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Congenital anomalies of the kidney and urinary tract (CAKUTs) occur in 3–6 per 1000 live births, account for the most cases of
pediatric end-stage kidney disease (ESKD), and predispose an individual to hypertension and cardiovascular disease throughout
life. Although CAKUTs are a part of many known syndromes, only few single-candidate causative genes have been implicated so
far in nonsyndromic cases of human CAKUT. Evidence from mouse models supports the hypothesis that non-syndromic human
CAKUT may be caused by single-gene defects. Because increasing numbers of children with CAKUT are surviving to adulthood,
better understanding of the molecular pathogenesis of CAKUT, development of new strategies aiming at prevention of CAKUT,
preservation of renal function, and avoidance of associated cardiovascular morbidity are needed. In this paper, we will focus on
the knowledge derived from the study of syndromic and non-syndromic forms of CAKUT in humans and mouse mutants to
discuss the role of genetic, epigenetic, and in utero environmental factors in the pathogenesis of non-syndromic forms of CAKUT
in children with particular emphasis on the genetic contributions to CAKUT.

1. Introduction

Congenital anomalies of the kidney and urinary tract
(CAKUTs) occur in 3–6 per 1000 live births and are
responsible for 34–59% of chronic kidney disease (CKD)
and for 31% of all cases of end-stage kidney disease (ESKD)
in children in the United States (Table 1) [1–8]. All children
with ESKD require renal replacement therapy and up to 70%
of them develop hypertension [9]. Given that the survival
rate of children with ESKD is about 30 times lower than that
of healthy children [10], new strategies are needed to prevent
CAKUT, preserve renal function, and reduce associated
cardiovascular morbidity.

CAKUTs comprise a wide range of renal system struc-
tural and functional malformations that occur at the level of
the kidney (e.g., hypoplasia and dysplasia), collecting system
(e.g., hydronephrosis and megaureter), bladder (e.g., urete-
rocele and vesicoureteral reflux), or urethra (e.g., posterior
urethral valves) [16]. With improved prenatal screening,
many cases of CAKUT are diagnosed by antenatal ultrasono-
graphy performed on 18–20 weeks of gestation. Most

common antenatal manifestations of CAKUT include oligo-
hydramnios or variations in gross morphology of the kidney,
ureter, or bladder. Postnatal manifestations of CAKUT may
include presence of palpable abdominal mass or single umbi-
lical artery, feeding difficulties, decreased urine output, defi-
cient abdominal wall musculature, and undescended testes
in a male infant or multiorgan birth defects [17]. Despite
the broad spectrum, all forms of CAKUT result from faulty
renal system development [16, 18, 19]. Although many forms
of CAKUT occur in the context of multiorgan malformation
syndrome (http://www.ncbi.nlm.nih.gov/omim), most cases
of CAKUT are nonsyndromic [16]. Syndromic CAKUTs
develop in association with additional congenital abnormali-
ties outside of the kidney and urinary tract and manifest clin-
ically recognizable features of a known syndrome, whereas in
nonsyndromic CAKUT congenital structural anomalies are
confined only to the kidney and urinary tract. Although only
few single-candidate causative genes have been implicated
so far in nonsyndromic cases of human CAKUT [20, 21],
evidence from mouse models supports the hypothesis that
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Table 1: Prevalence of CAKUT.

Type of malformation Prevalence References

Unilateral renal agenesis

Fetuses 0.008% [8]

Newborns [11]

Bilateral renal agenesis

Fetuses 0.013% [8]

Newborns 1 in 30,000 [11]

Congenital hydronephrosis
1 in 1,000 live
births

[12]

Renal hypodysplasia

Fetuses 0.027% [8]

Newborns 1 in 400 live births [8]

Horseshoe kidney
1 in 1,000
newborns

[13]

PUV

Fetuses 0.003% [8]

VUR

Infants with hydronephrosis on
prenatal ultrasonography

3–19% [14]

Well children 1–2%

Children with UTI 25–40%

Unilateral duplex ureter 1–8% [15]

nonsyndromic human CAKUT may be caused by single-gene
defects.

2. Evidence from Mouse Models to Suggest
Monogenic Causes of CAKUT

Genetic manipulations in mice identified a number of genes
and gene networks that orchestrate normal development of
the kidney and urinary tract (renal developmental genes
(RDGs)) and provided new insights into the pathogenesis of
CAKUT ([22, 23], http://www.gudmap.org/). Because con-
certed inductive interactions of many RDGs expressed in the
mesenchyme (anlagen of the nephron), stroma (anlagen of
the renal interstitium), ureteric bud (UB, anlagen of the renal
pelvis, calyces, ureter, and collecting ducts), and cloaca (anla-
gen of the bladder and urethra) at multiple developmental
stages are required for normal morphogenesis of the kidney
and lower urinary tract [22], single-RDG mutations might
affect kidney development at multiple steps and cause a
broad phenotypic spectrum of CAKUT that ranges from
vesicoureteral reflux (VUR) to renal agenesis [16]. For exam-
ple, mice with global genetic deletion of Ret, a receptor tyro-
sine (Tyr) kinase (RTK) for glial-derived neurotrophic factor
(GDNF) produced in the mesenchyme, expressed in the UB
exhibit a spectrum of anomalies ranging in severity from uni-
or bilateral renal and ureteral agenesis, to blind-ending ure-
ters with no kidney tissue, to hypoplastic/dysplastic kidney
rudiments [24]. Moreover, specific CAKUT phenotype in Ret
mutants depends on distinct Ret-stimulated signaling path-
ways. Tyr1062Ret mouse mutants, characterized by aberrant

phosphatidylinositol 3-kinase (PI3K)/Akt and rat sarcoma
(Ras)/extracellular-signal-regulated kinase (Erk) 1/2 signal-
ing, exhibit more severe defects, which include renal agen-
esis, hypodysplasia, and ureteral defects, whereas Tyr1015Ret
mutans, characterized by aberrant phospholipase C (PLC) γ
signaling, manifest renal hypodysplasia and ureteral defects,
but not renal agenesis [25]. The diverse phenotypes of these
Ret mutants resemble human CAKUT, including incomplete
penetrance (lack of disease manifestation in the presence of
gene mutation) and variable expressivity (variation in type
and severity of disease between individuals with the same
gene mutation). Despite new insights into the molecular
basis of CAKUT obtained in model organisms, integrated
understanding of the role of genetic factors in the pathogene-
sis of nonsyndromic forms of CAKUT in humans is far from
complete.

3. What Is the Evidence That Nonsyndromic
Human CAKUTs Have a Genetic Basis?

The possibility of genetic basis of nonsyndromic CAKUT is
supported by occurrence of familial cases of nonsyndromic
renal agenesis, hypodysplasia, renal tubular dysgenesis, mul-
ticystic dysplastic kidney (MCDK), or VUR [26–30]. The
observations that diverse forms of CAKUT occur in the
same family [31] suggest that specific genetic mutations can
potentially lead to CAKUT, but the final renal system phe-
notype depends on either genetic background or environ-
mental factors. Despite recent identification of mutations in
a number of genes in patients with nonsyndromic forms of
CAKUT (Table 2), evidence to suggest that all cases of
nonsyndromic CAKUT in humans are due to single-gene
mutations is missing. Most studies report presence of known
potential CAKUT-causing RDG mutations only in minority
(1.9–20%) of patients with nonsyndromic CAKUT. Muta-
tions in HNF1β, Pax2, UMOD, or Eya1 are detected in 1.9%
of 538 patients from 456 families of predominantly European
population with nonsyndromic CAKUT [32]. Mutations in
hepatocyte nuclear factor-1 β (HNF1β) are identified in 10%
of Japanese children with renal hypodysplasia and unilateral
MCDK [33]. Mutations in HNF1β, Eya1, Six1, Sall1 and
Pax2 are identified in 5–15% of children from European
population with nonsyndromic CAKUT [20]. Massively par-
allel exon sequencing of 30 candidate genes in pooled DNA
from children with unilateral renal agenesis, renal hypodys-
plasia, or VUR in the United States identified novel muta-
tions in 4 genes (Ret, BMP4, FRAS1, and FREM2) in 17% of
cases [21]. Pax-2, but not its downstream target gene, GDNF,
polymorphism (a variation in the DNA sequence at a given
locus that is too common to be due merely to new mutation)
is associated with reduced kidney size in neonates [34, 35].
The differential effects of Pax2 and GDNF polymorphism on
CAKUT phenotype may be due, in part, to unidentified cell-
specific cofactors that regulate gene expression. Of interest,
polymorphism in GDNF receptor Ret is associated with
reduced kidney size in neonates [36]. These findings may
be interpreted to suggest that while RTKs other than Ret
are unable to rescue renal phenotype in the absence of Ret,
growth factors other than GDNF can act via Ret to do so.
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Notably, mutations in Ret are found in 35% of humans with
various forms of renal agenesis [37]. Association of single
polymorphism in the human AT2R gene, 1332A > G
transition, with CAKUT has been reported in children with
ureteropelvic junction (UPJ) stenosis, megaureter, MCDK,
renal agenesis, and hydronephrosis from Germany, Italy,
Korea, and the United States [38–41]. In contrast, several
studies were unable to detect any known mutations in several
RDGs linked to CAKUT in mice in humans. No known
UMOD (European population) or AT2R (Japanese popula-
tion) gene mutations were identified in children with diverse
forms of nonsyndromic CAKUT [42, 43]. There was no
association of primary VUR with mutations in Pax2, HNF1β,
Ret, or Robo2 in children from European population [44].
Thus, the contribution of genetic mutations to the cause of
nonsyndromic CAKUT in the majority of children remains
unresolved.

Several studies report a discrepancy in the impact of
genetic mutations on CAKUT phenotype between mice and
humans. For example, despite severe renal phenotype
observed in Robo2/Slit2-mutant mice, which includes forma-
tion of supernumerary ureters [59], these gene mutations
are very rarely associated with familial nonsyndromic VUR
in children [60]. Mutations in the genes encoding for angio-
tensinogen (AGT), renin, ACE, or angiotensin II receptor
type 1 (AGTR1) in mice result in severe medullary hypopla-
sia and hydronephrosis [68], a phenotype not observed in
humans with AGT, renin, ACE, or AGTR1 mutations [29].
The reasons for different CAKUT phenotypes observed in
mice and humans with mutations in the same RDG may
include severity of mutation (e.g., loss-of function mutation
in mice models and missense mutations in humans), a higher
complexity of epistatic or epigenetic interactions in humans
compared to mice, or other factors. Importantly, the discrep-
ancy between the mice and human CAKUT phenotype calls
for caution when extrapolating findings observed in mice to
humans.

4. Mechanisms That Dictate
the Phenotypic Spectrum of CAKUT

Phenotypic heterogeneity of CAKUT can result from the fol-
lowing mechanisms: mutations in a single or multiple genes
linked to human CAKUT [16], genetic [69–74] or epigenetic
modifiers [75], mode of inheritance and environment [76].

4.1. Mutations in a Single or Multiple Genes Linked to

Human CAKUT

4.1.1. Locus Heterogeneity. Although such hereditary cystic
kidney diseases as ADPKD and nephronophthisis are not a
part of CAKUT phenotype spectrum and should not be
confused with CAKUT, important lessons can be drawn from
our current knowledge of these and other forms of hereditary
renal disease. In this regard, genetic locus heterogeneity
(mutations in genes at different chromosomal loci) is a major
determinant of interfamilial disease variability in ADPKD,
accounting for earlier onset of ESKD in patients with
ADPKD1 compared with patients with ADPKD2 [77] and

of disease severity in children with nephronophthisis-related
ciliopathies [78]. Whether genetic locus heterogeneity plays
a role in interfamilial variability in CAKUT remains to be
determined.

4.1.2. Allelic Heterogeneity. The specific combination of
mutations dictates phenotypic outcome in some forms of
CAKUT. For example, the presence of two truncating muta-
tions in PKHD1 results in nonfunctional fibrocystin and
leads to death in the neonatal period [77, 79]. In contrast,
patients with two missense (hypomorphic alleles that pro-
duce partially functional fibrocystin) mutations or a mis-
sense and a truncating mutation have a more favorable
prognosis. Histologically, the severity of collecting duct dila-
tation and of degenerative changes in cortical tubules is
more pronounced in neonates with truncating than missense
PKHD1 mutations [79]. Unlike in ARPKD, no clear cor-
relation between mutation type and the severity of kidney
disease is detected in ADPKD1 or 2 [77, 80]. Considerable
disease variability in patients with the same PKD1 or PKD2
mutations supports the notion that additional genetic and
environmental factors may modulate phenotypic outcome
in ADPKD. Given that two null mutations in only NPHP6,
but not in NPHP2-NPHP5, caused a more severe renal phe-
notype compared to null/missense mutations, the authors
proposed that genetic locus heterogeneity is the major deter-
minant of the disease phenotype with allelic heterogeneity
being important only for certain genes [78].

4.1.3. Allelic Variation. Allelic variation in gene expression
(significant difference in gene expression between the two
alleles, which is transmitted by Mendelian inheritance) is
common in the human genome [81]. Thus, allelic variation
may modulate the level of various CAKUT mutants, leading
to broad phenotypic spectrum of CAKUT.

4.2. Genetic Modifiers. Modifier genes can potentially mod-
ulate the CAKUT phenotype despite a unique CAKUT geno-
type. In this case, mutation in one gene will cause CAKUT or
alter the phenotype only in the presence of genetic change in
another gene (epistatic gene interactions). One of the well-
recognized examples involves worsening the severity of
ADPKD in contiguous deletions of PKD1 and adjacent
tuberous sclerosis gene, Tsc2 [82]. Interactions between
mouse orthologs of the genes linked to human CAKUT such
as PKHD1 and HNF1β, PKD1 and PKD2 or polycystin 1, the
product of the PKD1 gene and tuberin, the product of the
Tsc2 gene have been reported in animal models [72–74, 83].
Large intrafamilial variability in renal disease progression
in siblings with ADPKD, coupled with a significant excess
of variability in siblings compared with monozygotic twins,
provides further support for a role of genetic modifiers in
children with ADPKD [84]. The fact that the spectrum of
CAKUT phenotypes associated with HNF1β or uromodulin
(UMOD) mutations and age of their manifestations differ
[33, 55, 85, 86] may be due, in part, to the ability of
HNF1β, a developmentally regulated transcription factor, to
regulate expression of UMOD or aggravate the phenotype of
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ADPKD [87, 88]. Available evidence suggests that epistatic
gene interactions may be important in the pathogenesis of
nephronophthisis. For example, NPHP1 mutation causes
nephronophthisis, whereas NPHP6 mutation alone does not
lead to disease. In contrast, a combination of the same muta-
tions in NPHP1 and NPHP6 causes an additional extrarenal
disease phenotype [89]. Other RDGs that interact genetically
and may influence renal phenotype include Pax2 and LMX1B
or Six1 and Tbx18 [69, 70].

4.3. Epigenetic Modifiers. Great importance has been recently
attributed to the epigenetic regulation of gene expression
(epigenetic programming) and disease causality. The major
mechanisms in epigenetic control of gene regulation are
DNA or chromatin protein methylation and acetylation.
Chromatin methylation and acetylation recruit additional
proteins that can modify histones to form compact, inactive
(heterochromatin), or opened, active (euchromatin), chro-
matin and alter RDG transcription [90, 91]. Specific com-
binations of these epigenetic marks determine whether to
maintain a given RDG in an uncommitted transcriptional
state with its transcripts present at low levels (poised state),
stimulate its transcription by making it accessible to the
transcription machinery, or silence it by packing into hetero-
chromatin inaccessible to the transcription machinery [92].
Recent studies demonstrate that Pax2, a transcription factor
critical for normal kidney development, is an important
determinant of epigenetic marks during metanephric organ-
ogenesis [75]. Treatment of embryonic kidneys with inhib-
itors of histone deacetylases (HDACs), an evolutionary con-
served group of enzymes that remove acetyl groups from
histone tails, impairs UB branching and causes growth arrest
and apoptosis [93]. Moreover, epigenetic programming
may be inherited and may be involved in predisposition
to complex diseases [94].

4.4. Mode of Inheritance. The mode of inheritance dictates
the degree of genetic causality. In monogenic (Mendelian)
recessive diseases, mutation in a given gene conveys a high
risk of developing the disease by a defined age in early child-
hood. For example, in ARPKD disease-causing mutation
conveys almost 100% risk of developing the disease [77, 79].
These diseases usually manifest complete penetrance (all
individuals who have the disease-causing mutation have clin-
ical symptoms of the disease) and present earlier in life. The
strength of genotype-phenotype correlation is reduced in
autosomal dominant, compared with recessive, diseases [77].
This may be due to incomplete penetrance or variable expres-
sion. This is also true for nonsyndromic forms of CAKUT
such as unilateral and bilateral renal agenesis or severe
dysplasia, most of which manifest autosomal dominant trait
with penetrance between 50 and 90% and variable expression
[95]. Genotype-phenotype correlations are the weakest in
polygenic (complex) diseases, where mutations in multiple
genes act in concert with environmental effects to cause a
phenotype later in life. Although polygenic causation cannot
be excluded in congenital solitary kidney, it is less likely
since risks to offsprings are higher than expected for a strict

Intrauterine
environment

Low-protein diet
High/low sodium 
intake
Cocaine, alcohol
Vitamin A deficiency
Hyperglycemia
Glucocorticoids
RAS blockers
MMF
Antiepileptic drugs
Cyclophosphamide

Gene mutations   Epigenotype   Urinary flow
obstruction

Mesenchyme

Normal kidney                                               

and urinary tract

UB

CAKUT

Figure 1: Schematic representation of the proposed impact of
intrauterine environment, gene mutations, epigenotype, and uri-
nary flow obstruction on the pathogenesis of CAKUT. These factors
cause aberrant interactions among the mesenchyme, ureteric bud
(UB), or bladder anlagen to result in CAKUT [102]. Please see text
for details.

multifactorial condition [30]. On the other hand, mutations
in RDGs such as Six2 and Bmp4 are identified only in 3%
of children from European population with nonsyndromic
CAKUT that include unilateral renal agenesis and renal
hypodysplasia [48]. High variability and low penetrance of
Six2 and Bmp4 mutations observed in this study are in accor-
dance with the presumed polygenic inheritance of CAKUT.
Unfortunately, such terms as “incomplete penetrance” or
“variable expression” do not explain a biological mechanism
but rather are labels for our ignorance.

4.5. Environment. Intrauterine environment has been linked
to CAKUT. Maternal low-protein diet initiated at onset of
pregnancy in mice alters expression of RDGs in the embry-
onic metanephros and reduces nephron number [76]. One
mechanism by which maternal low-protein diet may cause
renal hypoplasia is by increasing concentration of gluco-
corticoids via downregulation of placental steroid-meta-
bolizing enzyme 11β-hydroxysteroid dehydrogenase type 2
[96]. Another mechanism may involve downregulation of
angiotensin II contents in the embryonic kidney [97].
Both excessively high and low maternal sodium intake during
pregnancy in the rat cause aberrant expression of critical
RDGs and reduce the final number of glomeruli in the off-
spring, predisposing to hypertension later in life [98].
Additional factors that have been shown to result in CAKUT
in children include maternal use of cocaine or alcohol during
gestation (Figure 1) [99, 100]. Occurrence of renal hypodys-
plasia caused by high maternal salt intake during gestation



International Journal of Nephrology 7

in bradykinin B2 receptor-deficient mice provides proof of
the principle that environmental factors may act in concert
with single-gene mutations to cause CAKUT [101]. The
mechanistic basis for CAKUT associated with altered intra-
uterine environment remains to be elucidated further.

5. Diagnostic Genomics Technologies
in CAKUT

Three novel techniques are now available to accelerate
discovery of causative genes in nonsyndromic CAKUT:
genome-wide association studies (GWASs), exome capture,
and next-generation DNA sequencing. GWASs avoid can-
didate-gene approach and map whole genomic DNA with
markers to find loci (most commonly by genotyping single-
nucleotide polymorphisms (SNPs)) associated with or in
linkage disequilibrium (occurrence of some combinations
of alleles or genetic markers in a population more often or
less often than would be expected from a random formation
of haplotypes from alleles based on their frequencies) with
CAKUT. Although the ability of GWASs to identify the
impact of common and rare variants on nonsyndromic
CAKUT remains to be determined, GWASs generally rarely
succeed in securely implicating specific genes in specific poly-
genic (common) diseases [103]. Exome capture and next-
generation sequencing represent the most comprehensive
study of the role of genetic variations in disease. Exome
represents protein-coding subset of a genome. Because exons
harbor 85% of mutations in single-gene diseases [104],
exome capture (DNA hybridization with human exome array
followed by amplification of captured DNA fragments) with
consecutive next-generation sequencing (massively paral-
lelized sequencing of captured and amplified DNA frag-
ments) will help to identify CAKUT-causing alleles [105].
Although these techniques exemplify a fundamental advance
for nephrology research, they are costly and require specific
bioinformatic software for stringent data analysis, interpre-
tation and reporting, and a large number of patients to yield
adequate statistical power.

6. Implications of the State of
Current Knowledge Regarding Genetic Cause
of CAKUT

The cause of most cases of nonsyndromic CAKUT remains
unknown. These types of CAKUT are assumed to be multi-
factorial and occur as a result of combination of epigenetic
and environmental factors affecting genetically susceptible
individuals. It is conceivable that polymorphism in a single
given RDG may be in linkage disequilibrium with a separate,
causative, mutation in a nearby gene. Perhaps polymor-
phisms or mutations in other genes must coexist to result in
CAKUT. Application of GWASs, exome (and subsequently
whole genome) capture and next-generation sequencing
studies using the proper curation of CAKUT phenotypes, a
family-based research design and properly-powered patient
sample size will assist in identification of specific genetic
determinants underlying nonsyndromic CAKUT and assess

their causality. Establishment of collaborative framework
among multiple centers throughout the world is required to
unravel the genetic basis of CAKUT and provide precise
genetic counseling for CAKUT patients and their relatives to
enable personalized medical care based on the detailed
understanding of the molecular pathogenesis of the disease.
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