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Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed
Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classi	cation, they inherit some
Local Binary Pattern (LBP) drawbacks. �e LBP is sensitive to noise, and di
erent patterns of LBP may be classi	ed into the
same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust
to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed
modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed
Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classi	cation.�e experimental results using four
di
erent texture databases show that the proposed CLTP achieved an impressive classi	cation accuracy as compared to the CLBP
and CLBC descriptors.

1. Introduction

Nowadays, texture analysis and classi	cation have become
one of the important areas of computer vision and image
processing.�ey play a vital role inmany applications such as
visual object recognition and detection [1, 2], human detector
[3], object tracking [4], pedestrian classi	cation [5], image
retrieval [6, 7], and face recognition [8, 9].

Currently, many textures feature extraction algorithms
that have been proposed to achieve a good texture classi	ca-
tion. Most of these algorithms are focusing on how to extract
distinctive texture features that are robust to noise, rotation,
and illumination variance. �ese algorithms can be classi	ed
into three categories [10]. �e 	rst category is the statistical
methods such as polar plots and polarograms [11], texture
edge statistics on polar plots [12],moment invariants [13], and
feature distribution method [14]. �e second category is the
model based methods such as simultaneous autoregressive
model (SAR) [15], Markov model [16], and steerable pyramid
[17]. �e third category is the structural methods such
as topological texture descriptors [18], invariant histogram
[19], and morphological decomposition [20]. All of these
algorithms as well as many other algorithms are reviewed
brie�y in many review papers [10, 21, 22].

Local Binary Pattern (LBP) operator was proposed by
Ojala et al. [23] for rotation invariant texture classi	cation.
It has been modi	ed and adapted for several applications
such as face recognition [8, 9] and image retrieval [7]. �e
LBP extraction algorithm contains two main steps, that is,
the thresholding step and the encoding step. �is is shown
in Figure 1. In the thresholding step, all the neighboring
pixel values in each pattern are compared with the value of
their central pixel of the pattern to convert their values to
binary values (0 or 1). �is step helps to get the information
about the local binary di
erences. �en in the encoding
step, the binary numbers obtained from the thresholding
step are encoded and converted into a decimal number to
characterize a structural pattern. In the beginning, Ojala et
al. [24] represented the texture image using textons histogram
by calculating the absolute di
erence between the gray level
of the center pixel of a speci	c local pattern and its neighbors.
�en the authors proposed the LBP operator by using the sign
of the di
erences between the gray level of the center pixel
and its neighbors of the local pattern instead of magnitude
[23]. LBP proposed by Ojala et al. [23] has become the
research direction formany computer vision researchers.�is
is because it is able to distinguish the microstructures such
as edges, lines, and spots. �e researchers aim to increase
the discriminating property of the texture feature extraction
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Figure 1: LBP operator.

to achieve impressive rotation invariant texture classi	cation.
So, many of the variants of the LBP have been suggested
and proposed for rotation invariant texture classi	cation.�e
center-symmetric Local Binary Pattern (CS-LBP) proposed
by Heikkil et al. [25] is an example for that. Unlike the LBP,
they compared center-symmetric pairs of pixels to get the
encoded binary values. Liao et al. [26] proposed Dominant
LBP (DLBP) by selecting the dominant patterns from all
rotation invariant patterns. Tan and Triggs [27] presented
a new texture operator which is more robust to noise.
�ey encoded the neighbor pixel values into 3-valued codes(−1, 0, 1) instead of 2-valued codes (0, 1) by adding a user
threshold. �is operator is known as a Local Ternary Pattern
(LTP). Guo et al. [28] combined the sign and magnitude
di
erences of each pattern with all central gray level values
of all patterns to propose a completed modeling of LBP,
called completed LBP (CLBP). Khellah [29] proposed a new
method for texture classi	cation, which combines Dominant
Neighborhood Structure (DNS) and traditional LBP. Zhao
et al. [30] proposed a novel texture descriptor, called Local
Binary Count (CLBC). �ey used the thresholding step such
as in LBP. �en they discarded the structural information
from the LBP operator by counting the number of value 1’s
in the binary neighbor sets instead of encoding them.

Although, some LBP variant descriptors such as CLBP
and CLBC have achieved remarkable classi	cation accuracy,
they inherit the LBP weaknesses. �e LBP su
ers from two
main weaknesses. It is sensitive to noise and sometimes may
classify two or more di
erent patterns falsely to the same
class as shown in Figures 2 and 3.�e LTP descriptor is more
robust to noise than LBP. However, the latter weakness may
appear with the LTP as well as with LBP.

In this paper, we are enhancing the LTP texture descrip-
tor to increase its discriminating property by presenting a
completed modeling for LTP operator and proposing an
associated completed Local Ternary Pattern (CLTP). �e
experimental results illustrate that CLTP is more robust to
noise, rotation, and illumination variance, and it achieves
higher texture classi	cation rates than CLBP and CLBC. �e
rest of this paper is organized as follows. Section 2 brie�y
reviews the LBP, LTP, CLBP, and CLBC. Section 3 presents
the new CLTP scheme. �en, in Section 4, the experimental
results of di
erent texture databases are reported and dis-
cussed. Finally, Section 5 concludes the paper.

2. Related Work

In this section, a brief review of the LBP, LTP, CLBP, and
CLBC is provided.
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Figure 2: �e example for LBP operator’s noise sensitivity.
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2.1. Brief Review of LBP. As shown in Figure 1, the LBP
operator is computed for the center pixel by comparing the
intensity value of it with the intensity values of its neighbors.
�is process can be expressed mathematically as follows:

LBP�,� =
�−1∑
�=0

2�� (�� − ��) , � (�) = {1, � ≥ 0,
0, � < 0, (1)

where �� and �� (
 = 0, . . . , � − 1) denote the gray value of the
center pixel and gray value of the neighbor pixel on a circle of
radius �, respectively, and � is the number of the neighbors.
Bilinear interpolation estimation method is used to estimate
the neighbors that do not lie exactly in the center of the pixels.

LBPri
�,� and LBP

riu2
�,� are rotation invariant of LBP and uniform

rotation invariant of LBP, respectively. �ese two enhanced
LBP operators are proposed by Ojala et al. [23].

A�er completing the encoding step for any LBP opera-

tors, that is, LBPri�,� and LBP
riu2
�,� , the histogram can be created

based on the following equation:


(�) = �∑
�=0

�∑
	=0
� (LBP�,� (�, �) , �) , � ∈ [0, �] ,

� (�, �) = {1, � = �,
0, otherwise,

(2)

where� is the maximal LBP pattern value.

2.2. Brief Review of LTP. Tan and Triggs [27] presented a
new texture operator which is more robust to noise. �e LBP
is extended to 3-valued codes (−1, 0, 1). Figure 4 shows an
example of LTP operator.�emathematical expression of the
LTP can be described as follows:

LTP�,� =
�−1∑
�=0

2�� (�� − ��) , � (�) = {{{{{
1, � ≥ �,
0, −� < � < �,
−1, � < −�,

(3)
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Figure 4: LTP operator.

where ��, ��, �, and � are de	ned before in (1) and � denotes
the user threshold. A�er thresholding step, the upper pattern
and lower pattern are constructed and coded as shown in
Figure 4. �e LTP operator is the concatenation of the code
of the upper pattern and the lower pattern.

2.3. Brief Review of Completed LBP (CLBP). �e completed
LBP (CLBP) descriptor was proposed by Guo et al. [28]
in order to improve the performance of LBP descriptor. As
shown in Figure 5, the image local di
erence is decomposed
into two complementary components: the sign component ��
and the magnitude component��. Consider the following:

�� = � (�� − ��) , �� = ������� − ������� . (4)

�en, the �� is used to build the CLBP-Sign (CLBP S),
whereas the�� is used to build CLBP-magnitude (CLBP M).
�e CLBP S and CLBP M are described mathematically as
follows:

CLBP S�,� =
�−1∑
�=0

2�� (�� − ��) , �� = {1, �� ≥ ��,0, �� < ��, (5)

CLBP M�,� =
�−1∑
�=0

2�� (��, �) ,

� (��, �) = {{{
1, ������� − ������� ≥ �,
0, ������� − ������� < �,

(6)

where ��, ��, �, and � are de	ned before in (1) and � in (6)
denotes the mean value of�� in the whole image.

�e CLBP S is equal to LBP, whereas the CLBP M
measures the local variance of magnitude. Furthermore, Guo
et al. used the value of the gray level of each pattern to
construct a newoperator, calledCLBP-Center (CLBP C).�e
CLBP C can be described mathematically as follows:

CLBP C�,� = � (��, ��) , (7)

where �� denotes the gray value of the center pixel and the �� is
the average gray level of thewhole image. Guo et al. combined
their operators into joint or hybrid distributions and achieved
a remarkable texture classi	cation accuracy [28].

2.4. Brief Review of Completed LBC (CLBC). �e Local
Binary Count (LBC) was proposed by Zhao et al. [30].
Unlike the LBP and all its variants, the authors just counted
the number of value 1’s of the thresholding step instead of
encoding them.�e LBC can be described mathematically as
follows:

LBC�,� =
�−1∑
�=0

� (�� − ��) , � (�) = {1, � ≥ 0,
0, � < 0. (8)

Similar to CLBP, the authors [30] extended the LBC to com-
pleted LBC (CLBC). �e CLBC S, CLBC M, and CLBC C
were also combined into joint or hybrid distributions and
they were used for rotation invariant texture classi	cation.
�e CLBC M and CLBC C can be described mathematically
as follows:

CLBC M�,�=
�−1∑
�=0

� (��, �) , � (��, �) =
{{{{{
1, ������� − ������� ≥ �,
0, ������� − ������� < �,

CLBC C�,� = � (��, ��) ,
(9)

where ��, ��, �, and �� are de	ned in (1), (6), and (7). An
example of LBC is shown in Figure 6.

In [28], the rotation invariant LBP (LBPriu2�,� ) is used to

construct the CLBPriu2
�,� . �e CLBPriu2�,� is simpli	ed in this

paper as CLBP�,� as well as the proposed CLTP operator.

3. Completed Local Ternary Pattern (CLTP)

In this section, we propose the framework of CLTP. Similar to
CLBP [28], the LTP is extended to completed modeling LTP
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(CLTP). Asmentioned before, the LTP ismore robust to noise
than LBP. Furthermore, construct the associated completed
Local Ternary Pattern that will help to enhance and increase
its the discriminating property. �e mathematical model of
LTP is shown in (3). In CLTP, local di
erence of the image is
decomposed into two sign complementary components and
two magnitude complementary components as follows:

�upper� = � (�� − (�� + �)) , �lower� = � (�� − (�� − �))
�upper
� = ������� − (�� + �)����� , �lower

� = ������� − (�� − �)����� ,
(10)

where ��, ��, and � are de	ned before in (1) and (3).

�en the �upper� and �lower� are used to build theCLTP S
upper
�,�

and CLTP Slower�,� , respectively, as follows:

CLTP S
upper
�,� = �−1∑

�=0
2�� (�� − (�� + �)) ,

�upper� = {1, �� ≥ �� + �,0, otherwise,
CLTP Slower�,� = �−1∑

�=0
2�� (�� − (�� − �)) ,

�lower� = {1, �� < �� − �,0, otherwise.
(11)

�e CLTP S�,� is the concatenation of the CLTP S
upper
�,�

and CLTP Slower�,� as follows:

CLTP S�,� = [CLTP S
upper
�,� CLTP Slower�,� ] , (12)

where ��, ��, �, �, and � in (11) are de	ned before in (3).
Similar to CLTP S�,�, the CLTP M�,� is built using

the two magnitude complementary components �upper
� and

�lower
� as follows:

CLTP M
upper
�,� = �−1∑

�=0
2�� (�upper

� , �) ,

� (�upper
� , �) = {{{

1, ������� − (�� + �)����� ≥ �,
0, ������� − (�� + �)����� < �,

(13)

CLTP Mlower
�,� = �−1∑

�=0
2�� (�lower

� , �) ,

� (�lower
� , �) = {{{

1, ������� − (�� − �)����� ≥ �,
0, ������� − (�� − �)����� < �,

(14)

CLTP M�,� = [CLTP M
upper
�,� CLTP Mlower

�,� ] , (15)

where ��, ��, �, �, and � in (13) and (14) are de	ned before in
(3) and � is de	ned in (6).

Moreover, the CLTP C
upper
�,� and CLTP Clower

�,� can be
mathematically described as follows:

CLTP C
upper
�,� = � (�upper� , ��) ,

CLTP Clower
�,� = � (�lower� , ��) ,

(16)

where �upper� = �� + �, �lower� = �� − � and �� is the average gray
level of the whole image.

�e proposed CLTP operators are combined into joint
or hybrid distributions to build the 	nal operator histogram
like the CLBP and CLBC [28, 30], respectively. In the CLTP,
the operators of the same type of pattern; that is, the upper
and the lower pattern are combined 	rst into joint or hybrid
distributions.�en their results are concatenated to build the
	nal operator histogram.�at mean number of bins of CLTP
is double in size than the number of bins of CLBP.

4. Experiments and Discussion

In this section, a series of experiments are performed to
evaluate the proposed CLTP. Four large and comprehensive
texture databases are used in these experiments. �ey are
the Outex database [31], Columbia-Utrecht Re�ection and
Texture (CUReT) database [32], UIUC database [33], and
XU HR database [34]. Empirically, the threshold value � is
set to 5.
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4.1. Dissimilarity Measuring Framework. Several metrics are
proposed for measuring the dissimilarity between two his-
tograms such as log-likelihood ratio, histogram intersection,
and chi-square statistic. Similar to [28, 30], the chi-square
statistic is used in this brief. �e  2 distance between two
histograms
 = ℎ� and� = �� where (� = 1, 2, 3, . . . ") can be
mathematically described as follows:

Dissimilarity
2 (
,�) =
�∑
�=1

(ℎ� − ��)2ℎ� + �� . (17)

Furthermore, the nearest neighborhood classi	er is used for
classi	cation in all experiments in this paper.

4.2. Experimental Results on the Outex Database. �e Outex
datasets (http://www.outex.oulu.	/index.php?page=classi	-
cation) include 16 test suites starting from Outex TC 00010
(TC10) to Outex TC 00016 (TC16) [31]. �ese suites were
collected under di
erent illumination, rotation, and scaling
conditions. Outex TC 00010 (TC10) and Outex TC 00012
(TC12) are considered as famous two test suites in Outex
datasets. �ese two suites have the same 24 classes of tex-
tures, which were collected under three di
erent illuminates
(“horizon,” “inca,” and “t184”) and nine di
erent rotation
angles (0∘, 5∘, 10∘, 15∘, 30∘, 45∘, 60∘, 75∘, and 90∘). For
each illumination and rotation situation, each class has 20
nonoverlapping texture samples with size of 128 × 128.
Examples of Outex images are shown in Figure 7. For TC10,480 images are used as training data. �ese are the images
of “inca” illumination condition and “0∘” angle rotation,
whereas the images under the remaining rotation angles and
“inca” illumination condition are used as testing data, that is,3840 images. �e training data in case of TC12 is the same as
TC10, while all images under “t184” or “horizon” illumination
conditions are used as testing data, that is, 4320 images
for “t184” and 4320 images for “horizon.” �e experimental
results of TC10, TC12 (t184), and TC12 (horizon) are shown
in Table 1.

From Table 1, the following points can be observed.
Firstly, the CLTP S, CLTP M, CLTP M/C, and CLTP S M/C
performed better than the similar CLBP and CLBC types
operators. Secondly, the CLTP S and CLTP M showed really
great discrimination capability than CLBP S and CLBP M,
and CLBC S and CLBC M, respectively, where the accu-
racy di
erence exceeded 10% in some cases. �irdly, the
CLTP S/M worked well with TC10 and TC12 for (� = 1 and� = 8), with TC12 for (� = 2 and � = 16) and only with
TC12 under “t184” illumination condition for (� = 3 and � =24). Finally, the CLTP S/M/C achieved the best classi	cation
accuracy with TC10 and TC12 for (� = 2 and � = 16)
and TC10 and TC12 under “t184” illumination condition for
(� = 3 and � = 24).
4.3. Experimental Results on CUReT Database. �e CUReT
dataset (http://www.robots.ox.ac.uk/∼vgg/research/texclass/
index.html) has 61 texture classes. In each class, there are
205 images subjected to di
erent illumination and viewpoints
conditions [32]. �e images in each class have di
erent
viewing angle shots. Out of 250 images in each class, there

are 118 image shots whose viewing angles are lesser than60∘. Examples of CUReT images are shown in Figure 8.
From these types of images, only 92 images are selected
a�er converting to gray scale and cropping to 200 × 200.
In each class, $ images from 92 are used as training data,
while the remaining (92 − $) are used as testing data. �e
	nal classi	cation accuracy is the average percentage over a
hundred random splits.�e CUReT average classi	cation for$ = (6, 12, 23, 46) is shown in Table 2. It is easier to note that
CLTP has better performance than CLBP and CLBC with the
CUReT database. Except CLTP S/M/C, all CLTP operators
are achieving higher classi	cation rates than other CLBP and
CLBC for all cases of $ images and at every radius. �e
CLTP S/M/C achieved the best classi	cation rates for all $
training images at radius 3, for 6, 23, and 64 training images
at radius 2 and for 6 training images only at radius 1, while
at radius 1, the CLBP S/M/C achieved the best classi	cation
rates for 12, 23, and 64 training images and for 12 training
images at radius 2.

4.4. Experimental Results on UIUC Database. �e UIUC
database has 25 classes containing the images captured under
signi	cant viewpoint variations. In each class, there are 40
images with resolution of 640 × 480. Examples of UIUC
images are shown in Figure 9. In each class, $ images from
40 are used as training data, while the remaining (40 − $)
are used as testing data. �e 	nal classi	cation accuracy
is the average percentage over a hundred random splits.
�e UIUC average classi	cation for $ = (5, 10, 15, 20) is
shown in Table 3. Except in case of CLTP S/M/C, all CLTP
operators achieved a higher performance than CLBP and
CLBC operators for all $ number of training images at
radiuses 1, 2, and 3. �e CLTP S/M/C outperformed the
CLBP S/M/C and CLBC S/M/C for all$ number of training
images when � = 3, � = 24, and � = 2, � = 16. On the other
hand, the CLBC S/M/C is the best one for small number of$, that is, 5 and 10; CLBP S/M/C is the best one for$ = 20
and the CLTP S/M/C is the best one for$ = 15.
4.5. Experimental Results on XU-HR Database. �e XU HR
database has 25 classes with 40 high resolution images (1280×960) in each class. Examples of XU-HR images are shown in
Figure 10. In each class,$ images from40 are used as training
data, while the remaining (40 − $) are used as testing data.
�e	nal classi	cation accuracy is the average percentage over
a hundred random splits. �e XU HR average classi	cation
for $ = (5, 10, 15, 20) is shown in Table 4. In XU HR
database, the CLTP achieved higher classi	cation rates than
CLBP for all $ training images with all types of radiuses.
�e CLTP S/M/C achieved an impressive classi	cation rate
reaching 99% when$ = 20 at (� = 3, � = 24). We compared
this database only with CLBP since HU HR results using
CLBC are not available in [30].

5. Conclusion

To overcome some drawbacks of LBP, an existing LTP
operator is extended to build a new texture operator, de	ned
as completed Local Ternary Pattern.�e proposed associated
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Table 1: Classi	cation rates (%) on TC10 and TC12 database.

� = 3, � = 24 � = 2, � = 16 � = 1, � = 8
TC10 TC12 Average TC10 TC12 Average TC10 TC12 Average

t184 Horizon t184 Horizon t184 Horizon

CLBP S 95.07 85.04 80.78 86.96 89.40 82.26 75.20 82.29 84.41 65.46 63.68 71.18
CLBC S [30] 91.35 83.82 82.75 85.97 88.67 82.57 77.41 82.88 82.94 65.02 63.17 70.38
CLTP S 98.20 93.59 89.42 93.74 96.95 90.16 86.94 91.35 94.14 75.88 73.96 81.33

CLBP M 95.52 81.18 78.65 85.12 93.67 73.79 72.40 79.95 81.74 59.30 62.77 67.94
CLBC M [30] 91.85 75.59 74.58 80.67 92.45 70.35 72.64 78.48 78.96 53.63 58.01 63.53
CLTP M 98.00 85.39 84.65 89.35 97.32 83.40 84.40 88.37 94.04 75.86 74.05 81.32

CLBP M/C 98.02 90.74 90.69 93.15 97.44 86.94 90.97 91.78 90.36 72.38 76.66 79.80
CLTP M/C 98.52 91.23 89.98 93.24 97.94 90.14 92.38 93.49 95.94 84.70 86.02 88.89

CLBP S M/C 98.33 94.05 92.40 94.93 98.02 90.99 91.08 93.36 94.53 81.87 82.52 86.31
CLTP S M/C 98.98 95.00 92.94 95.64 98.44 92.41 92.80 94.55 96.43 84.00 86.85 89.09

CLBP S/M 99.32 93.58 93.35 95.42 97.89 90.55 91.11 93.18 94.66 82.75 83.14 86.85
CLBC S/M [30] 98.70 91.41 90.25 93.45 98.10 89.95 90.42 92.82 95.23 82.13 83.59 86.98
CLTP S/M 99.04 94.14 92.59 95.26 97.84 92.06 92.69 94.20 96.41 82.85 84.81 88.02

CLBP S/M/C 98.93 95.32 94.53 96.26 98.72 93.54 93.91 95.39 96.56 90.30 92.29 93.05
CLBC S/M/C [30] 98.78 94.00 93.24 95.34 98.54 93.26 94.07 95.29 97.16 89.79 92.92 93.29
CLBC CLBP [30] 98.96 95.37 94.72 96.35 98.83 93.59 94.26 95.56 96.88 90.25 92.92 93.35

DLBPP [30] 98.10 91.60 87.40 92.37 97.70 92.10 88.70 92.83 — — — —
CLTP S/M/C 99.17 95.67 94.28 96.37 98.93 94.03 94.79 95.92 96.98 87.06 90.30 91.45

�e bold values indicate higher classi	cation rate.

Figure 7: Some images from Outex database.
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Table 2: Classi	cation rates (%) on CUReT database.

� = 3, � = 24 � = 2, � = 16 � = 1, � = 8
6 12 23 46 6 12 23 46 6 12 23 46

CLBP S [28] 66.94 75.26 81.80 87.31 63.49 72.68 79.49 85.35 59.00 67.81 74.62 80.70
CLBC S [30] 60.82 70.57 74.21 80.14 60.42 68.95 74.42 79.78 56.88 66.21 72.89 78.82
CLTP S 72.57 81.55 87.72 91.75 68.39 79.09 86.61 91.55 64.38 72.66 81.73 88.24

CLBP M [28] 62.57 71.93 79.89 86.49 58.57 68.28 76.11 83.03 51.77 60.33 67.73 75.16
CLBC M [30] 51.23 60.53 68.36 77.41 50.63 58.70 66.05 73.89 50.12 58.62 57.82 66.61
CLTP M 67.14 76.93 85.16 90.52 63.33 74.47 82.14 88.83 61.37 71.17 80.53 86.67

CLBP M/C [28] 68.71 78.54 86.04 91.65 64.81 75.56 82.98 89.75 56.53 67.15 75.58 82.97
CLTP M/C 70.10 80.12 89.02 93.58 66.77 77.12 85.51 91.67 62.07 72.94 82.26 88.98

CLBP S M/C [28] 73.29 82.28 89.28 94.07 70.27 80.47 87.57 92.78 66.63 76.54 85.02 90.55

CLTP S M/C 74.36 85.14 91.03 94.69 71.55 82.16 87.82 94.04 67.54 78.89 85.46 91.27

CLBP S/M [28] 74.95 84.30 90.83 94.53 74.63 83.44 89.67 93.85 71.86 82.27 88.57 93.46
CLBC S/M [30] 70.52 81.57 89.12 93.60 72.16 82.71 89.60 93.78 69.89 79.88 86.62 93.10
CLTP S/M 76.49 85.11 92.02 95.63 74.14 84.42 90.78 95.06 71.30 82.37 89.20 93.50

CLBP S/M/C [28] 76.80 86.54 92.00 95.72 76.07 85.73 92.15 95.67 74.35 85.06 91.52 95.70

CLBC S/M/C [30] 73.18 84.07 90.55 95.26 75.17 85.91 91.30 95.39 72.85 82.92 90.12 94.78
CLTP S/M/C 77.97 87.50 92.72 96.11 77.72 85.54 92.44 95.95 75.18 84.06 90.45 94.78

�e bold values indicate higher classi	cation rate.

Table 3: Classi	cation rates (%) on UIUC database.

� = 3, � = 24 � = 2, � = 16 � = 1, � = 8
5 10 15 20 5 10 15 20 5 10 15 20

CLBP S 44.87 54.68 60.63 64.20 41.80 51.34 56.80 60.60 40.05 47.53 51.63 55.29
CLBC S [30] 47.19 57.46 63.48 66.90 43.37 53.07 59.17 62.39 39.85 46.69 51.11 55.61
CLTP S 68.80 77.60 83.04 86.00 64.91 75.07 80.48 83.20 54.29 61.87 69.92 71.60

CLBP M 56.15 65.92 71.05 74.37 56.07 65.65 69.51 72.05 42.39 49.98 54.45 57.52
CLBC M [30] 51.68 60.62 66.63 69.33 50.67 59.01 64.42 67.10 39.04 45.51 49.42 52.12
CLTP M 69.94 79.33 82.56 85.20 70.29 79.33 83.36 85.40 57.49 64.67 69.60 73.60

CLBP M/C 68.08 76.75 80.81 83.27 68.45 76.83 80.14 82.72 56.92 65.09 69.81 72.66
CLTP M/C 76.80 83.47 87.20 88.60 77.37 83.60 87.04 89.40 70.06 76.93 80.48 81.80

CLBP S M/C 69.43 78.61 82.81 85.33 68.68 77.57 81.36 83.55 62.52 71.27 75.48 78.65
CLTP S M/C 77.26 84.67 88.48 90.60 77.37 84.27 87.84 89.80 68.80 77.33 80.48 83.60

CLBP S/M 72.05 82.63 86.88 89.56 71.80 80.85 85.31 87.60 64.70 74.65 79.55 82.58
CLBC S/M [30] 75.16 83.92 87.68 89.72 73.16 82.04 86.31 88.51 65.28 74.88 78.86 82.40
CLTP S/M 79.31 87.73 90.56 93.20 77.14 85.60 89.44 91.80 65.03 74.40 79.68 83.00

CLBP S/M/C 78.05 85.87 89.17 91.07 78.75 86.33 89.25 91.03 74.53 82.26 85.85 87.86

CLBC S/M/C [30] 79.75 86.45 90.10 91.39 79.48 86.63 89.66 91.04 74.57 82.35 85.66 87.83
CLTP S/M/C 82.97 88.93 91.52 94.40 82.63 87.87 90.40 92.60 74.51 81.73 85.92 86.80

�e bold values indicate higher classi	cation rate.

Table 4: Classi	cation rates (%) on XU HR database.

� = 3, � = 24 � = 2, � = 16 � = 1, � = 8
5 10 15 20 5 10 15 20 5 10 15 20

CLBP S 75.52 84.27 88.62 91.14 74.11 82.95 86.44 88.77 73.53 81.97 85.91 88.47
CLTP S 86.06 93.33 95.20 96.60 84.46 90.67 93.60 94.20 76.80 84.13 89.28 91.20

CLBP M 77.69 85.27 89.07 91.46 77.75 84.99 88.54 90.58 68.13 76.29 80.58 83.64
CLTP M 86.51 92.13 94.72 96.20 84.23 90.93 93.44 94.80 76.91 84.13 88.32 91.20

CLBP M/C 85.89 91.29 93.69 95.20 85.80 91.32 93.64 95.07 81.21 87.57 90.40 92.11
CLTP M/C 91.31 96.27 97.60 97.60 90.29 95.47 96.96 98.00 88.00 92.40 94.72 96.00

CLBP S M/C 87.26 92.54 94.67 96.06 87.23 92.66 94.72 95.98 86.37 91.60 93.57 94.65
CLTP S M/C 91.89 96.67 97.12 98.20 90.63 95.07 96.80 98.60 87.66 93.20 95.52 96.20

CLBP S/M 87.09 92.66 94.82 96.10 86.98 92.45 94.67 96.09 84.27 90.24 92.30 93.76
CLTP S/M 91.77 95.60 97.92 98.60 90.51 95.33 96.96 98.00 84.23 90.40 93.28 94.80

CLBP S/M/C 91.11 95.33 96.66 97.47 91.64 95.21 96.80 97.50 90.81 94.77 95.80 96.83
CLTP S/M/C 95.54 98.00 98.56 99.00 94.17 97.33 98.56 98.80 91.20 95.47 96.48 97.80

�e bold values indicate higher classi	cation rate.



8 �e Scienti	c World Journal

Figure 8: Some images from CUReT dataset.

Figure 9: Some images from UIUC database.
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Figure 10: Some images from XU-HR database.

completed Local Ternary Pattern (CLTP) scheme is evalu-
ated using four challenging texture databases for rotation
invariant texture classi	cation. �e experimental results in
this paper demonstrate the superiority of the proposed CLTP
against the new existing texture operators, that is, CLBP and
CLBC. �is is because the proposed CLTP is insensitive to
noise and has a high discriminating property that leads to
achieve impressive classi	cation accuracy rates.
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