errors might be explained within the same atten-
tional framework suggested for complacency 
and shown previously in Figure 3, substituting 
“Information Source A” for “Task A,” and so on.

To date, there is little empirical evidence to 
allow for an assessment to what extent commis-
sion errors truly represent a bias in weighting 
information from different sources (automation 
vs. own information sampling) or a decision 
bias reflected in neglecting to verify automa-
tion. However, the previously described find-
ings of Skitka et al. (1999; Skitka, Mosier, & 
Burdick, 2000) do support the view that neglect 
of automation verification might constitute a 
major source of commission errors, as does a 
study by Bahner, Huper, et al. (2008), which we 
describe later.

Common Issues

The concepts of complacency and automation 
bias can be viewed as indications of automation 
misuse, that is, as a behavioral consequence 
related to inappropriate overreliance on auto-
mation. This characterization was challenged by 
Moray (2003; Moray & Inagaki, 2000), at least 
with respect to complacency. Moray proposed 
that what has been characterized as “compla-
cent” behavior, that is, operators’ neglecting to 
monitor automation, in fact may represent a 
rational strategy. Moray argued that when oper-
ators have several tasks to attend to, their moni-
toring of automation should be in proportion to 
its perceived reliability. Given that highly reli-
able automation will fail only very rarely, then 
the rational strategy would be to monitor it also 
only very infrequently. A natural consequence 
of such a monitoring strategy is that when oper-
ators have other tasks to perform they will occa-
sionally miss automation failures because their 
attention will be allocated elsewhere.

Up to this point, Moray’s (2003; Moray & 
Inagaki, 2000) argument does not differ from 
the framework for complacency we have pre-
sented that links it to a multitask attentional 
strategy (Figure 3). However, Moray went fur-
ther in arguing that complacency should be 
inferred only if operators monitor automation 
less frequently than the optimal value for a par-
ticular system. If, on the other hand, they monitor 
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more often than the optimal value, they could 
be called “skeptical.” Moray suggested that an 
operator who monitored at the optimal fre-
quency should be characterized as “eutactic” or 
“well calibrated”—similar to the concept of an 
operator whose trust is calibrated to the actual 
reliability of automation (Lee & See, 2004). 
What is the optimal (or normative) monitoring 
rate? Moray suggested that the Shannon-
Weaver-Nyquist sampling theorem provides a 
basis for determining the optimum. This theo-
rem states that to perfectly reproduce a continu-
ously varying process (e.g., an analog signal) 
from intermittent samples (e.g., digital values), 
the frequency of sampling should be at least 
twice the frequency of the highest frequency in 
the continuous or analog signal.

Does human sampling behavior also follow 
the sampling theorem? An early study by Senders 
(1964) provides some supporting evidence. He 
had participants monitor up to six gauges with 
continuously varying values to detect out-of-
limit targets. The frequency (or bandwidth) of 
the continuously varying signals ranged from 
slow to fast. Senders found that participants’ 
fixations on a particular gauge were directly 
proportional to the bandwidth of the signal dis-
played on that gauge (see also Moray, 1984).

Moray and Inagaki’s (2000) suggestion con-
cerning the necessity of comparing actual and 
optimal monitoring rates in automated systems 
is important. However, their proposal that the 
sampling theorem provides a basis for deter-
mining the optimal rate for monitoring is difficult 
to test outside of simple laboratory experiments 
(as in Senders, 1964), because the frequency 
content of many real-world information sources 
is difficult or impossible to compute. Nevertheless, 
there may be other ways in which a normative 
value for monitoring automation can be calcu-
lated, as described in a later section. Moreover, 
the sampling models posited by Moray (2003; 
Moray & Inagaki, 2000) and Senders (1964) do 
not consider the potential cost of sampling (e.g., 
extensive eye or head movements or search 
time) or the value provided by sampled infor-
mation, which can pose severe limits on the rate 
of sampling (Sheridan, 1970, 2002). The salience, 
effort, expectancy, and value (SEEV) model of 
Wickens et al. (2007), on the other hand, does 

include such cost and value parameters and has 
been found to explain well observers’ visual 
scanning patterns (or lack thereof) in a number 
of different tasks.

We agree with Moray and Inagaki’s (2000) 
view that complacency should ideally be evalu-
ated independently of the outcome of insuffi-
cient monitoring—for example, not detecting 
an automation failure. Most previous studies, 
including the first study by Parasuraman et al. 
(1993), inferred complacency from detection 
performance alone and not from an independent 
measure of monitoring. Studies measuring eye 
movements provide an exception (Bagheri & 
Jamieson, 2004; Metzger & Parasuraman, 2005), 
but eye fixation rates still need to be compared 
with optimal monitoring rates. Hence, Moray 
and Inagaki suggested that studies on compla-
cency to date had not provided convincing evi-
dence for the phenomenon of automation-related 
complacency.

Moray and Inagaki’s (2000) critique can also 
be applied to studies on automation bias. As 
described previously, although operators com-
mit omission or commission errors in using 
such aids, such errors may not necessarily indi-
cate that the operators were complacent. Such a 
conclusion would be warranted only if it could 
be shown that these performance consequences 
indeed were related to operators’ monitoring or 
verifying automation behavior less frequently 
than the rate indicated by a normative model.

Evidence for an Integrative Concept of 
Complacency and Automation Bias

A recent series of experiments has taken this 
caveat into account and provided evidence for 
the proposed link between complacency and 
automation bias (Bahner, Elepfandt, et al., 2008; 
Bahner, Huper, et al., 2008; Manzey et al., 2009; 
Manzey, Reichenbach, et al., 2008). These stud-
ies involved the use of a process control micro-
world (AutoCAMS; Lorenz, Di Nocera, Rottger, 
& Parasuraman, 2002; Manzey, Bleil, et al., 
2008) that simulates an autonomous life support 
system for a space station consisting of five 
subsystems (e.g., O

2
, CO

2
, pressure) critical to 

maintaining cabin atmosphere. The primary 
task of the operator involved supervisory control 
of the different subsystems, including diagnosis 
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and management of system faults, which 
occurred occasionally and unpredictably. Operators 
also had two secondary tasks: a prospective 
memory task and a simple reaction time task. 
The primary task was supported by an auto-
mated aid that, in case of failures of single sub-
systems, provided an automatically generated 
fault diagnosis as well as recommendations for 
fault management.

Bahner, Huper, et al. (2008) had two groups 
of well-trained engineering students perform 
the AutoCAMs simulation. One group was told 
that the aid would work highly reliably, although 
not perfectly, and that they should carefully 
cross-check each diagnosis before accepting it 
(information group). The second group received 
the same information but was additionally exposed 
to some rare automation failures during training 
(experience group). Automation failures could 
include a failure of the diagnostic function, that 
is, the aid provided wrong diagnoses for 2 out of 
10 system faults (Bahner, Huper, et al., 2008), 
or a failure of the alarm function, that is, the aid 
failed to indicate 2 out of 10 system faults 
(Bahner, Elepfandt, et al., 2008). On the basis of 
earlier research (e.g., Lee & Moray, 1992), it 
was assumed that the practical experience of 
automation failures should reduce overall trust 
in the system.

Bahner, Huper, et al. (2008) assessed com-
placency by measuring the extent to which par-
ticipants verified the automation’s diagnosis 
before accepting it. Participants were provided 
independent access (via mouse click) to all rel-
evant system information (e.g., tank levels, flow 
rates at different valves, history graphs display-
ing the time course of system parameters), 
needed to verify the aid’s diagnoses. This pro-
cedure allowed the investigators to assess the 
level of operator complacency in interaction with 
the aid by contrasting the actual information 
sampling behavior of operators with a “norma-
tive model” of optimal behavior. According to this 
logic, any participant who accessed just the infor-
mation appropriate to verify a given diagnosis 
before accepting it was regarded as showing 
noncomplacent (eutactic) behavior in interac-
tion with the aid. However, participants sam-
pling less information than that necessary to 
completely verify the aid’s recommendation were 

regarded as complacent to different degrees, 
dependent on how much they deviated from the 
optimal sampling strategy. This operational def-
inition of complacency made it possible to eval-
uate the level of complacency in interaction 
with the aid independent of its possible perfor-
mance consequences.

These results provide direct empirical evi-
dence for the proposed relationship between 
perceived reliability of automation, complacency, 
and automation bias. In both experiments, par-
ticipants of all experimental groups exhibited a 
complacency effect at least to some extent, that 
is, did not fully verify the automatically gener-
ated diagnoses for system faults completely 
before accepting it. Figure 4 from Bahner, 
Huper, et al. (2008) shows that operators in the 
information group were more complacent (sam-
pled fewer parameters) than were those in the 
experience group. This figure also shows that 
the degree of operator verification was less than 
that required by the normative model, irrespec-
tive of training. Yet, as expected, the degree of 
the complacency effect was moderated by the 
experiences the participants had with the aid 
during training. Participants who were exposed 
to failures of the diagnostic function of the aid, 
but not those exposed to failures of the alarm 
function (Bahner, Elepfandt, et al., 2008), 
showed a significantly lower level of compla-
cency than participants who were informed just 
that the aid may fail.

In addition, a clear link between the level of 
complacency and automation bias was also found: 
21% of participants committed commission errors, 
which occurred despite the fact that the automa-
tion error could easily be recognized (Bahner, 
Huper, et al., 2008). Analyses of information-
sampling behavior revealed that these errors 
indeed were related to a generally higher level 
of complacency in this subgroup of participants 
compared with those who did not commit this 
kind of error (see Figure 5). Bahner, Elepfandt, 
et al. (2008) found even more participants (18 out 
of 24) committed a commission error when 
the aid provided a wrong diagnosis for the first 
time. Inspection of the verification behavior just 
before committing the error again revealed 
that 80% of the participants followed the 
false recommendation because of insufficient 
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cross-checking of the relevant system informa-
tion needed to verify the aid’s recommendation. 
Yet 20% of the participants followed the recom-
mendation despite seeking out all parameters 

necessary to verify that the automated advice 
was wrong.

The underlying determinants of this latter 
effect were further investigated in a follow-up 
experiment (Manzey, Reichenbach, et al., 2008) 
in which participants worked with three differ-
ent decision aids that differed in their amount of 
support (LOA). The first aid provided only an 
automatically generated diagnosis for a given 
system fault but left it to the operator to plan 
and implement all necessary actions; the second 
one provided additional recommendations for 
necessary actions, which, however, had then to 
be implemented manually by the operator; and 
the third performed fault management autono-
mously if the operator confirmed the proposed 
diagnosis and plan of interventions.

Independent of the LOA of the decision aid, 
approximately 43% of operators did not detect a 
wrong diagnosis of the aid when it occurred for 
the first time. Analyses of information-sampling 
behavior revealed that half of the participants 
made this commission error because of a clear 
complacency effect, as reflected in an incomplete 
sampling of information needed for automation 
verification. The other half of participants again 
committed this kind of error despite the fact that 
they had sampled all system parameters neces-
sary to verify the diagnosis provided by the aid.

However, more detailed analyses of this 
effect revealed an interesting difference between 
these participants and participants who detected 
the wrong diagnosis. Participants who correctly 
recognized that the aid’s advice was wrong 
showed a sharp increase in the average time 
needed to process a sampled system parameter 
in case that its information did not fit the diag-
nosis of the aid, compared with trials in which 
the aid’s diagnoses were correct. Clearly, these 
participants became aware of the contradictory 
information and needed time to evaluate it. 
However, this effect did not emerge for partici-
pants who sampled all relevant information but 
nevertheless committed a commission error. 
These participants did not show any difference 
in processing time when the aid’s diagnosis was 
correct and when it was wrong.

Given this finding, the commission error 
committed by these participants cannot be exp-
lained by a decision bias view associated with a 

Figure 4. Proportion of parameters sampled prior to act-
ing on the recommendation of an automated decision 
aid, for different faults and for the information and expe-
rience groups. From “Misuse of Automated Decision 
Aids: Complacency, Automation Bias and the Impact 
of Training Experience,” by E. Bahner, A.-D. Huper, 
and D. Manzey, 2008, International Journal of Human-
Computer Studies, 66, p. 694. Copyright 2008 by 
Elsevier Science. Reprinted with permission.

Figure 5. Proportion of relevant parameters sampled 
among participants who did and did not commit a com-
mission error. From “Misuse of Automated Decision 
Aids: Complacency, Automation Bias and the Impact 
of Training Experience,” by E. Bahner, A.-D. Huper, 
and D. Manzey, 2008, International Journal of 
Human-Computer Studies, 66, p. 695. Copyright 
2008 by Elsevier Science. Adapted with permission.
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discounting of contradictory information. In 
addition, an explanation in terms of confirma-
tion bias in processing the sampled information 
or difficulties of comprehension is also unlikely, 
given that the participants were very well 
trained and that the system parameter always 
contradicted the aid’s diagnosis in an unequiv-
ocal way. Thus, the two types of decision bias 
discussed previously, confirmation bias and dis-
counting bias, can be ruled out as explanations, 
at least for this group. Rather, the commission 
errors in this group seem to be attributable to a 
sort of looking-but-not-seeing effect, analogous 
to what in other contexts has been referred to as 
“inattentional blindness” (Mack & Rock, 1998) 
and which also has been suggested to underlie 
complacency effects in supervisory control 
tasks (Duley et al., 1997).

Direct evidence for this latter interpretation 
was provided by another AutoCAMS experi-
ment that investigated this hypothesis in more 
detail (Reichenbach, Onnasch, & Manzey, in 
press). In this study, the simulation was stopped 
immediately after the participants had commit-
ted a commission error, and the participants 
were required to report (a) what system param-
eters they had accessed to verify the aid’s rec-
ommendation and (b) what the values of these 
parameters were. Out of the 11 participants 
committing a commission error in this study, 6 
were found to have sampled only part of the 
system information that would have been nec-
essary to check to verify the aid’s advice. The 
remaining 5 participants committed the com-
mission error despite checking all the parame-
ters that were necessary to realize that the 
automatically generated diagnosis was wrong. 
However, only 1 of them actually was aware of 
all the contradictory information but failed to 
give an explanation for the final decision to 
nevertheless follow the aid.

The other 4 participants were not able to recall 
correctly the information they had accessed. 
Instead, they tended to report system values that 
would have to be expected, given that the advice 
of the aid would have been correct. This effect 
replicates the phantom memory effect reported 
by Mosier et al. (1998). However, given that the 
actual system values always differed consider-
ably from the ones to be expected, this effect 

seems to be more related to a hindsight justifi-
cation of the final decision than to a misreading 
of the parameters.

This finding is particularly interesting because 
it provides evidence that commission errors 
associated with complete (optimal) information 
sampling may result not necessarily from a mis-
weighting of contradictory information but from 
a complacency-like, covert attention effect 
(Duley et al., 1997), which, in this case, was 
reflected in a withdrawal of attentional resources 
from processing the available (and looked-at) 
information.

In summary, two main conclusions can be 
drawn from these results. The first is that it is 
necessary to decompose the underlying determi-
nants of commission errors that operators make 
while interacting with automated decision aids. 
Three different sources can be distinguished: (a) 
an actual, overt redirection of visual attention in 
terms of reduced proactive sampling of relevant 
information needed to verify an automated aid; 
(b) a more subtle effect reflected in less attentive 
processing of this information, perhaps because 
covert attention is allocated elsewhere (an effect 
analogous to inattentional blindness); and (c) an 
active discounting of information that contra-
dicts the recommendation of the aid because of 
either difficulties in comprehension or an over-
reliance on the automated source.

The first two of these sources relate the 
occurrence of automation bias to issues of selec-
tive or less attentive processing of information 
and seem to constitute a major source of bias in 
human interaction with decision aids. Such an 
effect provides strong evidence that not only 
omission errors but also commission errors can 
be related to essentially the same attentional 
processes that have been shown to underlie 
complacency effects in supervisory control tasks. 
This parallelism further suggests that what has 
been referred to as complacency in supervisory 
control studies (R. Parasuraman et al., 1993) 
and automation bias in studies examining use of 
decision aids (Mosier & Skitka, 1996), at least 
to a large extent, might represent different man-
ifestations of overlapping automation-induced 
phenomena.

Second, given the operational definition of 
complacency and automation bias in the set of 



AutomAtion ComplACenCy And BiAs 403

studies we have described (e.g., Bahner, Huper, 
et al., 2008; Manzey et al., 2009), the view that 
the observed effects reflect an inevitable side 
effect of a rational strategy used by operators in 
interacting with automated systems can be ruled 
out, as confirmed by a contrast of the actual 
automation verification behavior of operators 
with a normative (rational) model of information 
sampling, as suggested by Moray and Inagaki 
(2000). The results instead support the view that 
complacency and automation bias indeed repre-
sent a human performance cost of certain automa-
tion system designs, that is, systems characterized 
by high reliability and high levels of automation, 
particularly in high task load situations. Such costs 
need to be considered as potentially serious risk 
factors when evaluating the overall efficiency and 
safety of human-automation systems.

An Integrated Model of Complacency 
and Automation Bias

Our analysis suggests that automation-induced 
complacency and automation bias represent 
closely linked theoretical concepts that show 
considerable overlap with respect to the under-
lying processes. We propose an integration such 
that they represent different manifestations of 
similar automation-induced phenomena, with 
attention playing a central role. Furthermore, 
complacency and automation bias, although 
affected by individual differences, cannot be 
considered as just another type of human error 
but constitute phenomena that result from a com-
plex interaction of personal, situational, and 
automation-related characteristics. 

An integrated model of complacency and auto-
mation bias is shown in Figure 6. Note that this 
model is not meant to cover all kinds of automa-
tion bias but only those that are related to a selec-
tive or less attentive processing of information. 
Furthermore, the model does not address instances 
of complacency and automation bias that solely 
reflect performance consequences stemming from 
operators’ lacking appropriate system knowledge, 
that is, instances in which the automated system has 
to be relied on because the human operator does 
not possess the necessary competency or knowl-
edge to verify its proper function.

The three main critical features of this model 
include (a) the distinction between two aspects 

of complacency and automation bias, referred 
to as “complacency potential” and “attentional 
bias” in information processing; (b) the differ-
entiation between automation-induced atten-
tional phenomena and its possible performance 
consequences in terms of omission and com-
mission errors; and (c) the dynamic and adap-
tive nature of complacency and automation 
bias, reflected in the two feedback loops.

The first distinction capitalizes on a similar 
conceptual differentiation between two differ-
ent aspects of complacency first proposed by 
Singh et al. (1993a, 1993b) and later adopted 
by Manzey and Bahner (2005). Complacency 
potential is conceived of as a behavioral ten-
dency to react in a less attentive manner in 
interacting with a specific automated system. 
It is assumed to be influenced by the (per-
ceived) reliability and consistency of the sys-
tem, the history of experiences of the operator 
with this system (see later discussion), and 
individual characteristics of the human opera-
tor. The assumption that this tendency to overrely 
on a certain system is system specific contrasts 
with earlier conceptions that have conceived 
of complacency potential as a general ten-
dency toward automation in general (Singh 
et al., 1993a). However, previous findings 
(Prinzel, 2002; Prinzel et al., 2001) indicate 
that both perceived system characteristics as 
well as individual differences determine the 
final level of complacency in supervisory con-
trol of an automated system.

Relatively less is known about the nature of 
individual characteristics contributing to differ-
ences in complacency potential. As has been 
discussed in some detail previously, differences 
in attitudes toward technology may play a role. 
Yet other findings suggest that personality traits 
might also contribute to individual differences 
in complacency, for example, self-efficacy (Prinzel, 
2002), as well as trust in automation in general 
(Merritt & Ilgen, 2008). Clearly, more research 
is needed in this area.

However, even high complacency potential 
does not guarantee that individuals will neces-
sarily exhibit selective or less attentive informa-
tion processing in interaction with an automated 
system. As shown earlier, complacency and 
automation bias effects emerge primarily when 
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task load is high (e.g., multitask demands). This 
fits with the general understanding of complacency 
and automation bias as representing issues 
related to task prioritization and allocation of 
attentional resources. Furthermore, operator 
state variables may also influence to what extent 
high complacency potential leads to an overt 
attentional bias in interaction with automation. 
For example, a recent study found that fatigued 
operators interacted in a more careful and less 
complacent manner with a decision aid than did 
alert operators (Manzey et al., 2009). 

A second important feature of the integrated 
model represents the distinction between com-
placency and automation bias as an attentional 
effect and its performance consequences in terms 
of omission or commission errors. This distinc-
tion directly relates to the analysis of the link 
between complacency and automation bias pre-
sented previously. It emphasizes that complacency 
and automation bias in interaction with auto-
mated systems is reflected in an automation-
induced withdrawal or reallocation of attentional 
resources. These attentional effects constitute a 
conscious or unconscious response of the human 
operator induced by overtrust in the proper 
function of an automated system. In this sense, 
the effects reflect what Mosier and Skitka (1996) 

described as a “heuristic use of automation” that 
may or may not lead to overt performance conse-
quences, depending on whether the automation 
fails. More specifically, the model assumes that the 
immediate performance consequence of a selec-
tive or less attentive processing of information is 
a loss of situation awareness. This has no conse-
quences as long as the automation works prop-
erly but directly leads to errors of omission or 
commission in case of automation failure.

This aspect of the model has particular impli-
cations for an appropriate operational definition 
of the concepts of complacency and automation 
bias in future research. Specifically it suggests 
that operational definitions of complacency or 
automation bias as behavior need to be based 
on direct or indirect behavioral indicators of atten-
tion allocation. Direct indicators may be derived 
from eye-tracking analyses or other indicators 
of monitoring or information-sampling behav-
ior. Indirect indicators of attention may include 
assessments of a reallocation of attentional 
resources by means of secondary-task methods. 
However, as proposed by Moray (2003; Moray 
& Inagaki, 2000), the mere fact that automated 
systems influence allocation of attentional 
resources cannot be regarded as an indication 
of complacency or automation bias. Such a 
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conclusion is justified only if the observed 
effects are compared with some normative 
model of “optimal attention allocation” in inter-
action with a given system. Defining appropri-
ate normative models for interaction with given 
automated systems represents an important chal-
lenge for future research.

Finally, following an earlier proposal by 
Manzey and Bahner (2005), the model con-
ceives of complacency and automation bias as 
resulting from an adaptive process that dyn-
amically develops over time on the basis of 
experiences an operator has in interaction with 
an automated system. As shown in Figure 6, 
there is a positive feedback loop that leads to a 
rise in complacency potential over time. Given 
the usually high reliability of automated sys-
tems, even highly complacent and biased 
behavior of operators rarely leads to obvious 
performance consequences. Over time, the lack 
of performance consequences might affect com-
placency potential by inducing a cognitive pro-
cess that resembles what has been referred to as 
“learned carelessness” in the domain of work 
safety (Frey & Schulz-Hardt, 1997) and has 
already been included in cognitive models of 
pilot performance (Luedtke & Moebus, 2005).

On the other hand, experiences of automa-
tion failures can be assumed to initiate a nega-
tive feedback loop, reducing the complacency 
potential in interaction with a given system. 
This pattern is suggested by empirical results 
showing that even single automation failures 
may considerably reduce the trust in an auto-
mated system (Lee & Moray, 1992; Madhavan, 
Wiegmann, & Lacson, 2006) and also affect the 
strength of complacency and automation bias 
effects (Bahner, Huper, et al., 2008). In this 
respect, our model of complacency and automa-
tion bias resembles the more general model of 
trust and reliance in automation proposed by 
Lee and See (2004) that includes similar feed-
back loops.

CONCLUSION

Automation-related complacency and auto-
mation bias have previously been viewed as two 
separate and independent potential human per-
formance costs of certain automation designs. 
Automation complacency is generally found in 

multitasking environments where operators 
have to perform manual tasks as well as super-
vise automation. Automation complacency can 
thus be understood in terms of an attention allo-
cation strategy whereby the operator’s manual 
tasks are attended to at the expense of the auto-
mated task. Automation bias is reflected in omis-
sion and commission errors made by operators 
interacting with imperfect decision aids. Auto-
mation bias can be conceived of as a special case 
of human decision biases, such as confirmation 
bias and discounting bias. However, recent evi-
dence suggests that at least some forms of auto-
mation bias result from attentional processes 
similar to those involved in automation-related 
complacency. Thus, complacency and automa-
tion bias represent different manifestations of 
overlapping automation-induced phenomenon, 
with attention at the center.

Our integrated attentional model provides a 
heuristic framework for further research on 
com placency and automation bias. The model 
proposes that attentional factors contribute to 
some but not all forms of automation bias. 
This suggests that future research would be 
desirable on the relative importance of atten-
tional effects versus discounting of contradic-
tory information as determinants of automation 
bias. This goal could be achieved through 
additional studies that not only investigate the 
performance consequences of automation bias 
but also conduct microanalyses of information-
sampling strategies, using either eye-tracking 
or explicit verification procedures as devel-
oped by Bahner, Huper et al. (2008) or both. In 
particular, the extent to which contradictory 
information is available, its saliency, and the 
cost of obtaining it may determine the degree 
of influence of attentional factors.

In addition, further research is required on 
the relative importance and interplay of the two 
proposed feedback loops in our integrated model 
(see Figure 6). We propose a positive feedback 
loop that increases complacency potential while 
negative feedback reduces it. Studies that var-
ied the relative effectiveness of these feedback 
loops would allow for a better understanding of 
the dynamics of development of complacency 
and automation bias in human interaction with 
automation.
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Finally, individual differences were consid-
ered only briefly in this article, but there is pre-
liminary evidence that personal, experiential, 
and situational factors influence automation 
complacency and bias. There is currently grow-
ing interest in using knowledge of individual 
differences to improve design and training efforts 
in human factors and ergonomics generally 
(Szalma, 2009). Similar research in the area of 
automation complacency and bias would appear 
to be worthwhile.

Our integrated model of automation compla-
cency and bias also provides a framework within 
which practical applications, particularly those 
aimed at mitigating complacency and bias in 
automated systems, can be better examined. 
Several studies have shown that the LOA and the 
type of processing supported by automation can 
affect its benefits and costs, including compla-
cency and situation awareness (R. Parasuraman 
et al., 2000). There is also preliminary evidence 
that automation bias can be mitigated with aiding 
of information analysis as opposed to decision 
support, although additional research is needed 
to confirm the efficacy of this design option.

Additional promising points of attack include 
a change of situational conditions (including 
function allocation; see Manzey, Reichenbach, 
et al., 2008; Parasuraman, Mouloua, & Molloy, 
1996) or providing practical experience with a 
given automated system. Changes of situational 
conditions may include taking actions to raise the 
perceived accountability of operators or using 
flexible strategies of function allocation, which 
both have been shown to reduce issues of com-
placency and automation bias in interaction with 
different automated systems (R. Parasuraman 
et al., 1996; Skitka, Mosier, & Burdick, 2000). 
Our integrated model also suggests the impor-
tance of a negative feedback loop in minimizing 
complacency and bias effects (see Figure 6), 
which could be used to make users of automated 
systems more resilient to complacency and auto-
mation bias effects.

KEY POINTS

•	 Complacency and automation bias are phenomena 
that describe a conscious or unconscious response 
of the human operator induced by overtrust in the 
proper function of an automated system.

•	 Although both concepts have been described sep-
arately, they share several commonalities with 
respect to the underlying attentional processes.

•	 Empirical evidence suggests that attentional fac-
tors contribute to many but not all forms of auto-
mation bias.

•	 An integrated model is presented that views com-
placency and automation bias as resulting from a 
complex interplay of personal, situational, and 
automation-related factors.

•	 The integrated model can provide design guid-
ance and serve as a heuristic framework for fur-
ther research.
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