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Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions 

are present. The management of small lung nodules noted on computed tomography scan is 

controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis 

(CAD) scheme requires several image processing and pattern recognition steps to accomplish 

a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step 

depends heavily on the performance of the previous step. Accordingly, tuning of classification 

performance in a conventional CAD scheme is very complicated and arduous. Deep learning 

techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature 

and tuning of performance in a seamless fashion. In this study, we attempted to simplify the 

image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we 

introduced models of a deep belief network and a convolutional neural network in the context 

of nodule classification in computed tomography images. Two baseline methods with feature 

computing steps were implemented for comparison. The experimental results suggest that deep 

learning methods could achieve better discriminative results and hold promise in the CAD 

application domain. 

Keywords: nodule classification, deep learning, deep belief network, convolutional neural 

network

Introduction
Lung cancer is a malignant disease carrying a poor prognosis, with sufferers having 

an average 5-year survival rate of less than 20%.1 Patients with locally advanced, 

unresectable, or medically inoperable disease are usually treated with concurrent radio-

therapy and chemotherapy. Although target therapeutics and various chemotherapy 

regimens are available, locally advanced lung cancer carries a very poor prognosis, 

with a mean survival time of less than 12 months. Thus, early detection of a lung lesion 

to improve the complete resection rate (R0 resection) and increase the likelihood of 

survival rate is important. Chest computed tomography (CT) scan, especially high 

resolution CT, has been widely accepted for detection of lung tumors. Intriguingly, 

small lung nodule(s) noted on CT images make the differential diagnosis clinically 

difficult and may confuse clinical decision-making. Small lung nodules are regarded 

infrequently malignant, difficult to biopsy or excise, and not reliably characterized 

by positron emission tomography scan.2 In clinical practice, the American College 

of Chest Physicians has published a guideline for the diagnosis and management of 

pulmonary nodules.3 In this expert consensus-based recommendation, small nodules 

less than 8 mm could be further surveyed, characterized, or kept under observation 
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according to evidence-based risk estimation. However, the 

current guideline relies only on the size of lung nodules, 

rendering clinical decision-making difficult and controver-

sial. Clearly, the development of a more informative tool for 

clinicians to differentiate the nature of pulmonary nodules 

noted on CT scan remains an urgent task.

Computer-aided diagnosis (CAD) is a research field con-

cerned with offering a quantitative opinion to improve the 

clinical diagnostic process.4,5 One of the major purposes of 

CAD is to automatically differentiate the malignant/benign 

nature of tumors/lesions6–9 based on numeric image features 

to assist decision-making whenever there is diagnostic 

uncertainty and disagreement.5,10 A traditional CAD scheme 

commonly involves several image processing tasks and then 

performs a classification task for differentiation of a tumor/

lesion. The performance of a conventional CAD scheme 

relies heavily on the intermediate results of the image pro-

cessing tasks6,8,11,12 for reliable features. Meanwhile, integra-

tion and selection of computed features are other important 

issues in many CAD problems.

The recent advent of deep learning techniques has high-

lighted the possibility of automatically uncovering features 

from the training images13–15 and exploiting the interaction,16 

even hierarchy,17 among features within the deep structure of 

a neural network. Accordingly, the issues of feature comput-

ing, selection, and integration can potentially be addressed 

by this new learning framework without a complicated 

pipeline of image processing and pattern recognition steps. 

Further, the annotation costs with deep learning may not be as 

expensive as those in the conventional CAD frameworks. The 

annotator can simply specify the malignant/benign nature of 

the training images without the need for meticulous drawing 

of the tumor boundaries on the training data.

Deep learning has been less explored in the context of 

CAD. The first study was by Suk and Shen,16 who introduced 

the technique of a stacked autoencoder for the problem of 

CAD in Alzheimer’s disease, with promising accuracy. 

However, there is no related previous work on tumor dif-

ferentiation with deep learning techniques. In this study, 

we exploit a deep learning framework for the problem of 

tumor differentiation to address feature-related and annota-

tion cost issues. 

The specific CAD problem targeted in this paper is 

differentiation of a pulmonary nodule on CT images. The 

deep belief network (DBN)14,15 and convolutional neural 

network (CNN) models18 have been tested using the public 

Lung Image Database Consortium dataset19,20 for classifi-

cation of malignancy of lung nodules without computing 

the morphology and texture features. In this paper, the 

effectiveness of a deep learning CAD framework in lung 

cancer is demonstrated, with comparison to explicit feature 

computing CAD frameworks.

As discussed earlier, computerized classification of a lung 

nodule needs to characterize the nodules with several quan-

titative features.21 Lately, geometric feature descriptors, like 

scale invariant feature transform (SIFT)7,21 and local binary 

pattern (LBP),7 have been shown to be successful in modeling 

pulmonary nodules seen on CT in the context of detection 

and classification. The fractal analysis technique9 has also 

recently been revisited to characterize the textural features 

in multiple spatial scales to determine if solitary nodules are 

malignant. These computed features require a latter classi-

fier, eg, K-nearest neighbor7,21 or support vector machine,9 

to conduct the differentiation task. In this study, geometric 

descriptors (SIFT + LBP) and fractal features with related 

classifiers7,9,21 were used to compare the efficacy of the DBN 

and CNN learning frameworks. The experimental results 

confirm that the deep learning framework can outperform the 

conventional feature computing CAD frameworks.

The major contribution of this paper lies in the exploita-

tion of deep learning techniques in the application of tumor 

classification. The deep learning framework is free of the 

explicit feature computing, selection, and integration steps. 

To our best knowledge, this is the first work introducing deep 

learning techniques for the problem of pulmonary nodule 

classification, and it could serve as a basis for addressing 

the advanced nodule detection problem.

Materials and methods
Pulmonary nodules can be diagnosed as cancer based on the 

characteristics of shape, eg, sphericity and spiculation, and 

composition of interior structures, like fluid, calcification, 

and fat. A pulmonary nodule could occur anywhere within 

the lung, including in the chest wall, airway, pulmonary fis-

sure, or vessel, thus making clinical diagnosis a complicated 

task. Figure 1 lists several types of pulmonary nodules that 

can be seen on CT scans. 

Elaboration of quantification regarding the semantic nod-

ule characteristics of sphericity, spiculation, and calcification 

remains an open issue,7,9,21 and again commonly requires 

the image segmentation step to obtain quantitative features. 

In this study, we utilized the deep learning framework to 

circumvent the need to elaborate semantic features, but still 

achieved satisfactory classification performance. 

Deep learning is the current state-of-the-art machine learn-

ing technique, where a number of layers of data computational 
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stages in a hierarchical structure are exploited for feature learn-

ing and pattern classification. The basic idea of deep learning 

is similar to how the human brain works, although in greatly 

simplified form. The way deep learning functions is that every 

layer of the deep learning “brain” creates abstractions and then 

select. The more layers, the more abstractions. In this paper, 

we propose two deep learning architectures for classification 

of the malignant or benign nature of lung nodules without 

actually computing the morphology and texture features in 

the DBN and CNN variants.

Deep belief network
The idea of a deep multilayer neural network was proposed 

more than a decade ago. In general, it is a more com-

plex approach than a single perceptron. Although a multi-

layer perceptron possesses more freedom, it was too difficult 

to train deep multilayer neural networks, since gradient-based 

optimization starting from random initialization often trapped 

near poor results until recently. Empirically, deep networks 

were found to be not better, and often worse, than neural 

networks with a single perceptron. Hinton et al14 recently 

presented a greedy layer-wise unsupervised learning algo-

rithm for DBN, ie, a probabilistic generative model made 

up of a multilayer perceptron. The training strategy used by 

Hinton et al14 shows excellent results, hence builds a good 

foundation to handle the problem of training deep networks. 

This greedy layer-by-layer approach constructs the deep 

architectures that exploit hierarchical explanatory factors. Dif-

ferent concepts are learned from other concepts, with the more 

abstract, higher level concepts being learned from the lower 

level ones. Deep learning helps to disentangle these abstrac-

tions and pick out which features are useful for learning.

Given the observation x and the l hidden layers hk of 

neurons, 1 k  l, the DBN framework is a generative 

graphical model to model the join distribution of the obser-

vation and the neural networks as:

 ( ) | |

|

P x h h h P h h P h h

P h h P h h

l

l l l l

, , , , ( ) (

( ) ( , )

)1 2 0 1 1 2

2 1 1

… =
- - - ,,

 (1)

where h0 layer is the input observation x. With such fac-

torization, the learning process can be realized in a greedy 

layer-wise14,15 fashion. In equation (1), the term P h hk k( )-1|  

is the conditional distribution of the visible unit layer con-

ditioned on the hidden layer of the restricted Boltzmann 

machine (RBM) at the level k. 

An RBM is a fully connected bipartite graph as shown in 

Figure 2. The energy function of an RBM can be defined as:

 E v h b v c h hWv( , ) ,= - - -′ ′ ′  (2)

Figure 1 Various types of pulmonary nodules seen on computed tomography scan images. Lung nodules were highlighted by yellow color. 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2015:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2018

hua et al

where v and h are visible and hidden layers of RBM, respec-

tively. In equation (2), c′ is the bias vector for the hidden 

layer, whereas b′ is the bias vector for the visible layer. W is 

the weight matrix defining the interaction between units of 

visible and hidden layers. Since the RBM has the shape of a 

bipartite graph, with no intra-layer connections, the hidden 

unit activations are mutually independent given the visible 

unit activations and conversely, the visible unit activations 

are mutually independent given the hidden unit activations. 

The conditional independence of units in the two layers can 

then be expressed as:

 P h v P h v
m m

( ) ( | ),| = Π  (3)

 P v h P v h
n n

( ) ( | ),| = Π  (4)

where m and n are the indices of hidden and visible units, 

respectively. Since in most cases the units of RBM are 

binary variables, the activation probability of each unit can 

be described with a sigmoid function, σas follows:

 P h v c w v
m m n n m n
=( ) = +( )1| σ Σ

,  (5)

 P v h b w h
n n m n m m
=( ) = +( )1| σ Σ

,
.  (6)

With the above mathematical definition and model-

ing, the RBM can be constructed from the input data 

using the Markov chain Monte Carlo and Gibbs sampling 

technique. 

Training an effective deep generative graphical model 

like DBN could not be easily achieved with the traditional 

back-propagation method. Hinton et al14 proposed a fast and 

greedy learning scheme to establish the DBN by iteratively 

constructing stacked RBMs. The DBN is firstly trained by 

the training data x unsupervisedly to obtain the preliminary 

deep network. The pretrained network is then refined super-

visedly for the specific classification or recognition purpose.  

The training process for the DBN is summarized below. More 

technical details on DBN can be found in Hinton et al14 and 

Bengio et al.15

step 1 

Let k =1, construct a RBM by taking the layer hk as the hid-

den of current RBM and the observation layer hk-1, ie, x, as 

the visible layer of the RBM.

step 2 

Draw samples of the layer k according to equation (4).

step 3

Construct an upper layer of RBM at level k+1 by taking 

samples from step 2 as the training samples for the visible 

layer of this new upper layer RBM.

Step 4 
Iterate step 2 and step 3 to k =l -1, and propagate the drawn 

samples.

step 5 

Add an extra neuron on top of the unsupervisedly pretrained 

deep network in steps 1–4 and train the modified neural 

network with the specific labels, here malignant or benign, 

of training data x supervisedly to achieve the classification 

goal.

Convolutional neural network
A CNN18 is a biologically inspired deep architecture. This 

framework was devised to mimic the mechanism of visual 

perception with overlapping neurons to exploit the spatial 

and local pattern of the objects of interest. The typical CNN 

framework is comprised of several convolutional and sub-

sampling layers, followed by a fully connected traditional 

multiple layer perceptron.

For two-dimensional image analysis, the dimensional-

ity of a convolutional layer is usually set as 2 to capture 

local spatial patterns of the object of interest. The size of 

the convolutional layer is smaller than its input layer and 

can be spanned with multiple parallel feature maps. In each 

feature map, the neighboring hidden units are replicated 

units that share the same parameterization (weight vector 

and bias)to reduce the number of free parameters to be 

learnt. The feature map can be interpreted as the input 

image/map being convolved with a linear filter, which is 

a sigmoid function, parameterized by synaptic weights 

and bias. 

Figure 2 Scheme for restricted Boltzmann machine. The restricted Boltzmann 
machine is a fully connected bipartite graph.
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The subsampling layer performs non-linear downsam-

pling of the input image or feature map. The non-linear 

downsampling is mostly realized with way of maximum 

pooling, which selects the maximum value of every non-

overlapping subregion of the input map. The major function 

of the subsampling layer may lie in the reduction of learning 

complexity for the upper layer and is also invariant to the 

translation effect upon the input image. 

The CNN model can be constructed from training data 

with the gradient back-propagation method from the top 

of the fully connected multiple layer perceptron down-

ward to each convolution layer to adjust the parameters 

of each hidden unit with respect to each feature map. The 

architecture of a CNN is illustrated in Figure 3. Note that 

since feature map size decreases with depth, layers near 

the input layer will tend to have fewer filters, while layers 

higher up can have many more filters. In this case, we have 

four and six feature maps for the lower and higher layers, 

respectively.

Nodule classification with DBN
Because CT scans are three-dimensional images with lower 

resolution on the sagittal, ie, z, axis, the two-dimensional 

region of interest (ROI) of a pulmonary nodule depicted in 

a two-dimensional CT slice is served as individual train-

ing sample. Since the physical resolution of CT images on 

the x and y axes is higher, three-dimensional features may 

sometimes be inaccurate due to low resolution on the z axis. 

Meanwhile, the two-dimensional ROIs of a nodule are treated 

equally and independently as the training samples for the 

DBN. Because image patches in some ROIs may depict 

partial information about the nodule, it will train the DBN 

model more robust with such two-dimensional input samples. 

As illustrated in Figure 4, the concept of training nodule 

classifier of DBN is the construction of multiple bipartite 

undirected graphical models (RBMs) that are defined in the 

earlier subsection on DBN. Note that each RBM consists of 

a layer of visible units that represent the data and a layer of 

hidden units that learn to represent features capturing higher-

order correlations in the data. The two layers are connected 

by a matrix, but there are no connections between latent 

units within a layer. When two RBMs are to construct a 

DBN, the layer with hidden units of the first RBM is linked 

with the layer with visible units of the second RBM. DBN 

trains one layer at a time, starting from the bottom layer. The 

values of the hidden units in one layer, when they are being 

inferred from data, are treated as the data for training the 

next layer. The training is based on the stochastic gradient 

descent method and the contrastive divergence algorithm to 

approximate the maximum log-likelihood. The classification 

task is performed via a combination of unsupervised pretrain-

ing and subsequent supervised fine-tuning.

Results and discussion
Classification of pulmonary nodules with deep learning 

techniques was tested on the Lung Image Database Consor-

tium dataset, which includes 1,010 patients collected from 

Weill Cornell Medical College, University of California at 

Los Angeles, University of Chicago, University of Chicago, 

University of Iowa, and University of Michigan. Each patient 

record contains at least one lung CT scan with four sets of 

annotations from four radiologists. Nodules with a diameter 

larger than 3 mm were further annotated with diagnostic 

information, including identification of malignancy, by the 

radiologists. 

In this study, we selected all nodules with diameters 

larger than 3 mm from the Lung Image Database Con-

sortium dataset. Note that the total selected number WAs 

2,545 for this criterion. To alleviate the impact of data bias, 

we perform leave one out cross-validation in the training 

phase. 

The DBN and CNN deep learning frameworks were 

adopted to achieve nodule differentiation without the 

elaboration of feature computing. The training samples 

Figure 3 Architecture of a convolutional neural network. This model was constructed from training data using the gradient back-propagation method.
Abbreviation: MLP, multiple layer perceptron.
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were resized to 32 by 32 ROIs to facilitate the train-

ing procedure. In the experiment, all DBNs were pre-

trained in an unsupervised manner using RBMs. The 

RBMs were trained using stochastic gradient descent. 

Figures 3 and 4 illustrate the architecture and con-

cept for the models of CNN and DBN, respectively.  

In addition, Figures 5 and 6 illustrate the structure of CNN 

and DBN, respectively, and show that while the weights 

between the visible layer and the hidden layer of CNN are 

directed, the weights between two layers of DBN are undi-

rected and hence DBN has more freedom and can achieve 

better performance than CNN in terms of computational 

efficiency of converge or differentiation accuracy. 

Two feature-based methods7,9 were implemented as 

baselines for illustration of the effectiveness of the deep 

learning techniques with regard to the nodule classifica-

tion problem in this study. The first method7 adopted the 

descriptors of SIFT and LBP to quantitatively profile a 

two-dimensional ROI in a nodule. Dimension reduction 

techniques were further applied to shrink the feature size 

but preserve the discriminative power. The K-nearest 

neighbor method was then utilized for the classification 

task. The second feature-based method9 attempted to fulfill 

the nodule classification task with the technique of fractal 

analysis. This fractal analysis method was also applied 

on two-dimensional images for the purpose of nodule dif-

ferentiation. Specifically, the popular fractional Brownian 

Figure 6 Deep belief network structure.
Abbreviation: RBM, restricted Boltzmann machine.

Figure 4 Deep belief network learning framework to circumvent elaboration of semantic features. The concept of a training nodule classifier is illustrated.
Abbreviation: RBM, restricted Boltzmann machine.

Figure 5 Convolutional neural network structure: connectivity pattern between layers.
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Table 1 Comparison of performance of various models 

DBN CNN SIFT7 Fractal9 

sensitivity 73.4% 73.3% 75.6% 50.2%
Specificity 82.2% 78.7% 66.8% 57.2%

Abbreviations: DBN, deep belief network; CNN, convolutional neural network; 
SIFT, scale invariant feature transform.

motion model was adopted to estimate the Hurst coeffi-

cient, which was shown to be linearly correlated with the 

fractal dimension, at a defined neighborhood. Five coef-

ficients were computed with respect to the neighborhood 

radius of 3, 5, 7, 9, and 11, respectively, as the feature 

vector. Support vector machine was utilized to identify 

the malignant or benign nature of the nodule based on the 

computed feature vector.

Table 1 summarizes the performance sensitivity and 

specificity with respect to the DBN, CNN, SIFT + LBP, 

and fractal methods. It can be observed that both DBN and 

CNN outperform the feature-computing methods, confirming 

the efficacy of deep learning techniques with regard to the 

CAD problem of classification of pulmonary nodules seen 

on CT images.

CAD is a quantitative diagnostic tool to provide an objec-

tive opinion for the reference of radiologists. Most CAD 

frameworks used for tumor classification need to address 

several issues, including feature extraction, selection, and 

integration, to achieve the best performance. Also, the choice 

of classification model is another important factor affecting 

the differentiation result. 

Several deep learning schemes, on the other hand, can 

potentially avoid the need to address the above-mentioned 

issues in conventional CAD frameworks by a seamless 

feature exploration and classification scheme. In this study, 

we exploited two specific models of deep learning, ie, DBN 

and CNN, for the purpose of classification of lung nodules 

seen on CT images. Two feature computing methods, ie, 

SIFT + LBP7 and fractal analysis,9 were implemented for 

comparison. The experimental results suggest that the feature 

computing methods have less discriminative power than 

DBN and CNN models, and hence encourage the introduc-

tion of deep learning techniques into the CAD application 

domain. 

The major drawback of the deep learning techniques used 

in this study lies in the resizing issue of the input images. This 

may suggest that we discard the size cue in the nodule classifica-

tion. Although the size cue is an important diagnostic indicator 

for identification of malignancy, the adopted DBN and CNN 

can still achieve satisfactory performance without this cue. 

Based on our current results, a better nodule classification result 

could be achieved if we could find a way to incorporate the size 

cue into the deep learning framework. This study could serve as 

a basis for further exploration of the nodule detection problem 

that considers the whole CT volume with the corresponding 

physical dimensions.

Conclusion
Inspired by recent successes with deep learning techniques, 

we attempted to address the longstanding fundamental fea-

ture extraction problem for classification of the malignant or 

benign nature of lung nodules without actually computing the 

morphology and texture features. The encouraging results of 

our empirical studies indicate that the proposed deep learning 

framework outperforms conventional hand-crafted feature 

computing CAD frameworks. To our best knowledge, this 

is the first research to apply deep learning techniques to the 

problem of pulmonary nodule classification. This study may 

serve as a basis to address the intelligent nodule detection 

problem. We believe this is just the beginning for deep learn-

ing with application to tasks, and there are still many open 

challenges. In future work, we will investigate more advanced 

deep learning techniques and evaluate further diverse datasets 

for more in-depth empirical studies.
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