
Consensus Problems in Networks of Agents

with Switching Topology and Time-Delays

Reza Olfati Saber Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

e-mails: {olfati,murray}@cds.caltech.edu

April 23, 2003

Keywords: consensus problems, networks of autonomous agents, switching systems,
graph Laplacians, balanced graphs, communication time-delays, algebraic graph theory.

Abstract

In this paper, we discuss consensus problems for a network of dynamic agents with
fixed and switching topologies. We analyze three cases: i) networks with switching
topology and no time-delays, ii) networks with fixed topology and communication
time-delays, and iii) max-consensus problems (or leader determination) for groups of
discrete-time agents. In each case, we introduce a linear/nonlinear consensus protocol
and provide convergence analysis for the proposed distributed algorithm. Moreover,
we establish a connection between the Fiedler eigenvalue of the information flow in
a network (i.e. algebraic connectivity of the network) and the negotiation speed (or
performance) of the corresponding agreement protocol. It turns out that balanced
digraphs play an important role in addressing average-consensus problems. We intro-
duce disagreement functions that play the role of Lyapunov functions in convergence
analysis of consensus protocols. A distinctive feature of this work is to address consen-
sus problems for networks with directed information flow. We provide analytical tools
that rely on algebraic graph theory, matrix theory, and control theory. Simulations are
provided that demonstrate the effectiveness of our theoretical results.

1 Introduction

Distributed decision-making for coordination of networks of dynamic agents has attracted
several researchers in recent years. This is partly due to broad applications of multi-agent sys-
tems in many areas including cooperative control of unmanned air vehicles (UAVs), flocking
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of birds [22, 24, 23], schooling for underwater vehicles, distributed sensory networks, attitude
alignment of clusters of satellites, and congestion control in communication networks [21].

Agreement problems have a long history in the field of computer science, particularly in
automata theory and distributed computation [15]. In many applications involving multi-
agent/multi-vehicle systems, groups of agents need to agree upon certain quantities of inter-
est. Such quantities might or might not be related to the motion of the individual agents. As
a result, it is important to address agreement problems in their general form for networks of
dynamic agents with directed information flow under link failure and creation (i.e. variable
network topology).

Our main contribution in this paper is to define and address consensus problems under
a variety of assumptions on the network topology (being fixed or variable), presence or lack
of communication time-delays, and boundedness of the inputs of dynamic agents. In each
case, we provide convergence analysis and for linear protocols establish direct connections
between performance and robustness of a consensus protocol and the properties of graph
Laplacian of the information flow in the network.

In the past, a number of researchers have worked in problems that are essentially different
forms of agreement problems with differences regarding the types of agent dynamics, the
properties of the graphs, and the names of the tasks of interest. In [25, 7, 6], graph Laplacians
are used for the task of formation stabilization for groups of agents with linear dynamics.
Their method for formation stabilization has not yet been extended to systems with nonlinear
dynamics that are not feedback linearizable. Special cases of this approach are known as
leader-follower type architectures and have been widely used by numerous researchers [19, 4,
14]. In [18], graph Laplacians are used in the context of dynamic graph theory. In [24, 23],
flocking and heading angle alignment for multiple particles is analyzed from the point of
view of statistical mechanics and a phase transition phenomenon is observed that occurs the
information flow in the network becomes connected. The work in [13] focuses on attitude
alignment for undirected graphs in which the agents have simple dynamics motivated by the
model used in [24]. It is claimed that the connectivity of the graph on average is sufficient for
convergence of the heading angles of the agents. In [20], the authors addressed convergence
of linear and nonlinear protocols for networks with undirected graphs in presence or lack of
communication time-delays. Theoretically, analyzing consensus on directed graphs is more
challenging and is considered in the present paper.

In this paper, we provide convergence analysis of consensus protocol for a network of
integrators with a directed information flow and fixed or switching topology. Our analysis
relies on several tools from algebraic graph theory [1, 11] and matrix theory [12]. We establish
a connection between the performance of the linear consensus protocol and the Fiedler
eigenvalue of graph Laplacian of a graph called the mirror graph (that is closely-related
to the original directed graph).

It turns out that a class of directed graphs called balanced graphs have a crucial role
in derivation of an invariant quantity and a Lyapunov function for convergence analysis
of average-consensus problems on directed graphs. This Lyapunov function is a measure
of group disagreement in the network. We show that a directed graph solves the average-
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consensus problem using a certain protocol if and only if it is balanced. Furthermore, we
use properties of balanced networks to analyze the convergence of an agreement protocol for
networks with switching topology. This variation of the network topology is usually due to
link failures or creations in networks with mobile nodes. We introduce a common Lyapunov
function that guarantees asymptotic convergence to a group decision value in a network with
switching information flow.

Building on these basic results, we provide a number of extensions. We discuss the
effects of communication time-delays in solving consensus problems. For undirected graphs,
we address average-consensus problem under the constraint that the inputs of all agents
are bounded. This leads to analyzing a nonlinear protocol. Using a example of a network
with three nodes, we demonstrate that analyzing the convergence of this protocol for general
digraphs is a challenging open problem. Finally, we pose and address the max-consensus
problem that is useful for determining a superior or leader in a group of agents in a distributed
way.

Simulation results are provided that demonstrate our theoretical predictions and show
the novel analytical tools that we propose are effective.

An outline of this paper is as follows. In Section 2, we define consensus problems. In
Section 3, we give two protocols. Some background on algebraic graph theory and properties
of graph Laplacians are provided in Section 4. A counterexample is given in Section 5
that shows not every digraph solves an average-consensus problem. In Section 6, our main
results on networks with switching topology are presented. Average-consensus problems
for networks with communication time-delays is discussed in Section 7. In Section 8, our
result on max-consensus problem is given. The simulation results are presented in Section 9.
Finally, in Section 10, concluding remarks are stated.

2 Consensus Problems

Let G = (V , E ,A) be a weighted directed graph (or digraph) with n nodes and a weighted
adjacency matrix A = [aij] where aij ≥ 0 for all i, j ∈ I = {1, 2, . . . , n} with i 6= j. Here, V
denotes the set of vertices vi and E denotes the set of edges ij (or (vi, vj)) of the graph G.
The set of neighbors of node i is denoted by Ni = {ij ∈ E : aij > 0}. We call any subset of
nodes J a cluster. The set of neighbors of a cluster J ⊂ I is defined by

NJ := ∪i∈JNi = {j ∈ I : i ∈ J, ij ∈ E} (1)

Let xi ∈ R denote the value of node i. We refer to Gx = (V , E ,A, x) with x =
(x1, . . . , xn)

T as an algebraic graph or (static) network with value x ∈ Rn and informa-
tion flow G = (V , E ,A). The value of a node might represent physical quantities including
attitude, position, temperature, voltage, and so on. We say nodes i and j in a network agree
if and only xi = xj. We say all the nodes in a network have reached a consensus if and only
if xi = xj for all i, j ∈ I, i 6= j. Whenever the nodes of a network are in agreement, the
common value of all nodes is called the (group) decision value.
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Suppose each node of a graph is a dynamic agent with dynamics

ẋi = f(xi, ui), i ∈ I. (2)

A dynamic graph (or dynamic network) is defined as a 4-tuple Gx(t) = (V , E ,A, x(t)) together
with dynamics ẋ = F (x, u) where x denotes the state of the dynamic graph and F (x, u) is
the column-wise concatenation of the elements Fi(x, u) = f(xi, ui).

Let χ : Rn → R be a function of n variables x1, . . . , xn. The χ-consensus problem in
a dynamic graph is a distributed way to calculate χ(x(0)) by applying inputs ui that only
depend on the values of node i and its neighbors. We say a protocol

ui = ki(xj1 , . . . , xjmi
) (3)

with j1, . . . , jmi
∈ {i} ∪ Ni and mi ≤ n asymptotically solves the χ-consensus problem if

and only if there exists an asymptotically stable equilibrium x∗ of ẋ = F (x, k(x)) such that
x∗i = χ(x(0)) for all i ∈ I. We are interested in solving the χ-consensus problem in a
distributed fashion in which no node is connected to all other nodes (i.e. mi < n for all i).

The special cases with χ(x) = Ave(x) = 1
n
(
∑n

i=1 xi), χ(x) = Max(x) = maxi xi, and
χ(x) = Min(x) = mini xi are called average-consensus, max-consensus, and min-consensus,
respectively due to their broad applications in distributed decision-making for multi-agent
systems.

Solving average-consensus problem is an an example of distributed computation of a
linear function χ(x) = Ave(x) using a network of dynamic systems. This is more challenging
than just reaching a general agreement.

3 Consensus Protocols

In this section, we present three consensus protocols that solve agreement problems in a
network of continuous-time (CT) integrator agents with dynamics

ẋi(t) = ui(t) (4)

or agents with discrete-time (DT) model

xi(k + 1) = xi(k) + εui(k) (5)

and step-size ε > 0. In this paper, we consider three scenarios:

i) Fixed or switching topology and zero communication time-delay: We use the following
linear consensus protocol:

ui =
∑

j∈Ni

aij(xj − xi) (A1)

where the set of neighbors Ni = Ni(G) of node i is variable in networks with switching
topology.

4



ii) Fixed topology G = (V , E ,A) and communication time-delay τij > 0 corresponding to
the edge ij ∈ E : We use the following linear time-delayed consensus protocol:

ui(t) =
∑

j∈Ni

aij[xj(t− τij)− xi(t− τij)] (A2)

The derivation of each of the aforementioned two protocols (A1) and (A2) becomes
apparent during the convergence analysis that will be presented for each protocol later on.
We show that in each case, consensus can is asymptotically reached. Moreover, we provide
sufficient and necessary conditions on the directed information flow in the network so that
average-consensus, max-consensus, and min-consensus can be achieved. Furthermore, we
provide results on performance and algorithmic robustness of these consensus protocols.

Remark 1. For an undirected network with fixed topology, both protocols solve the average-
consensus problem with appropriate technical conditions on delays. The challenge is to
address similar consensus problems for networks with directed graphs and switching topology.
In multi-agent flocking [22], the information flow is usually directed and the topology of the
network goes through changes that are discrete-event type in the nature.

Given Protocol (A1), the state of a network of continuous-time integrator agents evolves
according to the following linear system

ẋ(t) = −Lx(t) (6)

where L is called the graph Laplacian induced by the information flow G and is defined by

lij =

{ ∑n

k=1,k 6=i aik, j = i

−aij, j 6= i
(7)

The properties of graph Laplacian is one of the main areas of research in algebraic graph
theory and is discussed in Section 4.

In a network with switching topology, convergence analysis of Protocol (A1) is equivalent
to stability analysis for a hybrid system

ẋ(t) = −Lkx(t), k = s(t) (8)

where Lk = L(Gk) is the Laplacian of Gk, s(t) : R → IΓ ⊂ Z is a switching signal, and
Γ 3 Gk is a finite collection of digraphs (of order n) with the index set IΓ. Later, we will
see that Γ is a relatively large set for n À 1. The task of stability analysis for the hybrid
system in (8) is rather challenging partly because, in general, the product of two Laplacian
matrices do not commute.

For agents with discrete-time models, applying protocol (A1) gives the following discrete-
time network dynamics

x(k + 1) = Pεx(k) (9)
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with
Pε = I − εL. (10)

Let dmax = maxi lii, then for ε ∈ (0, 1/dmax), Pε is a nonnegative and stochastic matrix that
we call Perron matrix, i.e. Pε in element-wise nonnegative and all of its row sums are 1.

The convergence analysis of Protocol (A1) for discrete-time agents heavily relies on the
theory of nonnegative matrices [10, 12, 16] and will be discussed in a separate paper. Our
approach presents a Lyapunov-based convergence analysis for agreement in networks with
discrete-time models. This is different than the approach pursued in the work by Jadbabaie et
al. which strongly relies on matrix theoretic properties and infinite right-convergent products
(RCP) of stochastic matrices [2, 3].

4 Algebraic Graph Theory: Properties of Laplacians

In this section, we introduce some basic concepts and notation in graph theory that will be
used throughout the paper. More information is available in [11, 5]. A comprehensive survey
on properties of Laplacians of undirected graphs can be found in [17]. However, we need to
work with Laplacians of directed graphs that the basic properties cannot be found in graph
theory literature and will be stated here.

Let G = (V , E ,A) be a weighted directed graph (or digraph) with n nodes. The in-degree
and out-degree of node vi are, respectively, defined as follows:

degin(vi) =
n
∑

j=1

aji, degout(vi) =
n
∑

j=1

aij. (11)

For an ordinary graph with adjacency matrix A that has binary elements in the set {0, 1},
degout(vi) = |Ni|. The degree matrix of G is a diagonal matrix denoted by ∆ = [∆ij] where
∆ij = 0 for all i 6= j and ∆ii = degout(vi). The (weighted) graph Laplacian matrix associated
with G is defined as

L = L(G) = ∆−A. (12)

This is consistent with the definition of the elements of L in (7).

Remark 2. The graph Laplacian L does not depend of the diagonal elements aii of the
adjacency matrix of G corresponding to the weights of loops (vi, vi) (i.e. cycles of length
one). Depending on the context, without loss of generality we might assume aii = 0 for all
i. In a restricted part of this work that makes use of graphs with loops that their weight
cannot be discarded.

We sometimes use L(A) = L(G) to denote the Laplacian of graph G. By definition,
every row sum of the Laplacian matrix is zero. Therefore, graph Laplacian always has a zero
eigenvalue (i.e. rank(L) ≤ n− 1) corresponding to a right eigenvector

wr = 1 = (1, 1, . . . , 1)T
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with identical nonzero elements.
A digraph is called strongly connected if and only if any two distinct nodes of the graph

can be connected via a path that respects the orientation of the edges of the digraph. The
following theorem establishes a direct relation between the SC property of a digraph and the
rank of its Laplacian.

Theorem 1. Let G = (V , E ,A) be a weighted digraph with Laplacian L. Then, G is strongly
connected if and only if rank(L) = n− 1.

Proof. See Section A.1 in the Appendix.

Remark 3. For an undirected graph G, the proof of Theorem 1 is easy and can be found in
[1, 11].

Remark 4. For an undirected graph G with a symmetric adjacency matrix A, the graph
Laplacian L is symmetric and positive semidefinite. The Laplacian potential associated with
G is defined in [20] as follows

ΦG(x) = xTLx =
1

2

∑

ij∈E
(xj − xi)

2 (13)

Here is a short proof of Theorem for an undirected graph: Assume Lx = 0 for x ∈ Rn. Then
xTLx = 0 and xj = xi for all the edges ij ∈ E . If the graph is connected, this means that all
nodes agree and x1 = . . . = xn. Thus, rank(L) = n − 1. Since ΦG(x) = 0 for a connected
graph implies all nodes are in agreement, ΦG(x) provides a meaningful quantification of
disagreement in a group of agents.

For an undirected graph G that is connected the following well-known property holds
[11]:

min
x 6= 0

1
T x = 0

xTLx

‖x‖2 = λ2(L) (14)

The proof follows from a special case of Courant–Fischer Theorem in [12]. We will later
establish a connection between λ2(L̂) with L̂ = (L + LT )/2, called the Fiedler eigenvalue
of L̂ [8, 9], and the performance (i.e. worst-case negotiation speed) of a linear agreement
protocol.

The key in the stability analysis of system (6) is in the spectral properties of graph
Laplacian. The following result is well-known (e.g. see [17]) and is based on Geršgorin disk
theorem [12].

Theorem 2. (spectral localization) Let G = (V , E ,A) be a digraph with the Laplacian L.
Denote the maximum node out-degree of G by dmax(G) = maxi degout(vi). Then, all the
eigenvalues of L = L(G) are located in the following disk

D(G) = {z ∈ C : |z − dmax(G)| ≤ dmax(G)} (15)

centered at z = dmax(G) + 0j in the complex plane (see Figure 1).
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Figure 1: A demonstration of Geršgorin Theorem applied to graph Laplacian.

Proof. Based on the Geršgorin disk theorem, all the eigenvalues of L = [lij] are located in
the union of the following n disks

Di = {z ∈ C : |z − lii| ≤
∑

j∈I,j 6=i

|lij|}. (16)

But lii = ∆ii and
∑

j∈I,j 6=i

|lij| = degout(vi) = ∆ii.

Thus, Di = {z ∈ C : |z −∆ii| ≤ ∆ii}. On the other hand, all these n disks are contained in
the largest disk D(G) with radius dmax(G). Clearly, all the eigenvalues of −L are located in
the disk D′(G) = {z ∈ C : |z + dmax(G)| ≤ dmax(G)} that is the mirror image of D(G) with
respect to the imaginary axis.

Here is an immediate corollary and the first convergence proof for protocol (A1) for a
directed network.

Corollary 1. Consider a network of integrators ẋi = ui where each node applies proto-
col (A1). Assume G is a strongly connected digraph. Then, protocol (A1) globally asymp-
totically solves a consensus problem.

Proof. Since G is strongly connected, rank(L) = n − 1 and L has a simple eigenvalue at
zero. Based on Theorem 2, the rest of the eigenvalues of −L have negative real-parts and
therefore the linear system in (6) is stable. On the other hand, any equilibrium x∗ of (6)
is a right eigenvector of L associated with λ = 0. Since the eigenspace associated with the
zero eigenvalue is one-dimensional, there exists an α ∈ R such that x∗ = α1, i.e. x∗i = α for
all i.

Keep in mind that Corollary 1 does not guarantee whether the decision value α of each
node is equal to Ave(x(0)) or not. In other words, Corollary 1 does not necessarily address
the average-consensus problem.
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Figure 2: A connected digraph of order 3 that does not solve the average-consensus problem
using Protocol (A1).

5 A Counterexample for Average-Consensus

A sufficient condition for the decision value α of each node in the proof of Corollary 1 to be
equal to Ave(x(0)) is that

∑n

i=1 ui ≡ 0. If G is undirected (i.e. aij = aji > 0,∀i, j : aij 6= 0),
automatically the condition

∑n

i=1 ui = 0,∀x holds and Ave(x(t)) is an invariant quantity
[20]. However, this property does not hold for a general digraph.

A simple counterexample is a strongly connected digraph of order n = 3, shown in
Figure 2, with weights in {0, 1} and the following sets of vertices and edges:

V = {1, 2, 3}, E = {12, 23, 31, 13}.

For the digraph G = (V , E), ∑3
i=1 ui = x3 − x1. Thus, if nodes 1 and 3 disagree, the

property
∑3

i=1 ui = 0 does not hold for all x. On the other hand, the reader can verify that
for this example

L =





2 −1 −1
0 1 −1
−1 0 1





and x∗i = [x1(0) + x2(0) + 2x3(0)]/4 (this is due to Theorem 3). This decision value is
apparently in the convex hull of all the xi(0)’s but it is different from Ave(x(0)) if and only if
x1(0)+x2(0) 6= 2x3(0). As a result, for all initial conditions satisfying x1(0)+x2(0) 6= 2x3(0),
Protocol (A1) does not solve the average-consensus problem but still all nodes reach an
agreement. This motivates us to characterize the class of all digraphs that solve the average-
consensus problem.

Before presenting our first main result, we need to provide a limit theorem for exponential
matrices of the form exp(−Lt). This is because the solution of (6) is given by

x(t) = exp(−Lt)x(0) (17)

and by explicit calculation of exp(−Lt), we can obtain the decision value of each node
after reaching consensus for a general digraph. The following theorem is closely related to
a famous limit theorem in the theory of nonnegative matrices known as Perron-Frobenius
Theorem [12].
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Notation. Following the notation in [12], we denote the set of m×n real matrices by Mm,n

and the set of square n× n matrices by Mn. Furthermore, throughout this paper, the right
and left eigenvectors of the Laplacian L associated with λ1 = 0 are denoted by wr and wl,
respectively.

Theorem 3. Assume G is a strongly connected digraph with Laplacian L satisfying Lwr = 0,
wT

l L = 0, and wT
l wr = 1. Then

R = lim
t→+∞

exp(−Lt) = wrw
T
l ∈Mn (18)

Proof. Let A = −L and let J be the Jordan form associated with A, i.e. A = SJS−1.
We have exp(At) = S exp(Jt)S−1 and as t → +∞, exp(Jt) converges to a matrix Q = [qij]
with a single nonzero element q11 = 1. The fact that other blocks in the diagonal of exp(Jt)
vanish is due to the property that Re(λk(A)) < 0 for all k ≥ 2 where λk(A) is the kth largest
eigenvalue of A in terms of magnitude |λk|. Notice that R = SQS−1. Since AS = SJ the
first column of S is wr. Similarly, S−1A = JS−1 that means the first row of S−1 is wT

l . Due
to the fact that S−1S = I, wl satisfies the property wT

l wr = 1 as stated in the question. A
straightforward calculation shows that R = wrw

T
l ∈Mn.

6 Networks with Fixed or Switching Topology

In this section, we present three of our main results: i) characterization of all connected
digraphs that solve average-consensus problem using Protocol (A1), and ii) the relation
between the performance of Protocol (A1) and the Fiedler eigenvalue (i.e. algebraic con-
nectivity) of graphs, and iii) robust agreement under switching topology due to link fail-
ure/creation.

6.1 Balanced Graphs and Average-Consensus on Digraphs

The following class of digraphs turns out to be instrumental in solving average-consensus
problems:

Definition 1. (balanced graphs) We say the node vi of a digraph G = (V , E ,A) is balanced
if and only if its in-degree and out-degree are equal, i.e. degout(vi) = degin(vi). A graph
G = (V , E ,A) is called balanced if and only if all of its nodes are balanced, i.e.

∑

j aij =
∑

j aji,∀i.

Example 1. Any undirected graph is balanced. Furthermore, the digraphs shown in Figure 3
are all balanced.

Here is our first main result:
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Figure 3: Three examples of balanced graphs.

Theorem 4. Consider a network of integrators with directed information flow G = (V , E ,A)
that is strongly connected. Then, protocol (A1) globally asymptotically solves the average-
consensus problem using if and only if G is balanced.

Proof. The proof follows from Theorems 5 and 6, below.

Remark 5. According to Theorem 4, if a graph is not balanced, then protocol (A1) does
not necessarily solve the average consensus-problem. This assertion is consistent with the
counterexample given in Figure 2.

Theorem 5. Consider a network of integrator agents with a digraph G = (V , E ,A) that is
strongly connected. Then, protocol (A1) globally asymptotically solves the average-consensus
problem if and only if 1TL = 0.

Proof. From Theorem 3, with wr =
1√
n
1 we obtain

x∗ = lim
t→+∞

x(t) = Rx0 = wr(w
T
l x0) =

1√
n
(wT

l x0)1.

This implies Protocol 1 globally exponentially solves a consensus problem with the decision
value 1√

n
(wT

l x0) for each node. If this decision value is equal to Ave(x0),∀x0 ∈ Rn, then

necessarily 1√
n
wl =

1√
n
, i.e. wl = wr = 1√

n
1. This implies that 1 is the left eigenvector of

L. To prove the converse, assume that 1TL = 0. Let us take wr = 1√
n
1, wl = β1 with

β ∈ R, β 6= 0. From condition wT
l wr = 1, we get β = 1√

n
and wl =

1√
n
1. This means that

the decision value for every node is 1√
n
(wT

l x0) =
1
n
1Tx0 = Ave(x0).

Corollary 2. Assume all the conditions in Theorem 5 hold. Suppose L has a left eigenvector
γ = (γ1, . . . , γn)

T associated with λ = 0 that is a nonnegative vector in Rn (i.e. a vector with
non-negative elements) satisfying

∑

i γi > 0. Then, the group decision value after reaching
consensus is given by

α =

∑

i γixi(0)
∑

i γi
(19)
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i.e. the decision value is in the convex hull of initial values of the nodes.

Proof. We have γTL = 0 and thus γTu ≡ 0 (because u = −Lx). Therefore, β = γTx is
an invariant quantity. Assume, the digraph G is not balanced. Then, still an agreement is
asymptotically reached. Let α be the decision value of all nodes after reaching consensus.
We have γTx∗ = γTx(0) due to invariance of γTx(t). But x∗ = α1, thus we obtain

(

∑

i

γi

)

α = γTx(0)

and the result follows.
The following result shows that if one of the agents uses a relatively small update rate

(or step-size), i.e. γi∗ À γi for all i 6= i∗. Then, the value of all nodes converges to the
value of x∗i . In other words, the agent i∗ plays the role of a leader in leader-follower type
architecture.

Corollary 3. (multi-rate integrators) Consider a network of multi-rate integrators with the
node dynamics

γiẋi = ui, γi > 0,∀i ∈ I (20)

Assume each node applies Protocol (A1). Then, an agreement is globally asymptotically
reached and the decision value of the group is

α =

∑

i γixi(0)
∑

i γi
(21)

Proof. The dynamics of the network evolves according to

Dẋ = −Lx
where D = diag(γ) is a diagonal matrix with the ith diagonal element that is equal to γi > 0.
The last equation can be rewritten as

ẋ = −L̃x
where L̃ = D−1L = diag(1/γ1, . . . , 1/γn)L is a valid Laplacian matrix for a digraph G̃ with
adjacency matrix Ã = D−1A (i.e. the weights of the edges leaving node i are divided by γi).
Clearly, γ is a vector with positive elements that is the left eigenvector of L̃ and based on
Corollary 2 the decision value is in the weighted average of xi(0)’s with weights specified by
γ.

Remark 6. The discrete-time model and attitude alignment protocol discussed in Jadbabaie
et al. [13] correspond to the first-order Euler approximation of equation (20) with proto-
col (A1) and the special choice of γi = degout(vi) + 1 in Corollary 3. In [6], a Laplacian
matrix is defined as I −DA which in the context of this paper is equivalent to a multi-rate
network of integrators with γi = degout(vi) ≥ 0. The singularity of D that is caused by the
choice of γi = degout(vi) is avoided in [13] by properly adding a positive constant (e.g. 1) to
degout(vi).
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Theorem 6. Let G = (V , E ,A) be a digraph with an adjacency matrix A = [aij]. Then, all
the following statements are equivalent:

i) G is balanced,

ii) wl = 1 is the left eigenvector of the Laplacian of G associates with the zero eigenvalue,
i.e. 1TL = 0.

iii)
∑n

i=1 ui = 0,∀x ∈ Rn with ui =
∑

j∈Ni
aij(xj − xi).

Proof. We show i) ⇐⇒ ii) and ii) ⇐⇒ iii).
Proof of i) ⇐⇒ ii): We have ∆ii = degout(vi) and degin(vi) =

∑

j,j 6=i aji, thus the ith
column sum of L is equal to

∑

i

lji =
∑

i,j 6=i

lji + lii = − degin(vi) + degout(vi) = 0 ⇐⇒ node vi of G is balanced

Noting that the i column sum of L is the same as the ith element of the row vector 1TL,
one concludes that 1TL = 0 iff all the nodes of G are balanced, i.e. G is balanced.

Proof of ii) ⇐⇒ iii): Since u = −Lx, (
∑

i ui = 0,∀x) ⇔ (1Tu = −(1TL)x =
0,∀x) ⇐⇒ 1TL = 0.

Remark 7. Notice that in Theorem 6, the graph G does not need to be connected.

6.2 Performance of Group Agreement and Mirror Graphs

In this section, we discuss performance issues of Protocol (A1) with balanced graphs. An
important consequence of Theorem 6 is that for networks with balanced information flow,
α = Ave(x) is an invariant quantity. This is certainly not true for an arbitrary digraph. The
invariance of Ave(x) allows decomposition of x according to the following equation:

x = α1+ δ (22)

where α = Ave(x) and δ ∈ Rn satisfies
∑

i δi = 0. We refer to δ as the (group) disagreement
vector. The vector δ is orthogonal to 1 and belongs to an (n−1)-dimensional subspace called
the disagreement eigenspace of L provided that G is strongly connected. Moreover, δ evolves
according to the (group) disagreement dynamics given by

δ̇ = −Lδ. (23)

Define the Laplacian disagreement function of a digraph G as

ΦG(x) = xTLx (24)

with L = L(G). For digraphs, ΦG(x) can be negative (e.g. the Laplacian of a digraph with
two nodes and a single edge 12 is not positive semidefinite).
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It turns out that a useful property of balanced digraphs is that their Laplacian dis-
agreement function is positive semidefinite. In addition, for any balanced digraph G, there
exists an undirected graph that has the same Laplacian disagreement function as G. In the
following, we formally define this induced undirected graph.

Definition 2. (mirror graph/operation) Let G = (V , E ,A) be weighted digraph. Let Ẽ be
the set of reverse edges of G obtained by reversing the order of nodes of all the pairs in E .
The mirror of G denoted by Ĝ =M(G) is an undirected graph in the form Ĝ = (V , Ê , Â)
with the same set of nodes as G, the set of edges Ê = E ∪ Ẽ , and the symmetric adjacency
matrix Â = [âij] with elements

âij = âji =
aij + aji

2
≥ 0 (25)

The following result shows that the operations of L and Sym on a weighted adjacency
matrix A commute.

Theorem 7. Let G be a digraph with adjacency matrix A = adj(G) and Laplacian L = L(G).
Then Ls = Sym(L) = (L+ LT )/2 is a valid Laplacian matrix for Ĝ =M(G) if and only if
G is balanced, i.e. the following diagram commutes iff G is balanced

G
adj−−−→ A L−−−→ L

M




y

Sym





y

Sym





y

Ĝ −−−→
adj

Â −−−→
L

L̂

(26)

Moreover, if G is balanced, the Laplacian disagreement functions of G and Ĝ are equal.

Proof. We know that G is balanced iff 1TL = 0. Since L1 = 0, we have 1TL = 0 ⇐⇒
1
2
(L + LT )1 = 0. Thus, G is balanced iff Ls has a right eigenvector of 1 associated with

λ = 0, i.e. Ls is a valid Laplacian matrix. Now, we prove that Ls = L(Ĝ). For doing so, let
us calculate ∆̂ element-wise, we get

∆̂ii =
∑

j

aij + aji
2

=
1

2
(degout(vi) + degin(vi)) = degout(vi) = ∆ii

Thus, ∆̂ = ∆. On the other hand, we have

Ls =
1

2
(L+ LT ) = ∆− A+ AT

2
= ∆̂− Â = L̂ = L(Ĝ)

The last part simply follows from the fact that L̂ is equal to the symmetric part of L and
xT (L− LT )x ≡ 0.

14



Notation. For simplicity of notation, in the context of algebraic graph theory, λk(G) is used
to denote λk(L(G)).

Now, we are ready to present our main result on performance of the Protocol (A1) in
terms of the speed of reaching a consensus as a group.

Theorem 8. (performance of agreement) Consider a network of integrators with a directed
information flow G that is balanced and strongly connected. Then, given Protocol (A1), the
following statements hold:

i) the group disagreement (vector) δ as the solution of the disagreement dynamics in (23)
globally asymptotically vanishes with a speed that is equal to κ = λ2(Ĝ) (or the Fiedler
eigenvalue of the mirror graph of G), i.e.

‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κt), (27)

ii) the following smooth, positive definite, and proper function

V (δ) =
1

2
‖δ‖2 (28)

is a valid Lyapunov function for the disagreement dynamics.

Proof. We have

V̇ = −δTLδ = −δTLsδ = −δT L̂δ ≤ −λ2(Ĝ)‖δ‖2 = −2κV (δ) < 0,∀δ 6= 0 (29)

This proves that V (δ) is a valid Lyapunov function for the group disagreement dynamics.
Moreover, δ(t) vanishes globally exponentially fast with a speed of κ as t→ +∞.. The fact
that Ls = L̂ is a valid Laplacian matrix for an undirected graph (i.e. mirror of G) follows
from Theorem 7 and the inequality

δT L̂δ ≥ λ2(Ĝ)‖δ‖2, ∀δ : 1T δ = 0 (30)

which is due to equation (14).
A well-known observation regarding the Fiedler eigenvalue of an undirected graph is that

for dense graphs λ2 is relatively large and for sparse graphs λ2 is relatively small [11] (this is
why λ2 is called the algebraic connectivity). According to this observation, from Theorem 8,
one can conclude that a network with dense interconnections solves an agreement problem
faster than a connected but sparse network. This is consistent with common sense regarding
agreement in a group. As a special case, a cycle of length n that creates a balanced digraph
on n nodes solves an agreement problem. However, this is a relatively slow way to solve such
a consensus problem.
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6.3 Consensus in Networks with Switching Topology

Consider a network of mobile agents that communicate with each other and need to agree
upon a certain objective of interest or perform synchronization. Since, the nodes of the
network are moving, it is not hard to imagine that some of the existing communication links
can fail simply due to the existence of an obstacle between two agents. The opposite situation
can arise where new links between nearby agents are created because the agents come to
an effective range of detection with respect to each other. In other words, in the graph G
representing the information flow of the network, certain edges can be added or removed from
G. Here, we are interested to investigate that in case of a network with switching topology
whether it is still possible to reach a consensus or not.

Consider a hybrid system with a continuous-state x ∈ Rn and a discrete-state G that
belongs to a finite set of digraphs

Γn = {G : G is a digraph of order n that is strongly connected and balanced}
that can be analytically expressed in the form

Γn = {G = (V , E ,A) : rank(L(G)) = n− 1,1TL(G) = 0}. (31)

Given the node dynamics and protocol, the continuous-state of the system evolves according
to the following dynamics

ẋ(t) = −L(Gk)x(t), k = s(t), Gk ∈ Γn (32)

where s(t) : R≥0 → IΓn
is a switching signal and IΓn

⊂ N is the index set associated with
the elements of Γn. Clearly, Γn is a finite set, because either a digraph has no edges or it is
a complete graph with n(n− 1) directed edges.

The key in solving the agreement problem for mobile networks with switching topology
is a basic property of the Lyapunov function in (28) and the properties of balanced graphs.
Note that the function V (δ) = 1

2
‖δ‖2 does not depend on G or L = L(G). This property

of V (δ) makes it an appropriate candidate as a common Lyapunov function for stability
analysis of the switching system (32).

Theorem 9. For any arbitrary switching signal s(·), the solution of the switching system (32)
globally asymptotically converges to Ave(x(0)) (i.e. average-consensus is reached). Moreover,
the following smooth, positive definite, and proper function

V (δ) =
1

2
‖δ‖2 (33)

is a valid common Lyapunov function for the disagreement dynamics given by

δ̇(t) = −L(Gk)δ(t), k = s(t), Gk ∈ Γn. (34)

Furthermore, the disagreement vector δ vanishes exponentially fast with the least rate of

κ∗ = min
G∈Γn

λ2(L(Ĝ))). (35)

In other words, ‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κ∗t).
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Proof. Due the fact that Gk is balanced for all k and u = −L(Gk)x, we have 1Tu =
−(1TL(Gk))x ≡ 0. Thus, α = Ave(x) is an invariant quantity which allows us to decompose
x as x = α1 + δ. Therefore, the disagreement switching system induced by (32) takes the
form (34). Calculating V̇ , we get

V̇ = −δTL(Gk)δ = −δTL(Ĝk)δ ≤ −λ2(L(Ĝk))‖δ‖2 ≤ −κ∗‖δ‖2 = −2κ∗V (δ) < 0,∀δ 6= 0
(36)

This guarantees that V (δ) is a valid common Lyapunov function for the disagreement switch-
ing system (34). Moreover, we have

V (δ(t)) ≤ V (δ(0)) exp(−2κ∗t)⇒ ‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κ∗t)

and the disagreement vector δ(t) globally exponentially vanishes with a speed of κ∗ > 0 as
t → +∞. Finally, the minimum in (35) always exists and is achieved because Γn is a finite
set.

7 Networks with Communication Time-Delays

Consider a network of continuous-time integrators with a fixed topology G = (V , E ,A) in
which the state of node i passes through a communication channel (or link) ij with time-
delay τij > 0 before getting to node j. The transfer function of link ij can be expressed
as

hij(s) = e−τijs

in the Laplace domain. Applying the time-delayed linear protocol (A2), the network dynam-
ics can be written as

ẋi(t) =
∑

j∈Ni

aij[xj(t− τij)− xi(t− τij)]. (37)

After taking the Laplace transform of both sides of equation (37), we get

sXi(s)− xi(0) =
∑

j∈Ni

aijhij(s)(Xj(s)−Xi(s)) (38)

where Xi(s) denotes the Laplace transform of xi(t) for all i ∈ I. The last set of equations
can be rewritten in a compact form as

X(s) = (s+ L(s))−1x(0) (39)

where L(s) is the Laplacian matrix of a graph with adjacency matrix A(s) = [aijhij(s)]. In
general, any filtering effect of channel ij can be incorporated in the link transfer function
hij(s). The convergence analysis of protocol (A2) for a network of integrator agents with
communication time-delays reduces to stability analysis for a MIMO transfer function

G(s) = (sI + L(s))−1.
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To gain further insight in the relation between the graph Laplacian and the convergence
properties of the consensus protocol (A2), we focus on the simplest possible case where the
time-delays in all channels are equal to τ > 0 in a network with an undirected and fixed
topology G. Immediately, it follows that

∑

i ui ≡ 0 and thus α = Ave(x(t)) is an invariant
quantity. In addition, we have

L(s) = e−τsL

where L = L(G). Here is our main result for average-consensus in a network with commu-
nication time-delays [20]:

Theorem 10. Consider a network of integrator agents with equal communication time-delay
τ > 0 in all links. Assume the information flow G of the network is undirected and connected.
Then, protocol (A2) with τij = τ globally asymptotically solves average-consensus problem if
and only if either of the following two equivalent conditions are satisfied:

i) τ ∈ (0, τ ∗) with τ ∗ =
π

2λn

, λn = λmax(L).

ii) The Nyquist plot of Γ(s) = e−τs/s has a zero encirclement around −1/λk,∀k > 1.

Moreover, for τ = τ ∗ the system has a globally asymptotically stable oscillatory solution with
frequency ω = λn.

Proof. See Section A.2 in the Appendix.
Based on part i) of Theorem 10, one concludes that the upper bound on the admissible

channel time-delay in the network is inversely proportional to λn, i.e. the largest eigenvalue of
the Laplacian of the information flow. From Geršgorin theorem, we know that λn ≤ 2dmax(G)
where dmax(G) is the maximum out-degree of the nodes ofG. Therefore, a sufficient condition
for convergence of protocol (A2) is

τ ≤ π

4dmax(G)
(40)

This means that networks with nodes that have relatively high out-degrees cannot tolerate
relatively high communication time-delays. On the other hand, let Ã = kA with k > 0 be
the adjacency matrix of G̃. Let L̃ = L(G̃) and notice that λn(L̃) = kλn(L). Thus, for any
arbitrary delay τ > 0, there exists a sufficiently small k > 0 such that τ < π/(2kλn). As a
result, by scaling the weights of the digraph, any arbitrary time-delay can be tolerated. The
trade-off is that the negotiation speed degrades by a factor of 1/k > 0. In other words, there
is trade-off between robustness to time-delays and speed of convergence (or performance) of
the agreement algorithm.

8 Max-Consensus and Leader Determination

In this section, we discuss the problem of max-consensus in a network of agents with a unique
max-leader, i.e. a node i∗ = argmaxi xi(0). The max-consensus problem can be described
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as follows. Each agent has the following discrete-time model

xi(k + 1) = max(xi(k), ui(k)) (41)

and is called a max-agent. The dynamics of a max-agent can be equivalently expressed as a
nonlinear discrete-time system

xi(k + 1) =
1

2
(xi(k) + ui(k) + |xi(k)− ui(k)|) (42)

The value of all nodes in the digraph G = (V , E) has to iteratively converge to the value of the
max-leader. In addition, each node in a distributed way has to determine whether it is the
max-leader or not. One of the applications of the max-consensus problem is to determine
a leader (or coordinator) in a group with superiority in terms of a particular quantity of
interest (e.g. index number, cost, height, and so on) that has to perform or coordinate a
task.

We use the following protocol to solve the max-consensus problem:

ui(k) = max
j∈Ni

xj (A4)

Remark 8. Apparently, the min-consensus problem can be defined and solved in a similar
way to the max-consensus problem and will not be discussed here.

Notice that the value of each max-agent is non-decreasing, i.e. xi(k + 1) ≥ xi(k) for all
i ∈ I. To keep track of whether a node is the max-leader or not, we augment the state each
agent with a Boolean variable fi(k) ∈ {0, 1} called the max-flag of node i. The max-flag
evolves according to the following rule (or state feedback)

fi(k + 1) = K(fi(k), xi(k), ui(k)) :=

{

fi(k) xi(k + 1) = xi(k)
f̄i(k) xi(k + 1) > xi(k)

(43)

where the bar operation negates a Boolean variable. Initially, all nodes assume that they
are the max leader, or fi(0) = 1 for all i. If the value of each node increases compared to its
initial value, then it realizes that it is no more a max-leader.

Theorem 11. Consider a network of max-agents with the following dynamics

{

xi(k + 1) = max(xi(k), ui(k))
fi(k + 1) = K(fi(k), xi(k), ui(k))

(44)

where the map K : {0, 1} × R × R → {0, 1} is defined in (43). Assume G = (V , E) is a
strongly connected digraph. Then, protocol (A4) solves the max-consensus problem in finite
number of iterations l ≤ n − 1, i.e. the value of all nodes converges to the value of the
max-leader and the max-flag of all nodes but the max-leader converges to zero in O(n) time.
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Figure 4: For examples of balanced and strongly connected digraphs: (a) Ga, (b) Gb, (c) Gc,
and (d) Gd satisfying.

Proof. Let l be the maximum length of the shortest path connecting each node of the
digraph to the max-leader. Since G is strongly connected l ≤ n− 1. Observe that the value
of the max-leader α = xi(k) remains invariant in time, because the value of all other nodes
are smaller than the value of the max leader and from (43), fi∗(k) = fi∗(0) = 1 for all k > 0.
Similar to the line of proof of Theorem 1, let J (k) denote a cluster of nodes that are the kth
neighbors of the max-leader i∗ (for the definition of J (k), see equation (46) in the Appendix).
Given protocol (A4), it is easy to see that the value of all the kth neighbors of i∗ becomes
equal to α and the max-flag of all nodes in J (k) \ {i∗} becomes zero after k iterations. On
the other hand, by definition of l ≤ n− 1, J (l) = I and the result follows.

9 Simulation Results

Figure 4 shows four different networks each with n = 10 nodes that are all strongly connected
and balanced. The weights associated with all the edges are 1. For the following initial node
values satisfying Ave(x(0)) = 0

x(0) = (−10.2999, 0.2575,−4.4997, 3.6258, 3.0922, 9.0156, 3.5099,−2.6645, 2.4552,−4.4921)T

we have plotted the state trajectories and the disagreement function ‖δ‖2 associated with
these four digraphs in Figure 5. It is clear that as the number of the edges of the graph
increase, algebraic connectivity (or λ2) increases, and the settling time of the trajectory
of the node values decreases. The case of a directed cycle of length n = 10, or Ga, has
the largest over-shoot. In all four cases, an agreement is asymptotically reached and the
performance is improved as a function of λ2(Ĝk) for k ∈ {a, b, c, d}.

In Figure 6(a), a finite automaton is shown with the set of states {Ga, Gb, Gc, Gd} rep-
resenting the discrete-states of a network with switching topology as a hybrid system. The
hybrid system starts at the discrete-state Gb and switches every T = 1 second to the next

20



0 5 10 15
−20

−10

0

10
Algebraic Connectivity=0.191

time( sec)

no
de

 v
al

ue

0 5 10 15
0

100

200

300

time( sec)

di
sa

gr
ee

m
en

t

0 5 10 15
−20

−10

0

10
Algebraic Connectivity=0.205

time( sec)

no
de

 v
al

ue

0 5 10 15
0

100

200

300

time( sec)

di
sa

gr
ee

m
en

t

(a) (b)

0 5 10 15
−20

−10

0

10
Algebraic Connectivity=0.213

time( sec)

no
de

 v
al

ue

0 5 10 15
0

100

200

300

time( sec)

di
sa

gr
ee

m
en

t

0 5 10 15
−20

−10

0

10
Algebraic Connectivity=0.255

time( sec)

no
de

 v
al

ue

0 5 10 15
0

100

200

300

time( sec)

di
sa

gr
ee

m
en

t

(c) (d)

Figure 5: For examples of balanced and strongly connected digraphs: (a) Ga, (b) Gb, (c) Gc,
and (d) Gd satisfying.

state according to the state machine in Figure 6(a). The continuous-time state trajectories
and the group disagreement (i.e. ‖δ‖2) of the network are shown in Figure 6(b). Clearly, the
group disagreement is monotonically decreasing. One can observe that an average-consensus
is reached asymptotically. Moreover, the group disagreement vanishes exponentially fast.

Next, we present simulation results for average-consensus problem with communication
time-delays for a network with information flow shown in Figure 7. Figure 8 shows the
state trajectories of n = 10 nodes for a network with communication time-delay τ for τ =
0, 0.5τmax, τmax = π/2λmax(Ga) = 0.266 for a zero-mean random set of initial conditions.
Clearly, the agreement is achieved for the cases with τ < τmax in Figures 8(a), (b), and (c).
For the case with τ = τmax, synchronous oscillations are demonstrated in Figure 8(d). A
third-order Pade approximation is used to model the time-delay as a finite-order LTI system.
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Figure 6: (a) A finite automaton with four states representing the discrete-states of a network
with variable topology and (b) trajectory of the node values and the group disagreement for
a network with a switching information flow.

31 5 9

2 4 8 106

7

Figure 7: Undirected graph Ge used for consensus with communication time-delays

10 Conclusions

We provided convergence analysis of consensus protocol for a network of integrators with a
directed information flow and fixed or switching topology. Our analysis relies on several tools
from algebraic graph theory and matrix theory. We established a connection between the
performance of the linear consensus protocol and the Fiedler eigenvalue of graph Laplacian
of the mirror graph. A simple disagreement function was introduced as a Lyapunov function
for the group disagreement dynamics. This was later used to provide a common Lyapunov
function that allowed convergence analysis of an agreement protocol for a network with
switching topology. A commutative diagram was given that shows the operations of taking
Laplacian and symmetric part of a matrix commute for weighted adjacency matrices of bal-
anced graphs. Balanced graphs turned out to be instrumental in solving average-consensus
problems.

For networks with undirected graphs, we gave sufficient and necessary conditions for
consensus in networks with communication time-delays. It was shown that there is a trade-
off between robustness to time-delays and the speed of convergence of a linear consensus
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Figure 8: Consensus problem with communication time-delay on Gb in Figure 7: (a) τ = 0,
(b) τ = 0.5τmax,(c) τ = 0.7τmax, and (d) τ = τmax.

protocol.
To determine a superior or leader in a group of agents, we introduced max-agents that

have a very simple discrete-time model and gave a protocol that solves the max-consensus
problem in a distributed way after a maximum of n−1 iterations (n is the number of agents).

We presented extensive simulation results that demonstrate the effectiveness of our the-
oretical results.

The consensus problems for discrete-time approximation of integrator agents relies on
the theory of nonnegative matrices and will be presented in an upcoming paper.
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A Appendix

This section contains the proofs of some of the theorems of the paper.

A.1 Proof of Theorem 1

Proof. Define φij(z) = aijz for all ij ∈ E . It is trivial that if xi = xj for all ij ∈ E , then
u = 0. Thus, we prove the converse: u = 0 implies that all nodes are in agreement. If the
values of all nodes are equal, the result follows. Thus, assume there exists a node i∗ , called
max-leader, such that xi∗ ≥ xj for all j 6= i∗, i.e. i∗ = argmaxj∈I xj (if i∗ is not unique,
choose one arbitrarily).

Define the initial cluster J (0) = {i∗} and denote the indices of all the first-neighbors of i∗

by J (1) = Ni∗ . Then, ui∗ = 0 implies that

∑

j∈Ni∗

φi∗j(xj − xi∗) = 0 (45)

Since xj ≤ xi∗ for all j ∈ Ni∗ and φij(z) ≤ 0 for z ≤ 0 (i.e. all weights are nonnegative),
we get xi∗ = xj for all the first-neighbors j ∈ J (1), (i.e. the max-leader and all of its firs-
neighbors are in agreement). Next, we define the kth-neighbors of i∗ and show that the
max-leader is in agreement with all of its kth-neighbors for k = 1, . . . , n − 1. The set of
kth-neighbors of i∗ is defined by the following recursive equation

J (k) = J (k−1) ∪NJ(k−1) , k ≥ 1, J (0) = {i∗} (46)

where NJ denotes the set of neighbors of cluster J ⊆ I (see equation (1)). By definition,
{i∗} ⊂ J (k) ⊆ I for k ≥ 1 and J (k) is a monotonically increasing sequence of clusters (in
terms of inclusion).

Notice that in a strongly connected digraph, the maximum length of the minimum path
connecting any node j 6= i∗ to node i∗ is n − 1. Thus, J (n−1) = I. By induction, we prove
that all the nodes in J (k) are in agreement for k ≥ 1. The statement holds for k = 1 (i.e. the
set of first-neighbors of the max-leader). Assume all the nodes in J (k) are in agreement with
i∗, we show that all the nodes in J (k+1) are in agreement with i∗ as well. It is sufficient to
show this for an arbitrary node i ∈ J (k) with Ni ∩ (J (k+1) \ J (k)) 6= ∅ Otherwise, because in
a strongly connected digraph Ni 6= ∅ for all i, we get J (k+1) = J (k) and the statement holds.
For node i, we have

ui =
∑

j∈Ni

φij(xj − xi) = 0 (47)
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But Ni = (Ni ∩ J (k))∪ (Ni ∩ (I \ J (k))) and I \ J (k) = I \ J (k+1) ∪ (J (k+1) \ J (k)). Keeping in
mind that J (k) ⊂ equI for all k and J (k+1) contains the set of first neighbors of node i, i.e.
Ni ⊆ J (k+1), we have

Ni ∩ (I \ J (k)) = Ni ∩ (J (k+1) \ J (k)) (48)

and
ui =

∑

j∈Ni∩J(k)

φij(xj − xi) +
∑

j∈Ni∩(J(k+1)\J(k))

φij(xj − xi) = 0 (49)

The first sum is equal to zero because xj = xi all nodes j ∈ Ni ∩ J (k) ⊆ J (k). Thus, the
second sum must be zero. But xi∗ = xi ≥ xj for all i ∈ J (k) and j ∈ I \ J (k) which implies
all nodes in Ni ∩ (J (k+1) \ J (k)) are in agreement with i∗. This means that all nodes in the
cluster

∪i∈J(k)Ni ∩ (J (k+1) \ J (k)) = (∪i∈J(k)Ni) ∩ (J (k+1) \ J (k))
= J (k+1) ∩ (J (k+1) \ J (k))
= J (k+1) \ J (k)

(50)

are in agreement with i∗, i.e. all the nodes in J (k+1) are in agreement. Combining this with
the fact that J (n−1) = I we conclude that all the nodes in I are in agreement.

A.2 Proof of Theorem 10

Notice that despite the existence of a nonzero delay τ ,
∑n

i=1 ui = 0. Thus, α = Ave(x) is
an invariant quantity. Given that the solutions of (37) globally asymptotically converge to
a limit x∗, due to the invariance of α, x∗i = Ave(x(0)),∀i ∈ I and the average-consensus will
be reached. To establish the stability of (37), we use a frequency domain analysis. We have
X(s) = Gτ (s)x(0) where

Gτ (s) = (sIn + e−τsL)−1. (51)

Define Zτ (s) = G−1τ (s) = (sIn + e−τsL). We need to find sufficient conditions such that all
the zeros of Zτ (s) are on the open LHP or s = 0. Let wk be the kth normalized eigenvector
of L associated with the eigenvalue λk in an increasing order. For a connected graph G,
0 = λ1 < λ2 ≤ . . . ≤ λn = λmax(L). Clearly, s = 0 in the direction w1 is a zero of the
MIMO transfer function Zτ (s), because Zτ (0)w1 = Lw1 = 0. Furthermore, any eigen vector
of Zτ (s) is an eigen vector of L and vice verse. Let (s, wk) with k > 1 be a right MIMO
transmission zero of Zτ (s) at frequency s in the direction wk, i.e. Zτ (s)wk = 0. Then, s 6= 0
satisfies the following equation

s+ e−τsλk = 0, (52)

or
1

λk

+
e−τs

s
= 0, (53)

where λk is the kth eigenvalue of L corresponding to wk. This is due to the fact that

Zτ (s)wk = swk + e−τsLwk = (s+ e−τskλk)wk = 0, (54)
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but wk 6= 0, thus s+e−τλk = 0. Equation (53) provides a Nyquist criterion for convergence of
protocol (A2). If the net encirclement of the Nyquist plot of Γ(s) = e−τs/s around −1/λk for
k > 1 is zero, then all the zeros of Zτ (s) (or poles of Gτ (s))) other than s = 0 are stable. For
the special case where L is symmetric, all the eigenvalues are real and the Nyquist stability
criterion reduces to zero net encirclement of the Nyquist plot of Γ(s) around −1/λn (note
that λn = λmax(L)). This is because the plot of Γ(jω) in the s-plane remains on the right
hand side of −τ . Since

Γ(jω) =
e−jωτ

jω
= −sin(ωτ)

ω
− j cos(ωτ)

ω
, (55)

and clearly Re(Γ(jω)) is a sinc function satisfying Re(Γ(jω)) ≥ −τ . A conservative upper
bound on τ can be obtained according to the property Re(Γ(jω)) ≥ −τ of the Nyquist plot
of Γ(s) by setting −1/λn > −τ which gives the convergence condition τ < 1/λn. As a
by-product, for τ = 0, the protocol always converges regardless of the value of λk, k > 1.

A better upper bound on the time-delay τ can be calculated as follows. Let us find the
smallest value of the time-delay τ > 0 such that Zτ (s) has a zero on the imaginary axis. To
do so, set s = jω in (52), we have

jω + e−jωτλk = 0,
−jω + ejωτλk = 0,

(56)

multiplying both sides of the last two equations gives

ω2 + λ2k + jωλk(e
jωτ − e−jωτ ) = 0, (57)

or
ω2 + λ2k − 2ωλk sin(ωτ) = 0, (58)

Assuming ω > 0 (due to s 6= 0), from (58), we get

(ω − λk)
2 + 2ωλk(1− sin(ωτ)) = 0. (59)

Since both terms in the left hand side of the last equation are positive semi-definite, the
equality holds if and only if both terms are zero, i.e.

ω = λk,
sin(ωτ) = 1,

(60)

This implies τλk = 2lπ + π/2 for l = 0, 1, 2, . . ., thus the smallest τ > 0 satisfies τλk = π/2.
Therefore, we have

τ ∗ = min
τλk = π/2
k > 1

{τ} = min
k>1

π

2λk

=
π

2λn

(61)
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Due to the continuous dependence of the roots of equation (52) in τ and the fact that all
the zeros of this equation other than s = 0 for τ = 0 are located on the open LHP, for all
τ ∈ (0, τ ∗), the roots of (52) with k > 1 are on the open LHP and therefore the poles of Gτ (s)
(except for s = 0) are all stable. One can repeat a similar argument for the assumption that
ω < 0 and get the equation

(ω + λk)
2 − 2ωλk(1 + sin(ωτ)) = 0, (62)

which leads to ω = −λk and τλk = 2lπ + π/2.
For τ = τ ∗, Gτ (s) has three poles on the imaginary axis given by

s = 0, s = ±jλn (63)

All other poles of Gτ (s) are stable and in the steady-state the values of each node takes the
following form:

xss
i (t) = ai + bi sin(λnt+ ϕi), i ∈ I (64)

where ai, bi, ϕi are constants that depend on the initial conditions.
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