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ABSTRACT Over the last few years, the analysis and modeling of networks as well as the analysis and mod-

eling of networked dynamical systems, has attracted considerable interdisciplinary interest, especially using

the complex systems theory. These efforts are driven by the fact that systems, as diverse as genetic networks or

the Internet can be effectively described as complex networks. Contrary, despite the unprecedented evolution

of technology, basic issues and fundamental principles related to the structural and evolutionary properties of

communication networks still remain largely unaddressed. The situation is even more complicated when we

attempt to model the mobile communication networks and especially the 5th generation (5G) and eventually

the forthcoming 6th generation (6G). In this work, we attempt to review basic models of complex networks

from a communication networks perspective, focusing on their structural and evolutionary properties. Based

on this review we aim to reveal the models of complex networks, that may apply when modeling the 5G

and 6G mobile communication networks. Furthermore, we expect to encourage the collaboration between

complex systems and networking theorists toward meeting the challenging demands of 5G networks and

beyond.

INDEX TERMS Complex systems, complex networks, networked complex system, 5G, 6G, wireless

communications, wireless networks, mobile communication networks, modeling.

I. INTRODUCTION

It is becoming apparent that many aspects of our environment

can be viewed as a networked world. From the commu-

nication networks themselves (Internet, wireless networks,

mobile networks, etc.) to the global ecosystem, from the

road traffic network to the stock markets, from biological

to social systems, massively interconnected and interacting

components make up relatively vital systems in this world.

These systems can be classified as complex systems.

Complex systems analysis can be considered as the sci-

ence that studies how the elements of a system develop its

collective behaviors, and how the system interacts with its

environment. Qualitatively, to understand the behavior of a

complex system we must initially understand not only the

behavior of its constituent elements but also how they act

together, to dictate the behavior of the entire system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Robert Hunjet.

Complex systems and their desired behavior, fre-

quently involve references to emergence, adaptability,

self-organization and evolution, resilience, robustness,

decentralization, flexibility, and speed. Recently, literature

focuses on the structural characteristics of complex systems

which in this context can be characterized as decentralized,

non-hierarchical, flat, amorphous, dispersed, and distributed

‘‘networks’’.

Complex systems, as networks of interacting entities are

studied empirically, with the assistance of the rapid increase

of available data of many different domains. Concurrently,

these different domains appear to share several new and

fundamental theoretical questions. This progress has encour-

aged the interdisciplinary development of the new science

of complex systems which now becomes a well established

scientific field.

The study of complex systems is about understanding indi-

rect effects. Problems that are difficult to solve are often hard

to understand because the causes and effects are not obviously

related to an observer. Towards this direction, complexity
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theory studies how patterns emerge through the interaction

of many interacting elements. In this space, emergent patterns

can be perceived but can hardly be, if at all, predicted. Patterns

may indeed repeat for a time, but we cannot be sure that they

will continue to repeat, because the underlying sources of the

patterns are not open to inspection (and observation of the

system may itself disrupt the patterns) [1].

Newman [2], state that there are three interrelated

approaches to the study of networked complex systems.

These are: (a) find statistical properties, such as path length

and degree distribution that characterize the structure and

dynamic behavior of networked systems, (b) build models

of networks that explain and help understand how they are

created and how they evolve, and (c) predict the behavior of

networked systems based on the measured statistical proper-

ties of the structure and the local properties of given vertices

(study pattern formation and evolution).

Nowadays, systems become increasingly larger acquiring

even more components, while the information flow in the

system increases at a fast pace. Mobile communication net-

works and especially the 5G and the forthcoming 6G, are

typical examples of systems that expand rapidly. Mastering

their complexity (the high level of interdependence between

their, often, very heterogeneous components), becomes a

major hurdle, threatening to disrupt the information revolu-

tion. Designing, controlling, modeling and monitoring the

behavior of such systems are the fundamental challenges

that should be addressed. We need new paradigms as we are

rapidly moving from systems based on closed hierarchical

or semi-hierarchical structures to open and distributed, net-

worked systems.

From a communication networks perspective, the key chal-

lenge is to learn how to design such networks that can

self-organize, self-adapt and optimize their interactions and

functions, in a continuous and robust manner to satisfy user

demand. Fundamentally, the complex systems field can pro-

vide models, theories, mechanisms and approaches that allow

for a principled designmethod to be developed, to address this

key challenge.

Mobile communications networks and especially the forth-

coming 5G networks, as well as the future 6G networks,

are getting more complicated and heterogeneous. The typical

operation of these networks with denser deployments, more

base stations, countless users, as well as the new technologies

that are expected to be introduced in 6G networks like the

Artificial Intelligence (AI), Machine Learning (ML), Tera-

hertz (THz) band communications, etc renders any known

information theory incapable to directly model the behavior

and their dynamics. This is further exacerbated, by the trend

toward the softwarisation of networking functionalities and

the dynamic orchestration of networked services [3]. Com-

plex systems theory could become a useful and effective

tool capable to model at some degree the behaviour of these

networks.

In this paper we present complex systems from a com-

munication networks perspective, revealing the issues and

challenges as well as the way forward, towards 6G mobile

communication networks. This work complements and

extends the Technical Report TR-07-01 [4], with a focus on

5G/6G communication networks. Whilst the main focus of

the study is 6G, most of the discussion is directly relevant to

the evolving 5G.

The rest of the paper is organized as follow: In Section II,

we briefly present some of the new challenges that are

expected to be introduced in 5G/6G Wireless Communi-

cation Networks. In Section III we present the basic con-

cepts of complex networks that are foreseen to appear

in 6G. In Section IV we present the Complex Adaptive Sys-

tems (CAS) Properties while in Section V we present specific

network modeling paradigms. In Section VI we introduce

the mobile communication networks as complex systems and

finally in Section VII a proposed way of modeling the 6G

networks. Finally, in Section VIII we present our conclusions.

II. NEW CHALLENGES INTRODUCED IN 6G MOBILE

COMMUNICATION NETWORKS

During the last two decades the cellular networks tech-

nology evolved from the 1st generation networks (1G) to

the fifth generation (5G). 5G mobile communications net-

works are expected to be launched during 2020, while the

research community has already started thinking how the

next generation of wireless communication networks will

be. A number of papers have been already published and

in principle the authors agree that the 6G networks will

introduce new technologies as well as revolutionary network

characteristics [3], [5], [6].

The 5G has already introduced a number of novel ideas

to meet the stringent requirements set out, as for exam-

ple, heterogeneity, ultra dense cells, mm-wave, etc [7], [8].

Beyond that, the softwarisation of networking functionali-

ties is widely socialized, as for example the Cloud- Native

architecture [5]. This architecture is based on a data center in

which all functions and service applications are running on

the cloud data center. The cloud- native end-to-end network

architecture, provides logically independent network slicing

on a single network infrastructure to meet diversified service

requirements and provides data center based cloud architec-

ture to support various application scenarios.

Furthermore, new ideas are flourishing for the forthcoming

6G; for example the revolutionary concept that is being pro-

moted for 6G networks and if adopted, is expected to change

the whole perspective of mobile communication networks is

the transformation from the ‘‘connected things’’ or Internet

of Things (IoT) or Internet from Everything to the ‘‘con-

nected intelligence’’ [9]. The ‘‘connected intelligence’’ with

Artificial Intelligence (AI) andMachine Learning (ML) tech-

nologies, imposes much more stringent performance require-

ments, which inevitably will change fundamental network

concepts and will increase the complexity of the network.

To achieve ‘‘connected intelligence’’ very high and reliable

data rates are required (approximately 1 Tb/s in many cases

[10], [11] or 100 Gb/s individual data rate according to [6],
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FIGURE 1. 5G service types [13].

as well as extremely low end-to-end latency, very high energy

efficiency, efficient cloud applications (offering network as

a service concept) and different and very broad frequency

bands (up to THz range). Further to this, the integration and

connection of terrestrial wireless systems with other systems,

such as satellite and networked cars, networked UAVs, etc.

will further increase the complexity of 6G systems.

According to the ITU [12] the 5G networks will support

three heterogeneous service type that will definitely become

the base for the 6G systems. These are the eMBB (enhanced

Mobile Broadband), URLLC (Ultra Reliable Low Latency

Communications) and mMTC (massive Machine Type Com-

munications) (Fig. 1).

The purpose of eMBB service is to support very high

peak data rates when the connections are stable, as well

as moderate rates for cell-edge users. The mMTC supports

very big number of devices which are active on demand or

periodically (e.g. IoTs orWireless Sensor Nodes that transmit

small amount of data). The purpose of URLLC is to enhance

the reliability of 5G networks by supporting transmissions of

small amount of data that require very low latency and very

high reliability from a specific number of devices. According

to [9] 6G will support, beyond these services, another three

advanced services. The Computation Oriented Communica-

tions (COC), the Contextually Agile eMBB Communica-

tions (CAeC) and the Event Defined uRLLC (EDuRLLC).

Computation Oriented Communications (COC) will ren-

der the devices capable to achieve a targeted computational

accuracy based on the availability of the communications

resources instead of the classical QoS methods that apply in

traditional networks, including 5G. The Contextually Agile

eMBB Communications (CAeC) will render the eMBB ser-

vice provided in 5G networks more adaptive to the con-

tent of network including the network performance indexes

like congestion, reliability, topology, location etc. The Event

Defined uRLLC (EDuRLLC) service, as opposed to the 5G

functionality, in 6G networks will have to support uRLLC in

extreme and emergency events with variable traffic patterns,

device densities etc. The complication is increased if we

count that 6G technologies are expected to transform the

world into a fully connected network that will turn several

concepts into reality. Autonomous driving, Internet of Vehi-

cles, space-air-ground integrated networks [14], virtual and

augmented reality, fully connected and controlled Unmanned

Air Vehicles (UAVs) [15], multi-way virtual meeting, vir-

tual augmented reality (VAR) based gaming and remote

surgery and holographic projection, will be some of these

applications.

A. NEW NETWORK CONCEPTS THAT

ADD TO COMPLEXITY

New network concepts that add to the complexity of the

system are expected to be developed in 6G networks. Below

the most important are presented.

1) DYNAMIC TOPOLOGY

The topology in 6G is expected to be completely dynamic.

The fact that each user through its device or the plethora

of smart devices that will form the IoT networks will be

connected dynamically to the network that provides the best

quality of service at the present moment, will drastically

change the network dynamics. Autonomous driving Vehicles,

Unmmaned Air Vehicles (UAVs), drones, satellite and radar

communication, as well as the fact the many of these devices

will be fast moving nodes will also add to the complexity.

The need to correctly model the interference dynamics so

that the nodes can quickly handover to the sub-network that

provides the best quality will inevitably lead to the need for

new mathematics and complex analysis models.

2) THz FREQUENCIES

The requirements for higher data rates and high spectral

and energy efficiency (SEE) imposes the exploitation of

frequencies beyond mmWave, at the terahertz (THz) band.

This will lead to the development of ‘‘tiny cells’’ whose

radius is only a few meters. These ‘‘tiny cells’’ will drive

towards much denser deployments. Denser deployments will

inevitably force the researchers to think of new traffic man-

agement techniques, new mobility management, congestion

control algorithms etc. The very high THz path loss, the high

sensitivity, high power and low noise will lead to a better

understanding of physical layer properties and this under-

standing to the development of new MAC, link-layer and

network protocols capitalizing on programmable e-m wave

control [16], [17], to cope with the varying and unstable

behaviour of the mmWave and THz environments.

3) ACCESS NETWORK FOR BACKHAUL TRAFFIC

According to the ITU focus group, the technologies for net-

works, 2030 (FG NET-2030) will require a huge increase

in data growth which may render the access networks for

Backhaul incapable to cope with it, as well as with the other
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quality requirement of the 6G technology. According to [6]

measures to enhance research at higher bands like D-Band

where the 60GHz spectrum is available will be embodied.

More exotic, as for example, free space optical communica-

tions and quantum communications could also be consirered

for 6G backhaul to meet the requirements. On the other hand

in [18] the authors suggest to employ drones to complement

terrestrial networks by providing connectivity to hotspots

and to areas with scarce infrastructure. Drones and terrestrial

base stations may require satellite connectivity with low orbit

satellites (LEO) and CubeSats, to provide backhaul support

and to increase wide area coverage. As we have already

stated above, and as it is presented in [19] and [20] the

integration of terrestrial, airborne, and satellite networks into

a single wireless system will be essential for 6G. The Drones

technologymay lead to cell-free or UAVwireless networks or

dronecells as described in [6]. All in all, the access networks

for Backhaul is expected to be highly dynamic.

4) ARTIFICIAL INTELLIGENCE (AI) AND

MACHINE LEARNING (ML)

Due to the complexity of 6G networks, it is expected that AI

will be a key factor, critical for the successful and efficient

operation of these networks. AI has already been used in

wireless communications in every layer of the OSI stack. For

example, in the physical layer for channel precoding, in net-

work layer for traffic control, for fault prediction, authen-

tication etc [9]. Regarding 6G networks, AI is expected to

facilitate their operation since it is expected to leverage their

complexity. The vast heterogeneity between the applications,

the users and the supporting infrastructure render impossible

to achieve any guaranteed performance without AI (Fig.2).

The potential Terahertz or mmWave channels add to the com-

plexity and non-linearity and add to the difficulty of modeling

the wireless channels. A pervasive introduction of artificial

intelligence at the edge of the network is expected to play

a key role in aspects like semantic communication, machine

learning and deep neural networks as well as to the holistic

management of communication, computation, caching and

control (C4) resources [3].

5) NETWORK FUNCTIONS VIRTUALIZATION (NFV) AND

SOFTWARE DEFINED NETWORKING (SDN)

NFV and SDN are two functions that depend on virtualiza-

tion. The purpose of these functions is to enable network

design and infrastructure in software and then implemen-

tation by the underlying software across generic hardware

platforms and devices. In principle, the SDN focus in sep-

arating network control functions from network forwarding

functions, while NFV to remove network forwarding and

other networking functions from the hardware on which it

runs [21], leading to the softwarisation of networking func-

tions. Network services orchestration, which is the execu-

tion of the operational and functional processes involved in

designing, creating, and delivering an end-to-end service,

add another layer of complexity. Artificial Intelligence, and

FIGURE 2. Artificial intelligence in 6G [6].

Machine Learning, SDN, NFV will enhance adaptivity in 6G

networks and as a result complex dynamical systems theory

will be relevant.

6) BLOCKCHAIN

Blockchain is also a technology that is expected to flourish

in 6G networks, since it is considered a technology that can

significantly contribute to the management of the massive

data that are expected to be created and handled in 6G com-

munication networks. The blockchain is managed by peer-

to-peer networks and it can exist without being managed by

a centralized authority or a server. Blockchain technology is

expected to provide several facilities, such as interoperabil-

ity across devices, traceability of massive data, autonomic

interactions of different IoT systems, and reliability for the

massive connectivity of 6G communication systems [22].

Blockchain traffic obeys to small world models and power

laws as analyzed below.

7) MOVING NETWORKS

As technology evolves, the number of users that will demand

high quality Internet services whilst being on a moving

vehicle/train/plane etc is massively increasing. These users

demand the same level of service as the static infrastructure

users and 6G networks should be able to provide it. To address

these concerns the concept of Moving Networks has been

introduced [23]. Moving networks are a special category

of ad- hoc networks where nodes move. Mobile nodes and

Mobile Relay Nodes that typically use mobile small cells

have already been proposed (e.g. see [23], [24]), to facilitate

the provision of high speed internet to the ‘‘moving’’ users.

Moving networks, due to their highly volatile nature, expe-

rience significant quality issues since Vehicular Penetration

Loss (VPL) can be observed due to the velocity of the vehicles

and the attenuation of the radio signals that travel from the

base station (BS) to the users devices, inside the vehicles or

even to the vehicles themselves. This fact, inevitably, leads
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to increased interference and poor performance [25]. Moving

devices may suffer from low signal quality caused by the poor

macro antenna coverage of base stations inside vehicles with

metallic walls. According to [25], in such cases, the Vehicular

Penetration Loss (VPL) can be as high as 25 dB in a minivan

at the frequency of 2.4 GHz, with higher VPLs expected in

higher frequency bands as well as in well insulated, metal

high speed transportation means (trains, small airplanes etc).

The problem is expected to intensify, when future mobile

communication networks commence their operation in higher

communication frequencies.

An effective solution to VPL could be network densifica-

tion. Although, denser deployments lead to higher inter- cell

interference, an advantage of Mobile Nodes (MNs) is that,

compared to regular user equipment (UE) devices, the MNs

are less constrained by power and transceiver complexity

[26]. Therefore, advanced algorithms, sophisticated multi-

antenna solutions and more advanced signal processing tech-

niques can be integrated into Mobile Relay Nodes (MRNs) to

cancel interference [27]. According to [25] significant perfor-

mance improvements were shown in both urban and rural sce-

narios, considering a ground moving vehicle. Furthermore,

to meet the increasing bandwidth demands [25] proposes to

adopt mm-wave technology in the Moving Networks, which

will however exacerbate above stated losses.

Another concept that can potentially alleviate the above-

mentioned problem is aerial assisted 6G communication net-

works, with the employment of e.g. unmanned aerial vehicles

(UAVs). Providing connectivity to aerial users such as cellular

connected UAVs is also a key challenge for tomorrow’s cellu-

lar systems [28]. Concepts like adjoin beam-forming capable

to provide content delivery to aerial users that exist together

with several ground users, is under research. In this case

a network that consists of massive multiple-input multiple-

output (MIMO)-enabled ground BSs, which are uniformly

distributed and are capable to serve both aerial and ground

users through spatial multiplexing is investigated. Hyper-

surfaces, described next, can also be adopted to provide a

software programmable, hence predictable, wireless environ-

ment.

8) HYPERSURFACES, INTELLIGENT SURFACES,

ULTRA MASSIVE MIMO

Hypersurfaces (HSF) [29], Reconfigurable Intelligent Sur-

faces (RIS) [30]–[32], and Ultra-Massive MIMO [33], [34]

are promising emerging hardware technology to improve

the spectrum and energy efficiency of wireless networks.

Ultra-Massive MIMOs use a large number of antenna arrays

to change their radiation patterns over time and frequency,

for both transmission and reception [33]. HSFs reconfig-

ure the propagation environment of electromagnetic waves

[29] through programmatically controlled metasurfaces to

suit given objectives [16]. RIS, a related concept, comprises

an array of RIS units, each of which can independently incur

some change to the incident e-m signal [30]. HSF/RIS, in con-

trast to MIMOs, do not need any dedicated energy sources,

and as they have no analog or digital circuitry they are also

immune to noise, they have a large frequency response (Mhz

to Thz), and due to their almost 2-D surface they can be

deployed in walls and objects, indoor or outdoor in ground

or aerial moving networks. Below we focus our discussion

on HSFs.

Metasurfaces are thin film planar, artificial structures

that have recently enabled the realization of novel electro-

magnetic (EM) and optical components with engineerable

functionalities. These include total EM radiation absorption,

filtering and steering, as well as nano-antennas for sensors

and implantable devices. They constitute the state-of-the-art

way for manipulating electromagnetic energy in completely

custom manners, even in ways not achievable with solutions

based on natural materials. Electromagnetic cloaking, for

instance, constitutes a very well-known application example:

an object is coated with a metasurface, making it completely

invisible to electromagnetic waves.

Nonetheless, the impressive capabilities of metasurfaces

remained ‘‘disconnected’’ from real-world applicability in a

sense. There was no straightforward way of having a ‘‘plug-

and-play’’ metasurface, that gets installed within an envi-

ronment and actively alters it in an easy-to-integrate way.

The recently proposed concept of HyperSurfaces provided

an answer to this challenge by proposing a new hardware

platform that can host metasurface functionalities described

in software. The key ideas are: i) to make the hardware com-

ponents compatible with existing connectivity standards, and

ii) allow any software developer to integrate the capabilities

of metasurfaces in novel applications.

HyperSurfaces model the physical capabilities of metasur-

faces (e.g., their ability to manipulate electromagnetic waves

by steering to custom reflection directions) in the form of

software components, expressing them as ‘‘Virtual Meta-

surface Functions’’ [16]. Subsequently, they allow for the

interplay of these functionalities, i.e., their configuration and

combination over a metasurface via common communication

protocols. Allowing for direct integration to control loops

without requiring knowledge on Physics, the HyperSurfaces

seek to bring the metasurface capabilities for manipulating

electromagnetic waves to the 6G world. With these novel

inteconnection capabilities added, HyperSurfaces introduced

the first approach for internetworking metasurfaces. A novel

problem that has been posed is the end-to-end configuration

of HyperSurfaces, i.e., which types of wave manipulation

functionalities to deploy at each HyperSurface unit, in order

to maximize a wireless system’s performance objectives.

Examples include massive connectivity even in NLOS areas,

near perfect interference cancellation and wireless power

transfer. The proposed modeling approach is a complex

multigraph [16], where HyperSurface units act as vertexes,

and connectable HyperSurfaces are mapped to edges. More-

over, the graph is time-variant (due to changes in the environ-

ment such as user device mobility) and non-linear, meaning

that the egress edge weights of a node are dependent on the

ingress edge (wireless e-m wave arrival direction). Due to the
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peculiarities of the metasurface Physics, even simple path-

finding processes in this type of graphs is a very complex

process, requiring new approaches for its resolution.

III. BASIC CONCEPTS OF COMPLEX SYSTEMS

It is beyond any doubt that classical Physics, a traditional

science discipline, has developed many successful tools for

predicting the behavior of a system as a whole from the

properties of its constituents. The success of this modeling

is based on the simplicity of the interactions between the

elements according to which there is no ambiguity as to what

interacts with what, and the interaction strength is uniquely

determined by the ‘‘physical distance’’ [35].

On the other hand, for many complex systems, including

biological and man-made, with non-trivial network topology

such ambiguity is naturally present. In the past few years

many researchers studied the structure and function of com-

plex networks [2] and they have increasingly recognized that

the tools of complex theory offered a promising framework

for describing these systems [36].

Nowadays, there is an increasing need to move beyond

classical physics-based approaches and try to understand the

behavior of the system as a whole. Towards this direction,

understanding the topology of the interactions between the

components is unavoidable. In accordance with [36], there

are three basic concepts that occupy a prominent place in

contemporary thinking about complex systems, which are

defined below:

• Small world: According to [37] a small-world network

is a type of mathematical graph where although most

nodes are not neighbors of each others, their neighbors

could be neighbors with the neighbors of the other

nodes, and most nodes can be reached from every other

node by a small number of hops or steps. The small-

world concept, in simple terms, describes the fact that

despite their often large size, in most networks there

is a relatively short path between any two nodes. The

distance between the two nodes is defined as the number

of edges along the shortest path connecting them. The

short path lengths also appear in random graphs, but

in random graphs the clustering coefficient is consid-

erably small due to the fact that edges are distributed

randomly [38].

• Clustering: A common property of social networks is

the cliques formed, which represents circles of friends

or acquaintances in which every member knows every

other member. The inherent tendency to cluster is quan-

tified by the clustering coefficient [37], a concept that

has its roots in sociology. The clustering coefficient

of node i is the ratio of the actual number of edges

connecting the nodes with their immediate k neighbors

to the number of edges in a fully connected network of

those k nodes, denoted by Ci:

Ci =
2Ei

ki(ki − 1)
, (1)

where Ei is the number of edges leaving from node i

towards its ki neighbours. The clustering coefficient of

the entire network is the average of all individual Ci’s.

• Degree distribution: Not all nodes in a network have

the same number of edges (same node degree). The

spread in the node degrees is characterized by a distri-

bution function p(k), which gives the probability that a

randomly selected node has exactly k edges.

Based on the aforementioned attributes, the three robust

measures that are used to analyze a network topology are:

average path length, clustering coefficient and degree distri-

bution. All of the three concepts above are expected to apply

in the context of 6G networks. The ‘‘Small World’’ concept

is a concept that fully applies in the 6G networks since the

expected development of ‘‘tiny cells’’ whose radius is only

few meters as well as the network slicing can be considered

as an application of the ‘‘Small World’’ concept. In this

type of networks, the small-world network has a small mean

distance between the nodes since the communication takes

place though cellular hubs. This property is often analyzed

by considering the fraction of nodes in the network that

have a particular number of connections going into them (the

degree distribution of the network). Networks with a greater

than expected number of cellular hubs will have a greater

fraction of nodes with high degree, and consequently the

degree distribution will be enriched at high degree values.

Regarding clustering, even though, there are a number of

techniques used to attain better load, delay and throughput,

as for example in WLANs (Wireless Local Area Networks)

networks and 5G networks, the clustering of the nodes is

considered as the best method, since it aims to reduce the

delay and enhance the throughput as well as load and also

increases the life span of the network [39]. Clustering is

expected to dominate in 6G networks.

Below, we focus on complex adaptive systems, a special

class of complex systems which are expected to play a central

role in 6G.

IV. COMPLEX ADAPTIVE SYSTEMS (CAS) PROPERTIES

Complex adaptive systems can be seen as subsets of com-

plex systems. They are complex in the sense that they are

diverse and made up of multiple interconnected elements and

adaptive in that they have the capacity to learn and change

over time based on experience. Organized behavior emerges

from the simultaneous interactions of elements without any

global plan. Figure 3 depicts a complex adaptive system

model which takes into account the internal and external

processes and interactions. Artificial Intelligence (AI) and

Machine Learning (ML) are fundamental adaptive properties

of 6G networks.

Complex adaptive systems encompassmany properties and

the most important of them are listed below:
• Many interacting parts: The sole components of a

system are known as elements as, for example, the air

and water molecules in a weather system, the flora and

fauna in an ecosystem and the many heterogeneous,
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FIGURE 3. Complex adaptive system model [40].

dynamically interconnected nodes in 6G, which are arbi-

trarily interconnected. These elements interact with each

other as well as with their environment in unpredictable

and unplanned ways. But from this mass of interactions

regularities emerge and start to form a pattern which

feeds back on the system and informs the interactions

of the elements. For example, in an ecosystem if a virus

starts to deplete one species, this results in a greater

or smaller food supply for others in the system which

affects their behavior and their numbers. A period of flux

occurs in all the populations in the system until a new

balance is established.

• Evolution and Cooperation: A complex system con-

sists of many interacting elements that may compete or

cooperate in different times. This behavior is primar-

ily based on the heterogeneity of the constituent com-

ponents that have different attributes and capabilities

and therefore depending on the particular cooperative

links can potentially perform multiple and diverse tasks.

Under these circumstances, evolution results from the

process of creating linkages between elements so that

the result will be successful in the environment. There-

fore, the essential ability of an evolutionary network

appears to be its capability to create cooperative links

that lead to an overall successful result in the environ-

ment. Individuals are therefore searching for a situation

in which they fit into the ‘‘inner’’ environment made up

of the particular counterpart to which they are linked

in the network, and also in which the overall effect of

the partners working together fulfill some requirements

in the external environment. Stability arises when each

individual fits successfully in the counterpart, and the

counterpart fits successfully in the wider environment.

In case of external perturbations causing a change in

the stable state of the environment, then the alliance as

well as each individual that may participate within the

alliance will need to evolve.

This discussion sheds light on the aspects concerning

the interactions of individuals within a system which

are bound to change the environment these individuals

live in. By closing the feedback loop in the evolutionary

explanation, a new mathematical theory of the evolution

of complex adaptive systems arises. It is this general the-

oretical option that lies at the core of the emerging field

of complex adaptive systems. Consequently, a major

promise in the study of complex adaptive systems is to

elucidate the long-term effects of the interactions among

the evolutionary complex processes and provide causal

explanations for phenomena that are highly improbable

in common sense.

• Emergent Behaviour: Emergence is the process of

deriving some new and coherent structures, patterns and

properties in a complex system which were not pre-

viously observed. Emergent phenomena occur due to

the pattern of interactions (non-linear and decentralized)

between the elements of the system over time. More

generally, it refers on how the behavior at a larger scale

of the system arises from the detailed structure, behavior

and relationships on a finer scale. One of the main points

about emergent phenomena is that they are observable

at a macro-level, even though they are generated by

micro-level elements. In the extreme, it is about how

macroscopic behavior arises frommicroscopic behavior.

• Degeneracy: According to [41], degeneracy is the abil-

ity of elements that are structurally different to perform

the same function or yield the same output. It is a ubiq-

uitous characteristic of biological systems, existing at all

levels of biological organization, i.e. at genetic, cellular,

system, and population levels, and that it is both neces-

sary for, and an inevitable outcome of, natural selection.

As a result, two primary degenerate system attributes

are identified in [42]: system robustness without com-

promising efficiency; and increased adaptability based

on providing multiple options to deal with changes.

Hence, they argue that degeneracy enables robustness

and evolution through diversity, essential properties of

complex systems.

• Adaptability: In the most general sense, adaptation is a

feedback process in which external changes in an envi-

ronment are mirrored by compensatory internal changes

in an adaptive system. In the simplest case, an adaptive

systemmay act in a regulatorymanner, like a thermostat,

so as to maintain some property of the system at a

constant level. An interesting type of adaptation is found

in complex systems in which the interactions among the

constituent elements are allowed to change. This process

is very similar to a self-modifying program, since the

actions of the adaptive unit can affect the environment,

which, in turn, feeds information back to the adaptive

system. Thus, adaptation, in this sense, can be seen as

a computation of the most complex form that emerges

through the multiplicity and recursion of simple ele-

ments or subsystems.

• Self-Organization: Self-organization is the evolution

of a system into an organized form in the absence

of external direction, manipulation or control. In other
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words, the constraints on the organization of the system

are internal phenomena, resulting from the interactions

among the components and usually independent of their

physical nature. The dynamics of a self-organizing sys-

tem are typically non-linear, because of circular or feed-

back relations between the components. Two types of

feedback loops exist, positive feedback loop and neg-

ative feedback loop. In a positive feedback loop the

system responds in the same direction as the pertur-

bation. The end result of a positive feedback is often

amplifying and ‘‘explosive’’. That is, a small pertur-

bation will result in big changes. This feedback, will

drive the system even further away from its own orig-

inal set-point, thus amplifying the original perturbation

signal, and eventually to become explosive because the

amplification often grows exponentially (with the first

order positive feedback), or even hyperbolically (with

the second order positive feedback). On the other hand,

in negative feedback loop the system responds in an

opposite direction to the perturbation. It is a process of

feeding back to the input a part of a system’s output,

so as to reverse the direction of change of the output.

This tends to keep the output from changing, so it is

stabilizing and attempts to maintain constant conditions.

This often results in equilibrium (in physical science)

or homeostasis (in biology) such that the system will

return to its original setpoint. While self-organization

will often be in response to the system’s environ-

ment, it will not be directly controlled by the envi-

ronment nor has it been designed by someone outside

the system. A complex adaptive system is continually

self-organizing through the process of emergence and

feedback. The research on self-organization tries to find

general rules about the growth and evolution of systemic

structures, the forms it might take, and seeks for methods

that may predict the future results of self-organizing

processes.

• Decentralization: Decentralized operation can provide

a degree of scalability and robustness that cannot be

achieved with centralized architectures. Decentraliza-

tion achieves modularity and increases reliability by

reducing explicit dependence on a few central nodes.

In particular, it can permit a network of nodes to

exchange information and coordinate activities in a flex-

ible and scalable architecture that would be impracti-

cal or impossible to achieve with a single, monolithic

systems platform. Moreover, decentralized systems pro-

vide adaptability and intelligence as the system can

be ‘smarter’ than its constituent smartest element. It is

worth to mention that decentralized and distributed sys-

tems are two different approaches. In distributed sys-

tems, the decision is made by a negotiation process

between the executive components and executed by

them. In decentralized systems each executive compo-

nent makes its own decisions and executes only these

decisions.

• Robustness: Robustness refers most commonly to the

structural and other properties of a system that allow

it to withstand or tolerate stress, perturbations or vari-

ations in its internal structure or external environment

without malfunctioning but at the same time without

in any way durably changing either its structure or its

dynamics. In other words, it is the ability of a net-

worked system to sustain a giant component. Recent

work on network theory has started to address the ques-

tion of the robustness of complex networks to failure

and directed attacks. It suggests that the network con-

nectivity, and hence its functionality, is robust against

random failure of nodes [43]–[45] and to some extent is

even robust against intentional attacks [46]. Moreover,

researches [47] showed that for many physical networks,

the removal of nodes can have a much more devastating

consequence when the intrinsic dynamics of flows of

physical quantities in the network is taken into account.

• Resilience: As defined by [48], resilience refers to ‘‘the

capacity of a system to absorb and utilize or even benefit

from perturbations and changes that attain it, and so

to persist without a qualitative change in the system

structure.’’ Such a system may, however, take new exter-

nal conditions into account by absorbing them into its

mode of functioning. The difference (if any) between

resilience and robustness thus seems to lie in the extent

to which (non-structural) changes in the dynamics may

be introduced into a system under the impact of changes

in external circumstances. When networked systems

break down or are subject to attack, problems can cas-

cade throughout the infrastructure, capable of disabling

the network almost entirely. Under these circumstances,

resilience can be seen as the ability of systems to respond

in ways that rectify themselves or rapidly contain the

consequences of the accident or deliberate disruption

and keep operative at an acceptable level. Recently,

there has been much interest in the resilience of real-

world networks to failure of nodes or to intentional

attacks [43]–[45].

• Non-linearities: Complex adaptive systems are gov-

erned by non-linear interactions. Therefore, the output of

such a system is not proportional to its input. This deduc-

tion is driven by the observation that we cannot predict

how a system will work by understanding the behavior

of the constituent elements separately, and combining

them additively. Furthermore, a salient property of most

dynamical processes in complex systems is their almost

unavoidable nonlinearity. Part of the recent interest in

the study of dynamics on complex networks comes from

the understanding that techniques and expertise devel-

oped in the study of nonlinear dynamics and chaos can

be useful in the study of such nonlinear systems.

5G and 6G mobile communication networks are complex

adaptive systems where all the concepts presented above

apply to some degree. The 5G and 6G networks can be

engineered, analyzed and modeled at a degree within the

89014 VOLUME 8, 2020



C. Sergiou et al.: Complex Systems: Communication Networks Perspective Towards 6G

complex systems framework and hence provide for a more

predictable and controllable network.

Next, we will focus on the characterization of various

network models, which created considerable attention within

the networking world.

V. SPECIFIC NETWORK MODELING PARADIGMS

Recent advances in the characterization of complex systems

have given rise to the revival of network modeling, resulting

in the introduction and study of five main classes of modeling

paradigms, expected to be relevant to 6G.

A. RANDOM NETWORKS

For more than 40 years, science treated complex networks

as being completely random. This paradigm has its roots

in the work of Alfred Renyi and Paul Erdos ([49], [50])

who addressed for the first time in history one of the

most fundamental questions pertaining to our understand-

ing of our interconnected universe: How do networks form?

Their solution laid the foundation of the theory of random

networks which came to dominate our idea on network

modeling.

Those pioneering studies of network structure were

focused on random networks, of which nodes have equal

probability of connecting with each other. Random networks,

which are variants of the Erdos-Renyi model [49], [50], are

still widely used in many fields and serve as a benchmark

for many modeling and empirical studies. This paradigm of

network modeling can be characterized by (a) a low average

path length, (b) a small clustering coefficient, and (c) a degree

distribution following a Poisson distribution with a bell shape

as depicted in Fig. 4. The latter characteristic reveals that

although not all nodes in this kind of network would be

connected to the same degree, most would have a number of

connections hovering around a small, average value.

FIGURE 4. Poisson degree distribution.

Random networks are robust to coordinated attacks (that

is, to the selection and removal of a few nodes that play a

crucial role in maintaining the network’s connectivity) [51]

but on the other hand are intolerant to accidental failure due to

the fact that they are not highly interconnected. Specifically,

the connectedness of a randomly distributed network decays

steadily as nodes fail, slowly breaking into smaller, separate

domains that are unable to communicate.

B. SMALL-WORLD NETWORKS

Motivated by the inefficiency of both random networks and

regular lattices to provide an adequate framework within

which to study real-world complex networks, a new class

of models collectively called small-world models was intro-

duced byWatts and Strongatz in 1998 [37]. Small world mod-

els interpolate between the highly clustered regular lattices

and random graphs (as shown in Fig. 5). In particular, these

models have a high degree of local clustering or cliqueness

(like a regular lattice network) and a relatively short average

minimum path (like a completely random network) often

socialised in the literature to the ‘six degrees of separation’

property.

In their pioneering article [37],Watts and Strongatz studied

a simple model starting from an ordered finite-dimensional

ring lattice with N nodes connected to their first K neighbors

(having N ≫ K ) as shown in Fig. 5a and replacing the

original links by random ones with some probability 0 ≤

p ≤ 1. By varying p, Watts and Strongatz could closely

monitor the transition between order (p = 0 and Fig. 5a)

and randomness (p = 1 and Fig. 5c). They found that this

model paradigm is able to transform a ‘sparse’ network (i.e. a

regular lattice withN ≫ K ) into a small-world with relatively

short paths between any two nodes by setting p between

zero and 1 (0 < p < 1 and Fig. 5b). Moreover, the new

model was found to be much more highly clustered than a

random graph.

According to Watts and Strogatz [37], ‘‘models of dynam-

ical systems with small-world coupling display enhanced

signal propagation speed, computational power, and syn-

chronizability.’’ These findings have profound implications

for many real systems. In a telecommunication network for

example, ‘small-world connectivity’ might improve the ease

with which data diffuses through the system. In a transporta-

tion network, ‘small-world topology’ could improve the flow

of people or goods through the network.

Taking all these into consideration, the obvious inference

is that the Watts and Strogatz model addresses the connec-

tivity issue of a network but on the other hand it does not

say anything on how nodes would use shortcuts to reach

remote nodes. Similarly, there are some important issues that

are not addressed by the small-world model as, for exam-

ple, the affect of mobility on the small-world networks as

well as the robustness, efficiency and scalability of those

networks.

In principle, small-worlds networks are characterized by

(a) a high clustering coefficient like regular lattices, and (b) a

short characteristic path length as well as a degree distribution

typical of random networks. It is believed that many real

world networks including social networks (e.g. film actors),

the electrical power grid, and the neural network of the nema-

tode worm C.elegans (studied in [37]), exhibit small-world

phenomenon, but the real challenge is how to impose it on an

engineered dynamic system as, for instance Mobile Ad-hoc

Networks (MANETs) or Wireless Sensor Networks (WSNs),

or even 5G and 6G networks.
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FIGURE 5. A small world network is between a regular lattice network and a random network.
After [37].

FIGURE 6. Network modeling paradigms.

C. SCALE-FREE NETWORKS

In the late 1990s, attempts were made to explore and explain

the structure of the World Wide Web. Researchers tried to

apply the concept of small worlds to explain the functionality

of the web, but this didn’t quite work, although the web

was considered a small-world rather than a random network.

The reason was that in the small-world model of Watts and

Strogatz, each node has only a few connections compared

to the total number of nodes in the system as can be seen

in Fig. 6.

Those research efforts led to one of the most interesting

developments in the understanding of complex networks; the

discovery that for most large networks the degree distribution

significantly deviates from a Poisson distribution. In par-

ticular, for a large number of real networks, including the

World Wide Web (WWW) [52], the Internet [53], the mail

network [54], [55], etc., the degree of distribution was found

to follow a power-law tail, p(k) ∼ k−γ as illustrated in Fig. 7,

which defines the probability of a node having k edges. These

network topologies that exhibit power-law distributions in the

connectivity of network nodes were originally introduced by

Barabasi and Albert [56] as generic, yet universal network

models called scale-free models, aiming to offer a universal

theory of network evolution by focusing on the network

dynamics. At this point it is important to mention that accord-

ing to the latest research work [57] the theories presented

above may not be as valid for the Internet since, as it is

shown in [57], recent measurements indicate that the Internet

ecosystem is rapidly evolving from amulti-tier hierarchy built

FIGURE 7. Power-law tail.

mostly with transit (customer-provider) links to a dense mesh

formed with mostly peering links. In this work, authors, study

this evolutionary transition with an agent-based network for-

mation model. The suggested model predicts several substan-

tial differences between the Hierarchical Internet and the Flat

Internet in terms of topological structure, path lengths, inter-

domain traffic flow, and the profitability of transit providers.

Another work that reinforces the statement above is presented

in [58]. In this work authors claim that scale-free networks are

rare. This statement is based on the work they have performed

to study the universality of scale-free structure by applying

state-of-the-art statistical tools to 1000 network data sets of

different categories. According to their results they found

that scale-free networks are rare, with only 4% exhibiting the

strongest-possible evidence of scale-free structure and 52%

exhibiting the weakest-possible evidence.

Contrary to the model of small-world networks which

introduces isolated clusters of highly interconnected nodes,
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FIGURE 8. Birth of a scale-free network based on Barabasi-Albert
model [59].

scale-free networks consist of highly connected hubs that

hold together the network. It seems that these two network

theory approaches run counter, but can also be compatible,

as stated in [59], which demonstrates that ‘‘a network can

be both highly clustered and scale-free when small, tightly

interlinked clusters of nodes are connected into larger, less

cohesive groups. This type of hierarchy appears to exist in

a number of systems, from the World Wide Web (in which

clusters are groupings of web pages devoted to the same

topic) to a cell (in which clusters are teams of molecules

responsible for a specific function)’’.

The random and small-world networks models are formed

by a fixed number of nodes N, that are randomly connected

or rewired. Additionally, it is assumed that new edges are

placed randomly, something which more specifically means

that the probability that two nodes are connected (or their link

is rewired) does not depend on the node’s degree. These two

assumptions do not apply in most real world networks as, for

example, the Internet and the World Wide Web. Towards this

direction, a variety of approaches for generating ensembles of

graphs having scale-free characteristics have been proposed

including the preferential attachment (Barabasi-Albert model

[56]), power-law random graph [60], the linearized chord

diagram (LCD) model [61], etc.

1) BARABASI-ALBERT (BA) MODEL

The first and perhaps the most studied of the models in

this vein, is the Barabasi-Albert model [56]. This model is

based on two key features, namely growth and preferential

attachment which are shown in Fig. 8. The term growth refers

to the continuous addition of new vertices and edges to the

network, as for example, the WWW grows exponentially by

adding newweb pages. In addition, according to the preferen-

tial attachment mechanism, new nodes added into a network

have higher probability of connecting to the existing nodes

with high connectivity, i.e., a ‘rich-gets-richer’ phenomenon.

For example a newly created web page will more likely

include links to well known, popular documents with high

connectivity.

Thus, the topology of Barabasi-Albert networks grows by

the continuous addition of new nodes starting from a small

number of nodes which increases throughout the lifetime of

the network. The connection or rewiring of the nodes takes

into account the preferential attachmentmechanism, such that

the likelihood of connecting to a node depends on the node’s

degree, i.e. the likelihood is proportional to the number of

links that the existing node already has. Therefore, heavily

linked nodes (called hubs) tend to quickly accumulate even

more links, while nodes with only a few links are unlikely

to be chosen as the destination for a new link. It is as if

the new nodes have a ‘preference’ to attach themselves to

the already heavily linked nodes. This is apparent in Fig. 6c,

which reveals that the nodes of a scale-free network aren’t

randomly or evenly connected but the degree distribution

(number of links per node) follows a power law.

As implied by the Barabasi-Albert model, scale-free net-

works consist of a relatively small number of highly con-

nected nodes, hubs of connectivity and a large number of low

degree nodes which are accumulated around hubs. Scale-free

networks are characterized by (a) a low average path length,

(b) varying clustering coefficient - but much larger than

in random networks - depending on other topology details

(it decreases as the node degree increases), and (c) a power-

law degree distribution. Based on their inhomogeneous topol-

ogy, scale-free networks can be amazingly robust against

random failures. In particular, since failures occur at random

and the vast majority of nodes are those with small degree,

the likelihood that a hub be affected is almost negligible. Even

if such event occurs, the network will not lose its connected-

ness, which is guaranteed by the remaining hubs. Simulations

on scale-free networks [59] reveal that even if as many as

80 percent of randomly selected routers within the Internet

fail, the remaining ones still form a compact cluster in which

there will still be a path between any two nodes. On the other

hand, the presence of hubs makes the scale-free networks

more vulnerable to targeted attacks. To this extend, if we

choose a few major hubs and take them out of the network

(targeted attack), it simply falls apart and is turned into a set of

rather isolated graphs. Therefore, there is an imperative need

to protect the Achilles’ heel of scale-free networks against

malicious targeted attacks in order to maximize the network

lifetime. This of course should be based on further analysis,

for example, on determining how many hubs are essential for

the liveness of a given network.

Despite the fact that the Barabasi-Albert model has been

extensively studied, most of the related work appears to

be of a heuristic or experimental rather than mathematical

nature. Several heuristic and experimental studies on the

Barabasi-Albert model can be found in the extensive sur-

veys [36] and [62]. In contrast, so far there has been rather

little rigorous mathematical work; what there is sometimes

confirms and sometimes contradicts the heuristic results.

See [60], [63]–[65] and [66] for some examples, or the

survey [67].

2) OTHER MODELS

Aiello and Lu [60] proposed a random graph model which

is a special case of sparse random graphs with given degree
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TABLE 1. Scale-free networks are everywhere. After [59].

sequences that satisfy a power-law. This model involves only

a small number of parameters, called logsize and log-log

growth rate. These parameters capture some universal char-

acteristics of massive graphs. The study of these parameters

reveals what other network properties can be derived from its

scale-free nature.

Moreover, a precisely defined model, the linearized chord

diagram or LCD model, was introduced in [61], moti-

vated by the Mobile User Equipment (UEs), Ultra-Dense

cells, BSs, vague description of Barabasi-Albert, and incor-

porating its key features as well as other useful mathe-

matical properties. The LCD model considers two basic

characteristics of a precise version of the Barabasi-Albert

model from the mathematical point of view, namely robust-

ness to random damage, and vulnerability to malicious

attack.

Further elaboration of scale-free models which arise from

attempts to explain the power law, starting from basic

assumptions about the growth of the graph is given in the

survey [67].

D. DYNAMIC COMPLEX NETWORKS THAT CAN

HANDLE MOVING NETWORKS

The extraordinary expansion of the Internet in both the size

and the offered services and its flexibility in accommodating

a number of heterogeneous technologies leading to network

convergence, has gradually led to a change in its architec-

tural paradigm shifting from ‘‘rigid hierarchical - hardware

first - to a more flat and flexible- software first – implemen-

tation’’ [42]. This shift, which is expected to further evolve as

we gradually move beyond 5G towards 6G, necessitates the

adoption of complex networks analytical models and tools

beyond the aforementioned ones. User mobility and minia-

turization have been pivotal in driving this paradigm shift,

promoting the need for adaptivity and re-configurability.

Recent trends imply that mobility may not simply apply to

the end hosts which is the common case (often strongly

coupled to human mobility), but can now also apply to the

intermediary devices, as for example moving base stations

mounted on UAVs or even mobile phones serving as base sta-

tions [68] leading to the ideas of moving networks [26] and

proximity networks. ‘‘Proximity networks are time-varying

graphs representing the closeness among humans moving in

a physical space’’ [69] and significant research efforts have

been reported in the literature to characterize their applicabil-

ity e.g. in message spreading [70] and statistical properties,

revealing complex systems methodologies as for example

power laws [71]. Further, modern complex network theory

tools can be used to account for these effects leading to more

effective designs. The fields of Temporal Networks (graphs)

[72], [73], Dynamic Network Analysis [74] and Evolutionary

Graph Theory [75] are highly relevant to the current Dynamic

Internet, however, new theoretical tools may still need to

be developed to account for the specifics of the considered

problem [69], [76].

E. HYBERBOLIC GEOMETRY OF

COMPLEX NETWORKS

The latest and most promising work is presented in [77].

In this work the authors developed a geometric framework

to study the structure and function of complex networks.

They assumed that hyperbolic geometry (Fig.9) underlies

these networks, and they showed that with this assumption,

heterogeneous degree distributions and strong clustering in

complex networks emerge naturally as simple reflections of

the negative curvature and metric property of the underlying

hyperbolic geometry.

Conversely, they showed that if a network has some metric

structure, and if the network degree distribution is heteroge-

neous, then the network has an effective hyperbolic geometry

underneath. Then, they established a mapping between their

geometric framework and statistical mechanics of complex

networks. This mapping interprets edges in a network as non-

interacting fermions whose energies are hyperbolic distances

between nodes, while the auxiliary fields coupled to edges are

linear functions of these energies or distances. The geomet-

ric network ensemble subsumes the standard configuration

model and classical random graphs as two limiting cases

with degenerate geometric structures. Finally, they showed

that targeted transport processes without global topology

knowledge, made possible by their geometric framework,

are maximally efficient, according to all efficiency measures,

in networks with strongest heterogeneity and clustering, and

that this efficiency is remarkably robust with respect to even

catastrophic disturbances and damages to the network struc-

ture. The above theory can fully apply in 6G networks since
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heterogeneity and clustering are concepts that dominate these

type of networks.

VI. MOBILE COMMUNICATION NETWORKS

AS COMPLEX SYSTEMS

Inspired by the recent advances in complex theory, we should

take a deeper look at the communication network anatomy

and how this may apply in complex mobile communication

networks. It is beyond any doubt that network anatomy is

important to be characterized, because the structural and

evolutionary properties of networks are considered to affect

their function. This study should be embraced by the interplay

between the dynamics and the structure of complex networks.

In fact, in the last few years it became clear that in spite of the

inherent differences, most real communication networks, as,

for example, the Internet [53], the World Wide Web (WWW)

[52], and the mail network [54], [55], are characterized by

similar topological properties as in the complex networks

structures.

Complex networks are generally characterized by large

scale topologies, decentralized/distributed resource manage-

ment, extreme heterogeneity of the constituent elements,

relatively small characteristic path lengths, high clustering

coefficients, power-law degree distributions, modularity etc.,

which are all properties highly correlated to real communica-

tion networks too. Attempts to explain such similarities may

be fueled by the study of universal structural properties in

real communication networks as well as by the theoretical

understanding of evolutionary laws governing the emergence

of these properties.

A. COMPLEX NETWORK ATTRIBUTES

In general, communication networks are characterized by

a chain of possible complex attributes that can be viewed

from the perspective of complex (adaptive) networks. These

attributes are illustrated below:

• Structural complexity: The overwhelming majority of

communication networks have complex topology. As far

as the structural properties are concerned, there was an

increasing voiced need to pay attention to the evolu-

tionary mechanisms that have shaped the topology of a

network, and to the design of new models based on a

theoretical foundation as for example random networks

[49], [50], small-world networks [37], and scale-free

networks [52], [56], which retain the most significant

properties observed empirically. This research wasmoti-

vated by the expectancy that the characterization and

the modeling of the structure of a network would lead

to a better knowledge of its dynamical and functional

behavior.

Furthermore, the structural complexity of a network can

be influenced from both node and connection diver-

sity. Multiple complications can be observed due to the

fact that a network can consist of different kinds of

nodes which can be interconnected through links having

different weights and directions, resulting in a high level

of heterogeneity.

Consequently, even the wiring diagram of a network

is considered to affect its functional robustness and

resilience to external perturbations, such as random fail-

ures, or targeted attacks. At the same time, the net-

work topology plays a crucial role in determining the

emergence of collective dynamical behavior, such as

synchronization, or in governing the main features of

relevant processes that take place in complex networks,

as, for example, the spreading of information.

Apparently, it remains a challenge to answer some fun-

damental questions as, for example, ‘How does one

characterize the wiring diagram of such networks?’,

or ‘Are there any unifying principles underlying their

topology?’.

• Network evolution: The wiring diagram of a communi-

cation network is subject to dynamic changes over time.

This is a basic characteristic of dynamically changing

environments like, for example the WWW or the mobile

network, where links are created and lost over time.

From this point of view, the evolution of a commu-

nication network can be paralleled with the evolution

of a complex (adaptive) network which is considered

to be very sensitive to initial conditions or to small

perturbations, leading tomultiple pathways bywhich the

system can evolve.

• Dynamical complexity: The network and each node

within it could be non linear dynamical systems which

their state may vary over time as a result of the evolu-

tion. The understanding of the evolutionary laws gov-

erning the emergence of the structural properties could

be based on the study of dynamical processes of complex

networks. In this context, network problems in tradi-

tional areas such as robust flow and congestion control,

fault and attack tolerance, error resilience, decentral-

ized/distributed operation, which are just in the forefront

of the current research on network dynamics, are prime

candidates to be addressed based on concepts arising

from the dynamical processes of complex networks.

To this end, from the perspective of non linear dynam-

ics, we would like to understand how an enormous

network of interacting dynamical systems (e.g., mobile

user equipment (UEs), mobile nodes, ultra-dense cells,

BSs, sensor nodes, routers, etc.) will behave collectively,

given their individual non linear dynamics and coupling

architecture.

All the aforementioned attributes of networked systems

remain open challenges which potentially can be effectively

addressed by complex systems theory. Powerful new ideas

and techniques can be found by studying the similarities

between communication networks and other complex sys-

tems. In this respect, complex systems science can be seen

to bridge the gaps between the natural, social and formal sci-

ences, and especially between engineering and the sciences.
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FIGURE 9. Poincare disk model [77].

B. COMPLEX NETWORK DESIGN PRINCIPLES

Our increasing ability to address the aforementioned chal-

lenges are based on some basic features of complex systems

which were discussed earlier to some extend, such as 1) self-

organization and adaptability, 2) robustness and resilience,

3) decentralized/distributed operation and 4) engineering

self-organisation and emergent behaviour. These features are

analyzed below and may be seen as the main design princi-

ples of contemporary networked systems. The study of these

features - from complex systems perspective - is based on a

combination of the growing mass of empirical data which

has recently become accessible, and the large increase in

computational power which can support and underpin signif-

icant advances in the theoretical understanding of complex

systems.

Given the emergent design of 6G networks, it is imperative

that these powerful tool be adopted at an early stage for

its design and analysis and also for 5G with emerging and

adopted system functionalities.

1) SELF-ORGANIZATION AND ADAPTABILITY

Self-organization refers to the evolution of a system into an

organized form in the absence of external directives. Self-

organization leads a system from a large region of state

space to a persistent smaller one, under the control of the

system itself. This smaller region of state space is called an

attractor.

There are three major principles of self-organization mech-

anisms: feedback loops, local state evaluation, and interaction

between individuals. One major component in understanding

the interaction of components producing a complex pattern

are positive and negative feedback loops as shown in Fig. 10.

As explained in Section IV, positive feedback acts as an

amplifier for a given effect (or perturbation), leading to an

FIGURE 10. System control using positive and negative feedback loops.
After [80].

explosive growth. This feedback, will drive the system even

further away from its own original setpoint, thus amplify-

ing the original perturbation signal, and eventually become

explosive. In negative feedback loop the system responds

in an opposite direction to the perturbation. It is a process

of feeding back to the input a part of a system’s output,

so as to reverse the direction of change of the output. This

tends to keep the output from changing, so it is stabilizing

and attempts to maintain constant conditions. This often

results in equilibrium such that the system will return to

its original setpoint. In fact, negative feedback is used to

efficiently control the system behavior in order to prevent

over-reactions and mis-regulations. The second ingredient is

the local state. This means that all subsystems acquire and act

upon information that is stored locally. Any global control or

dependency is prevented in order to enable fully autonomous

behaviour embedded into a global context. Information trans-

fer between individuals is necessary to update the local state.

There are two ways to conduct such interactions: direct

interaction or communication between related subsystems

and indirect information exchange by interacting with the

environment [79].
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Because of its decentralized character, self-organization

tends to be robust, resisting perturbations. A self-organizing

system is typically driven by non-linear dynamics, because of

circular or feedback relations between the constituent com-

ponents. Non-linear systems have in general several stable

states, and this number tends to increase as an increasing input

of energy pushes the system farther from its equilibrium.

Adaptability allows for the modification of a system’s

behavior in order to adapt to requirements posed by exoge-

nous factors (e.g. users of a network) or environmental

changes. Therefore, adaptation may be driven by users to

provide them flexibility and ensure that their exact require-

ments will be fulfilled. Furthermore, to adapt to a changing

environment, a system needs a variety of stable states that is

large enough to react to all perturbations but not so large as to

make its evolution uncontrollably chaotic. The most adequate

states are selected according to their fitness, either directly by

the environment, or by subsystems that have adapted to the

environment at an earlier stage.

Formally, the basic mechanism underlying self-organiza-

tion is the (often noise-driven) variation which explores dif-

ferent regions in the system state space until it enters an

attractor. This precludes further variation outside the attractor,

and thus restricts the freedom of the system components to

behave independently. This is equivalent to the increase of

coherence, or decrease of statistical entropy, that defines self-

organization.

The study of such complex methodologies promises to

enable more scalable self-organizing communication net-

work infrastructures. Especially in the area of complex com-

munication networks that are subject to dynamic topology

changes (e.g., 5G/6G, ad-hoc, sensor networks and the Inter-

net of Things), such solutions are considered of prime impor-

tance in order to enable them to simplify development and

deployment. Self-organization and adaptability promise to

drive the implementation of novel autonomously evolving

mechanisms, capable of coping with global tasks (emergent

behavior).

In the last few years, there was an increasing need to

develop robust and efficient techniques which would be

able to address various issues as, for example, conges-

tion/overload control, data dissemination, quality of ser-

vice (QoS) provision, power consumption, etc., in the forth-

coming pervasive networking world. Given the often large

number of perturbations that influence the structure and

operation of a networked system, it became obvious that

the implementation of the aforementioned techniques should

be done on the basis of self-organization and adaptability.

Towards this direction, the goal is to ‘‘teach’’ each node

belonging to the network to self-organize for performing

the requested tasks like event detection, periodic/continuous

measurements, control and tracking taking into consideration

energy and QoS constraints, i.e. showing an emergent global

behavior [81].

Motivated by recent studies on complex nature and bio-

logical systems, researchers strive to adopt and apply the

underlying principles to engineering and computer science,

especially for self-organization. The combination of nature

and self-organizing technical systems was first introduced

by Eigen and Schuster [82]. In a recent study, Gerherson

and Heylighen [83] provides a discussion on when and how

to best model a system as self-organizing, and argues that

self-organizing systems, rather than other type of systems,

are a perspective for studying, understanding, designing,

controlling, and building systems. The study of nature and

biologically-inspired systems is as diverse as nature; it counts

on the artificial immune system [84], swarm intelligence [80],

evolutionary (genetic) algorithms [81], [85], [86], and cell

and molecular biology based approaches [87]. Early attempts

include the study of the behavior of swarms of insects,

typically ants and bees, in an attempt to adapt the discoveries

to build more efficient sensor networks [88], [89], to bird

flocking for congestion control [81]. Furthermore, a spe-

cial form of biologically-inspired computing with organic

properties, namely organic computing [90] is attempting to

build high-scalable architectures, which are self-organizing,

self-maintaining, and self-healing. According to [91], typ-

ical features of self-organization include: (a) absence of

external control (autonomy), (b) dynamic operation (time

evolution), (c) fluctuations (noise/searches through options),

(d) symmetry breaking (loss of freedom/heterogeneity),

(e) global order (emergence from local interactions), (f) dis-

sipation (energy usage/far-from-equilibrium), (g) insta-

bility (self-reinforcing choices/nonlinearity), (h) multiple

equilibria (many possible attractors), (i) criticality (threshold

effects/phase changes), (j) redundancy (insensitivity to dam-

age), (k) self-maintenance (repair/reproduction metabolism),

(l) adaptation (functionality/tracking of external variations),

(m) complexity (multiple concurrent values or objec-

tives), and (n) hierarchies (multiple nested self-organized

levels).

2) ROBUSTNESS AND RESILIENCE

The robustness and resilience of critical infrastructures (e.g.

real communication networks) in particular, and complex

networks in general, are issues of great importance. Com-

plex communication networks seem to display a high degree

of robustness and resilience even though key components

regularly malfunction and local failures rarely lead to loss

of the global information-carrying ability of the network.

This property of complex networks is often attributed to their

design (i.e. the redundant wiring of their underlying network

structure) and evolution. However, even though they remain

unaffected by random component failures, they seem vulner-

able to targeted attacks on its key components. Nevertheless,

it remains an open challenge to identify whether and to what

extent the network topology - beyond redundancy - is able

to play a substantial role in the robustness and error/attack

tolerance of such complex systems.

Recent work on network theory has started to address pri-

marily the topological aspects of robustness and resilience in
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complex networks with respect to failure and directed attack

caused by edge and/or node removal.

Initial efforts towards this direction were made by [49] and

[92] addressing the reliability of a network with respect to

edge removal based on random graph theory. The network

model used in these early investigations was a randomly

connected graph HN consisting of N nodes. By removing a

p fraction of edges, the researchers were seeking to evalu-

ate the probability that the resulting subgraph is connected

and extract any dependencies among connectedness and the

removal probability p. Results carried out by [92] revealed

that a broad class of HN graphs displays a threshold-oriented

behavior. In particular, a threshold probability pc(N ) exists,

such that for p < pc(N ) the subgraph remains connected, but

for p > pc(N ) the subgraph is considered fragmented similar

to phase transition phenomena, which abound in nature.

Needless to say that the removal of a single edge is not

considered as harmful as the removal of a node. In the latter

case, the effects on the robustness of an arbitrary graph are

even more devastating, since the removal of a node results

in the malfunctioning of all the edges attached on it as well.

The effects of node removal have been recently studied with

respect to random graphs and scale-free networks addressing

their robustness against accidental node failures and inten-

tional attacks.

Because of its immediate practical consequences to Inter-

net and distributed systems, the problem of characterizing

the robustness and error tolerance of complex networks

has received growing attention, especially after the seminal

papers by Crucitti et al. [43], who addressed node removal

in scale-free models of Internet, and Callaway et al. [45]

investigation on exponential networks under attack. Other

related works include Holme and Kim [93] comprehensive

comparative investigation of the resilience of several types of

networks considering different schemes for attacking nodes

and edges, and Cohen et al.’s analysis of Internet breakdown

[44]. Works targeting specific types of network include, but

are not limited to, Newman’s investigation of e-mail net-

works [94], Jeong et al. study of metabolic systems [95], and

Dunne’s analysis of food webs [96]. More recently, the con-

cept of L-expansions of a complex network was suggested

[97] which, by enhancing the network connectivity, was

believed to present good potential for increasing the resilience

of existing networks. Moreover, Motter and Lai [47] showed

that for many physical networks, the removal of nodes can

have amuchmore devastating consequencewhen the intrinsic

dynamics of flows of physical quantities in the network is

taken into account.

These studies suggested that the network connectivity, and

hence its functionality, is robust against random failure of

nodes, and to some extent is even robust against intentional

attacks. Results revealed that real networks (e.g. Internet) are

naturally evolved to be quite resistant to random failure of

nodes, but the presence of a few nodes with exceptionally

large load, which is known to be ubiquitous in natural and

man-made networks, has a disturbing side effect: the attack on

a single important node with high load may trigger a cascade

of overload failures, capable of disabling the network almost

entirely. Such an event has dramatic consequences on the

network performance, because the functionality of a network

relies on the ability of the nodes to communicate efficiently

with each other.

More specifically, Crucitti et al. [43] studied error and

attack tolerance in exponential (random) and scale-free net-

works. They demonstrated that complex communication net-

works which incorporate a scale-free behavior, such as the

Internet and theWWW, display a surprising degree of robust-

ness, even though some significant constituent components

are regularly subject to malfunction and local failures rarely

lead to the loss of global information-carrying ability of the

network. In order to address the error tolerant characteristic of

exponential and scale-free networks, they studied the changes

in their diameter (the average length of the shortest paths

between any two nodes in the network), when a small fraction

f of nodes was randomly or intentionally removed. Mea-

surements revealed that in case of random node removal in

exponential networks, the diameter increases monotonically

with f , despite their redundant wiring. This behavior is rooted

in the homogeneity of such networks: since all nodes have

approximately equal number of edges attached on them, they

all contribute equally to the network’s diameter, thus the

removal of each node causes the same amount of damage.

On the other hand, scale-free networks display a totally dif-

ferent behavior. It was illustrated that scale-free networks

including the Internet and the WWW, display an unexpected

degree of error tolerance against random failures due to their

inhomogeneous (power-law) connectivity distribution. Such

networks display an unexpected degree of robustness, such

that their ability to communicate to high failure rates remains

unaffected even by unrealistically high failure rates. However,

these networks are extremely vulnerable to directed attacks

since their diameter increases rapidly, doubling its original

value if 5% of the nodes are intentionally removed. On the

contrary, measuring the diameter of an exponential network,

they found that owing to their homogeneity, there is no sub-

stantial difference whether the nodes are removed randomly

or in decreasing order of connectivity.

3) DECENTRALIZED OPERATION AND CONTROL

Complex networked systems consist of similar components

which directly interact with their nearest neighbors. Even

when these components interact with their neighbors in a

simple and predictable fashion, the resulting system often

displays complex behavior when viewed as a whole.

Decentralized operation and control are considered to

be inextricable ingredients of complex networks since they

provide resistance against perturbations (robustness and

resilience). In fact, decentralization is the process of dispers-

ing decision-making closer to the point of service or action.
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This feature of complex communication networks allows

flexibility that facilitates self-organization. Such flexibility is

facilitated by lack of dependency on central decision-making.

However, it has to be done in a manner that allows some

control. This control may arise through the self-organization

itself, or through the interaction between components that is

enabled by self-organization.

Apparently, formal control theory cannot be efficiently

applied in complex networks since most optimal control tech-

niques suffer from severe limitations as they cannot handle

systems of very high dimension and with a large number of

inputs and outputs, further exacerbated when non-linearities

are considered. It is also infeasible to control these networks

with centralized schemes (the typical outcome of most opti-

mal control design techniques) as these require high levels of

connectivity, impose a substantial computational burden, and

are typically more sensitive to failures, attacks, and modeling

errors than decentralized schemes.

The decentralization of decisions is often recommended

in the design of complex networks, and the decomposi-

tion and coordination of decisions are a great challenge.

The mechanisms behind this network of decentralized

design decisions create difficult management and coordi-

nation issues. Standard techniques to modeling and solving

decentralized design problems typically fail to understand

the underlying dynamics of the decentralized processes

and therefore result in sub-optimal solutions. From this

angle, it remains crucial to understand the mechanisms and

dynamics behind a decentralized set of decisions within a

complex design process. Towards this direction, the struc-

ture as well as the evolution of the network should be

exploited for the development of successful optimal control

techniques.

4) ENGINEERING SELF-ORGANISATION AND EMERGENT

BEHAVIOUR IN COMPLEX NETWORKS

‘Self Organisation’ and ‘Emergent properties’ represent

one of the most significant challenges for the engineering

of complex systems [98], [99]. As outlined earlier, emer-

gent properties can be thought of as unexpected behav-

iors that stem from interaction between the components

of an application and their environment. In some con-

texts, they can be beneficial, but they can also be harm-

ful if they undermine important operational and safety

requirements [100].

A novel goal in any system is to strive toward engineering

proven self-organisation and emergent behaviour. However,

this is an area still in its infancy, and perhaps disputed

[98], [99], whereby the dichotomy between the following

two approaches does not help: i) On the complex systems

side one ‘lets’ systems be and ultimately ‘hopes’ to display

adaptation, self-organization and emergence — for example

no one designed the internet or the transportation network;

ii) But on the control engineering side the complex systems

approach is an omen, as an engineer would question how

one can let the system be, without any designed and proven

properties in terms of stability, convergence, optimality and

consistency of operation? Their primary difference stems

from the fact that systems designed through classical control

engineering processes are expected to perform foreseeable

tasks in a bounded environment, whereas complex systems,

either natural (living organisms, insect colonies, ecosystems)

or large-scale man-made (communication networks, trans-

portation networks, cities, societies, markets, multinational

corporations) are expected to function in complex, open

environments with unforeseeable contingencies, and thus

require high adaptability so systems can evolve novel con-

figurations emerging from organising their components in

new ways. Whatever the case, adopting the emergent and

self-organisation engineering paradigm in 6G can open per-

spectives on how strategies that mimic adaptation of highly

evolved systems can be developed with simple rules/agents,

leading to fundamentally and continually adapting and evolv-

ing networks.

However, as inmany otherman-made systems, engineering

these properties at the outset is not realistic. In the real

world, 6G networks are being designed and build in a linear

evolutionary manner, with multiple decision points and ideas

‘evolving’ before an operational design ‘emerges’, driven

by the many actors involved, such as the standards bodies,

telecom equipment manufacturers, telecom operators, etc.

Even so, there are still opportunities one can seek in aspects

of 5G/6G to engineer self-organisation and emergent proper-

ties at design time, e.g. by incorporating specific features with

positive and negative feedback, that will be useful for engi-

neering the local interactions [98], [101]. Ultimately, with

‘proven’ self-organisation and emergent properties, whenever

there are environmental changes the network can sponta-

neously and without external control evolve and re-organise,

and hence strive toward predictable control and performance.

It is worth noting that self-organization in networks has

been identified by the 3rd Generation Partnership Project

(3GPP) as one of the key concepts to reduce the operating

cost associated with the management of a large number of

nodes, albeit in a less ambitious form from what is described

above [102].

C. MODELING PATTERN FORMATION IN

COMPLEX NETWORKS

Complex systems consist of multiple elements which are

arbitrarily interconnected and interact with each other as well

as with their environment in unpredictable and unplanned

ways. From this mass of interactions patterns emerge as a

result of negative and positive non-linear feedback mecha-

nisms acting at different spatiotemporal scales. Even though

the interactions may be simple, the behavior of the whole

system can be quite complex. Similarly, a network consists

of nodes which are interconnected through arbitrary links
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FIGURE 11. 6G cell architecture [103].

FIGURE 12. 6G cell less architecture [104].

and interact with each other in unpredictable and unplanned

ways, using rules imposed by various protocols. From this

point of view, complex systems seem to provide a theo-

retical framework for the study of the robustness and sta-

bility in real communication networks under perturbations,

based on self-organized and decentralized operation. The

way the patterns are formed and evolve within a com-

plex environment can be investigated and the inherent com-

plex mechanisms that provoke this behavior will provide

the basis on which robust networking approaches can be

developed.

The study and the modeling of pattern formations in

existing communication networks should involve some basic

steps. Initially, the identification of sub-units and interactions

involved in a collective process can be carried out through

observations and experiments in the complex system’s envi-

ronment. Then, a hypothesis formation (simulation and/or

modeling) should be developed and its correctness based on

its capability to cope with system’s perturbations should be

carefully tested. In other words, by changing the rules or

parameters of the system in a controlled manner, it should be

determined whether the outcome matches that was predicted

by the hypothesis (simulation/model).

VII. WAY FOR COMPLEX NETWORK ANALYSIS

OF 5G/6G NETWORKS

Based on the analysis above and bearing in mind the future

of 6G as presented in several research works so far, it is

far from obvious how the complex analysis of the 6G net-

works will depend on the network architecture or archi-

tectures that will prevail. Two prominent architectures are

the cellular architecture (Fig. 11) that already exists in

mobile communication networks or the cell- less architecture

(Fig. 12) that is being promoted as a new concept in 6G

networks.
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For the first case (cellular architecture), as in the topology

suggested in Fig. 11, a Power Law characterization would be

more suitable to describe the network. In this case central cel-

lular antennas and the mini-cell antennas can be considered

as high-degree nodes which are disproportionately attractive

(large degree), acting as hubs. These nodes are robust to

random node failures, but extremely fragile to the failure of a

hub which essentially disconnects the network. In the second

case (cell- less architecture), as in the topology of Fig. 12

which implies that all nodes are equivalent in terms of degree

(networks with Poissonian degree distributions) the network

is not robust to random failures, however it is not vulnerable

to targeted attacks on the hubs (as there are no hubs in them).

Thus, besides information dissemination (e.g., hubs reaching

a large portion of the network) degree distribution is also very

important for the percolation/connectivity properties of the

network.

Another important parameter that needs to be considered

in 6G networks, is the average distance or diameter. 6G

topologies are expected to have ‘‘small-world’’ properties as

the connections are not deterministic/ordered, as for example

in a chain or a grid where ‘‘small- world’’ properties are not

expected. In random networks (Poissonian/Erdos-Renyi) the

diameter (longest shortest path) is proportional to lnN where

N is the size of the network. This small ‘‘worldness’’ is due

to randomness in the connections that create shortcuts in the

network. Power- law (or scale-free) networks are also small-

world networks if the power law exponent is γ > 3 and ultra-

small worlds [diameter growing as ln(lnN )] if the power-law

exponent is 2 < γ < 3. Clearly, small-worldness is important

for efficient navigation/routing [105].

Moreover, clustering, or triangles in the network, i.e., the

probability that two neighbors of a random node are them-

selves connected is an important feature that is expected to

appear in 6G networks. In 6G networks nodes (e.g. Device-

to-Device and UE-Based Virtual Base Stations [68]) are

expected to be deployed on a wide geographic space and

communicate if they are within transmission range to facil-

itate BS offloading. Strong clustering is also important for

information propagation as it provides path diversity in the

network, e.g., if some links go off/fail bypasses can be found.

On a tree topology for example (has zero clustering) there

are no bypasses and as a result if a link fails the topology gets

disconnected.

Blockchain technology is also envisioned to play a central

role in the management of the massive data that are expected

to be created and handled in 6G communication networks.

The authors in [106] show that the Ethereum network, being

a platform used for human interactions, can also be described

and modeled using a network theory approach. According to

their work, the degree distribution of this type of networks,

often displays a power law distribution. This phenomenon can

also be observed when constructing a network that represents

Ethereum transactions between wallets. In this case each

wallet is a vertex and a transaction between two wallets is

an edge. Adopting a similar concept, the authors in [107]

propose a random graph model for performance modeling

and analysis of the inventory-based protocol for block dis-

semination. The proposed model addresses the impact of key

blockchain parameters on the overall Bitcoin performance.

The overlay Bitcoin network is modeled using an Erdos-

Renyi model to generate connected random graphs.

Programmable Wireless Environments enabled by Hyper-

Surfaces and Intelligent Surfaces [30], [32] are also expected

to play a central role in the unpredictable wireless envi-

ronment [16], especially at combating the distance prob-

lem [108]. ProgrammableWireless Environments result from

the mass deployment of HyperSurface units within a space,

enabling (i) complete, software-defined control over the wire-

less propagation phenomenon within HyperSurface-coated

environments, and ( ii) the interplay with existing soft-

ware services and networking equipment. Pivotal studies has

shown that these traits can yield impressive gains in wirelesss

communication efficiency, interference mitigation, physical-

layer security and wireless power transfer [16]. Recently real

time dynamic control of HSFs was proposed [109], which is

especially appealing for moving networks.

Further to the above, due to the diversity of nodes/connec-

tions that are expected in 6G networks, modern temporal

network theory [110] could be a useful tool for modeling

them. In this theory attributes beyond simple nodes and

links as in classical graph theory, are included. Introducing

information about times of interactions can make predictions

and mechanistic understanding more accurate.

Further, as indicated in Section V, user and interme-

diary node mobility and miniaturization have been piv-

otal in driving a paradigm shift in the Internet towards

a flat, software first implementation, promoting adaptiv-

ity and re-configurability, rendering it dynamic in nature.

This dynamic nature paves the way for the adoption and

development of alternative mathematical tools [69], [76],

for the analysis of complex systems deviating from tra-

ditional approaches. In particular, the fields of Temporal

Networks (graphs) [72], [73], Dynamic Network Analy-

sis [74] and Evolutionary Graph Theory [75] which have

appeared in different contexts are highly relevant to the cur-

rent ‘‘dynamic’’ Internet. Temporal Networks can be crudely

considered as time varying networks where the graph links

appear and disappear at specific time instants generating a

sequence of graph representations over the same set of nodes.

This time variance generates important properties relative

to static graphs nicely reviewed in [73]. In addition, Evo-

lutionary Graph Theory aims at exploring how the underly-

ing topology affects the evolution of population in a setting

where individuals occupy vertices and edges characterized

by weights which represent reproductive rates. The afore-

mentioned tools are coupled to the dynamic nature of the

network. This dynamic nature stems from node mobility

which often necessitates the need for re-configurability and

adaptivity. Re-configurability is harnessed by novel enabling
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technologies expected to be pivotal in future 6G design at

different layers as for example software defined network-

ing at the network layer and phased antenna arrays and

meta-surfaces at the physical layer. The prospect of exerting

programmatic control over all aspects of impinging electro-

magnetic waves on a metasurfaces, as recently realized in

[29], [111], paves the way for real time configuration of the

physical layer properties, redefining even the fundamental

communications laws, realizing extraordinary applications

such as Programmable Wireless Environments [16]. More-

over, these tools may prove to be handy in analysing 6G

challenges pertinent to information flow. Advanced hardware

capabilities, have led to radical advances in computational

intelligence with extraordinary applications in critical infras-

tructures such as the smart grid and intelligent transportation.

These, have in turn increased the security threats in both

their intensity, impact and significance, something which is

expected to be even more vivid in 6G deployments. Graph

theoretic tools and networks theory have been used exten-

sively in theoretical biology to investigate the spread of dis-

eases in networks [112], [113] and can thus be used to analyse

and combat cyberattacks which to some extent show similar

behaviour [114]. Moreover, they may prove a useful tool

in analysing information flow for machine learning/artificial

intelligence applications within the network, characterizing

their effectiveness. Network monitoring, in many cases feed-

ing machine learning techniques have been realized by tech-

nologies such as Deep Packet Inspection, and due to the

dynamic resource allocation and orchestration often facil-

itated by SDNs/NFVs, dynamic information flow charac-

terization is crucial in determining the effectiveness of the

proposed methods.

It is a fact, that the issue of complexity is also critical in

future 6G Networks and a major issue is to facilitate complex

systems methodologies to harness the difficulties associated

with the underlying complexity. Towards this end, recent

work [115] has indicated the potential of machine learning

and artificial intelligence methods to be used for prediction

purposes thus harnessing the often chaotic system behaviour

from a dynamical systems perspective. In addition, the idea

of system degeneracy, with reference to structurally different

functional topologies having functionally identical properties

has been exploited in [42], [116] to enhance distributed com-

putation. The latter reveals how structure arising in complex

systems at different scales can be exploited for resource

optimization thus paving the way for similar explorations in

different contexts and applications.

The above discussion illustrates that the adoption of com-

plex theory is essential in the design and modeling of the

new mobile networks and especially in the heterogeneous

5G/6G mobile communication networks, and this should

be done from the outset. An exemplary approach appears

in [42], [117], where the communication network itself is

treated as a complex system. The focus of their study is

the organizational structure of communication networks that

affects the execution of network functions by studying their

complexity, degeneracy and the principles of emergence.

Within this framework they introduce the functional com-

plexity metric and show that it has high correlation with

network metrics, thus enabling the design of network aspects

related to those metrics before the network is operational.

A factor which can hinder the adoption of complex sys-

tems theory by the communication networking world is the

plethora of proposed complexity metrics is an area where

confusion often arises. Being a multidisciplinary field with

often separate developments, a large number of metrics

were defined by researchers from their own perspective

to characterize complexity. Indicatively, Loyd [118] in his

2001 article ‘Measures of Complexity: A Nonexhaustive

List’, lists over 40 metrics, including centrality (betweeness

centrality, eigenvector centrality, etc..), node degree, aver-

age path length, emergence, degeneracy, clustering coeffi-

cient, functional complexity, excess entropy, neural com-

plexity, and matching complexity, which he classifies into

3 broad categorizations. However, beyond a mere classifi-

cation, we argue that for communication networks we need

to define and more tightly link the complexity metrics with

commonly adopted communication networking metrics, thus

opening up the complex systems theory to the wider 5G/6G

researchers.

As a final remark, new network designs as for example

the 5G/6G and the Internet of Things (IoT), should adopt

the principles of complex networks from the outset. A con-

certed socialisation effort is required to convince all actors

of the utility of this approach, and this is where the various

research funding and standards bodies can take a leading

role.

VIII. CONCLUSIONS

In this paper we present basic concepts and properties exhib-

ited in complex adaptive systems and discuss the most impor-

tant network modeling paradigms that emerged over the last

few years. Furthermore, we present communication networks

from the perspective of complex systems. Previous research

efforts by Erdos and Renyi, Watts and Strogatz, Barabasi and

Albert, Carlson and Doyle as well as more recent works like

those of Dmitri Krioukov, Fragkiskos Papadopoulos et al,

popularized the idea that networks form randomly into a

direction of organization and hidden order. The characteris-

tics of random networks, small-world networks and scale-

free networks can be observed in many levels of different

disciplines. This dictate an imperative need to develop a new

theoretical framework to help explain the complex and unpre-

dictable behaviors of communication networks and design

alternative network protocols which are provably effective

and robust. Such a framework can serve as a starting point

to develop a unified theory for complex systems, useful in

explaining how the interaction between the individual com-

ponents of such systems allows the emergence of a global
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behavior that would not be anticipated from the behavior

of components in isolation. Modeling of complex commu-

nication networks like 5G or 6G can benefit from complex

analysis including modern approaches on the subject like

the works presented in [77] and [117] on the Hyberbolic

Geometry of Complex Networks, as well as the modern

temporal network theory [69], [110]. We are also confi-

dent that the complexity, the diversity and the heterogene-

ity of 6G Wireless Communication Networks will lead in

the researching of revolutionary theories in order to accu-

rately model them. As a final concluding remark, we urge

the complex theory and networking communities to come

together and collaborate toward the evolution of the new and

continuously challenging networks of 5G and beyond. It is

clear from the above discussion that a concerted socialisa-

tion effort is required to convince all actors of the utility

of this approach, and furthermore, this is an area where the

various research funding and standards bodies can take a

leading role.
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