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Abstract

Background: Glucose variability (GV) remains a key limiting factor in the success of diabetes management.
While new technologies, for example, accurate continuous glucose monitoring (CGM) and connected insulin
delivery devices, are now available, current treatment standards fail to leverage the wealth of information
generated. Expert systems, from automated insulin delivery to advisory systems, are a key missing element to
richer, more personalized, glucose management in diabetes.
Methods: Twenty four subjects with type 1 diabetes mellitus (T1DM), 15 women, 37 – 11 years of age,
hemoglobin A1c 7.2% – 1%, total daily insulin (TDI) 46.7 – 22.3 U, using either an insulin pump or multiple
daily injections with carbohydrate counting, completed two randomized crossover 48-h visits at the University
of Virginia, wearing Dexcom G4 CGM, and using either usual care or the UVA decision support system (DSS).
DSS consisted of a combination of automated insulin titration, bolus calculation, and CHO treatment advice.
During each admission, participants were exposed to a variety of meal sizes and contents and two 45-min bouts
of exercise. GV and glucose control were assessed using CGM.
Results: The use of DSS significantly reduced GV (coefficient of variation: 0.36 – 08. vs. 0.33 – 0.06, P = 0.045)
while maintaining glycemic control (average CGM: 155.2 – 27.1 mg/dL vs. 155.2 – 23.2 mg/dL), by reducing
hypoglycemia exposure (%<70 mg/dL: 3.8% – 4.6% vs. 1.8% – 2%, P = 0.018), with nonsignificant trends to-
ward reduction of significant hyperglycemia overnight (%>250 mg/dL: 5.3% – 9.5% vs. 1.9% – 4.6%) and at
mealtime (11.3% – 14.8% vs. 5.8% – 9.1%).
Conclusions: A CGM/insulin informed advisory system proved to be safe and feasible in a cohort of 24 T1DM
subjects. Use of the system may result in reduced GV and improved protection against hypoglycemia.

Keywords: Type 1 diabetes, Continuous glucose monitoring, Decision support systems, Expert systems,
Treatment advisory systems, Insulin titration.

Introduction

Type 1 diabetes mellitus (T1DM) is an autoimmune
condition resulting in absolute insulin deficiency and a

life-long need for insulin replacement.1 Glycemic control in
T1DM remains a challenge, despite the availability of modern
insulin analogs,2 the improving accuracy of glucose monitor-
ing,3,4 and the widening use of intensive insulin therapy. While

new technologies have proven benefits in avoiding diabetes-
related complications5 and may reduce excess mortality in
some populations,6 excess mortality and complication rates
remain significantly higher in T1DM when compared with the
general population.7,8

Glucose variability (GV) in T1DM is typically at the root of
clinicians’ inability to safely achieve near-normal average
glycemia, as reflected by hemoglobin A1c (HbA1c).9 While

Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia.

DIABETES TECHNOLOGY & THERAPEUTICS
Volume 20, Number 8, 2018
ª Mary Ann Liebert, Inc.
DOI: 10.1089/dia.2018.0079

531



target HbA1c values of 7% or less result in decreased risk of
micro- and macrovascular complications,10,11 the risk for severe
hypoglycemia increases with tightening glycemic control.12–14

Consequently, hypoglycemia has been implicated as the primary
barrier to tight control.15,16 Thus, patients with T1DM face a
life-long optimization problem: reduce average glucose levels
and postprandial hyperglycemia while simultaneously avoiding
hypoglycemia. A strategy for achieving such an optimization
can only be successful if it reduces GV. This is because bring-
ing average glycemia down safely is only possible if GV is
constrained—otherwise blood glucose (BG) fluctuations would
inevitably enter the range of hypoglycemia (see McCall9-Fig. 4).
Thus, recent studies have increasingly focused on the variability
of BG fluctuations as an independent risk factor for diabetes
complications,9,17,18 particularly cardiovascular diseases.19–22

Introduced in the 1980s, intensive insulin treatment, by mul-
tiple daily injections (MDI) or use of continuous subcutaneous
insulin infusion (CSII), attempts to mimic insulin secretion in
health and typically includes basal insulin administered to cover
the overnight and fasting periods and bolus insulin given with
meals to cover carbohydrate consumption and correct hyper-
glycemia.23 Advanced insulin therapy relies on key individual
parameters, such as carbohydrate ratio (CR = grams of carbo-
hydrate perunitof insulin), insulin sensitivity factor (ISF = mg/dL
per units of insulin, also called the correction factor [CF]), and
target glucose.23 Evidence-based resources are available to
empower patients to control their insulin intake and schedules
and are used by clinicians to initiate and maintain CSII therapy
by selecting appropriate basal rates, CR, and CF patterns.24

However, periodic adjustments of basal rate, CR, and CF
patterns are needed based on review of self-monitoring blood
glucose (SMBG) profiles or continuous glucose monitoring
(CGM); when a new pattern of glycemic risk is identified by the
clinical team or the patient, new insulin dosing parameters must
be calculated and implemented. This can be a time-consuming
and challenging task, requiring data to be downloaded from
multiple devices for evaluation. Fortunately, information tech-
nology is increasingly playing a role in improving the man-
agement of chronic illnesses,25,26 including diabetes.27 In
T1DM, improvements in SMBG and CGM, have empowered
quantitative (algorithmic) aspect of the management of T1DM,
leading to new tools for remote patient monitoring, data ag-
gregation, and visualization.1 Early research has developed
algorithms for titrating individual insulin treatment parameters,
including iterative learning approaches, such as run-to-run,
with structured SMBG.28–32 Today, researchers are actively
working on CGM-based decision support for T1DM (e.g., see
Refs. 23,33–35), capable of providing specific feedback to the
clinicians regarding suggested insulin changes. These expert
systems have the potential to not only streamline clinic visits,
allowing more time for face-to-face interaction and attention to
the many needs of the diabetic patient, but also in their most
advanced form, they will deliver advice directly to the patient,
reducing burden and uncertainty when making critical self-
management decisions, such as dosing insulin for meals and
adjusting insulin to physical activity.

Research Design and Methods

Decision support system

The decision support system (DSS) consists of two real-
time advisors (CGM-Informed Bolus Advisor, and Exercise

Advisor), and a retrospective insulin titration tool. The real-
time advisors are respectively designed to optimally modu-
late insulin boluses based on the patient’s current insulin
sensitivity (SI) and to generate ad hoc behavioral advice to
avoid hypoglycemia during an imminent exercise bout. The
advisory systems are described below.

CGM-informed Bolus advisor. A CGM-informed bolus
calculator was developed to adjust the patient’s insulin bolus
computation to the needs at the time a bolus is given. The
modulation relies on a CGM/insulin-based estimation of In-
sulin Effectiveness (IE), an index related to SI,36 using a
three-state Kalman filter describing glucose–insulin dynam-
ics.37 When a bolus is administered, IE is estimated in real-
time and compared with the patient’s averaged usual IE at the
same hour of day, computed from a month of historical data
at this hour of day (see protocol); the IE-informed smart bolus
(BIE) is then obtained as a standard bolus modulated by the
ratio of usual and real-time IEs (IEr):

BIE¼ IEr �
CHO

CR
þ CGM� 110

CF

� �

� max 0, IOBTOT � IEr � IOBBASð Þ

where CHO is the amount of ingested carbohydrates, CR and
CF are the patient’s carbohydrate ratio and CF at the time of
the meal, CGM is the sensor reading at the time of the meal,
and IOB is the current insulin on board from total (IOBTOT)
and basal (IOBBAS) insulin injections, respectively.

Exercise advisor. The exercise advisor provides recom-
mendations to the user to minimize hypoglycemia during or
shortly following an imminent exercise bout.38 Upon user’s
request (optimally in the minutes leading to exercise), the
system estimates the probability that the activity will lead to
hypoglycemia (pHYPO) using a logistic regression model with
three predictors:

logit¼ b0þ b1 � CGMþ b2 � IOBTDI þb3 � dCGM

pHYPO¼
exp logitð Þ

1þ exp logitð Þ

where CGM is the latest sensor reading, dCGM is an estimate
of hourly CGM rate of change, and IOBTDI is the current total
(basal, correction, and prandial) insulin on board relative to
the patient’s TDI. The computed probability is then used
within a decision rule that classifies the hypoglycemia risk as
low (pHYPO< = 0.4), mild (0.4<pHYPO< = 0.75), or severe
(pHYPO>0.75). The resulting advice is dependent on the level
of risk: (1) low risk: proceed with exercise; (2) mild risk: the
system suggests to temporarily (2 h) suspend the delivery of
basal insulin or take a small (0.3 g/kg) amount of carbohy-
drates; and (3) severe risk: either to combine basal suspension
and consumption of a small amount of carbohydrates, or
consume a larger amount of carbohydrates (0.6 g/kg).

Automated insulin titration

The final module of the deployed DSS consists in a CGM/
insulin/meal-based, automated, insulin treatment parameters’
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optimization procedure. Based on net effect resimulation
technology,39 this module identifies systematic risk for hypo-
and hyperglycemia, and modulates basal insulin (rate patterns
for CSII or total dose and timing for MDI), carbohydrate to
insulin ratios (CR), and ISFs. Each day of the collected data is
first extended from 8-h before to 4-h after midnight (total of
36 h) to avoid border effects. After regularization (e.g., inter-
polation of CGM gaps) and discretization in 5-min intervals,
the net effect signal is computed and all signals (CGM, insulin
injection, carbohydrates consumed, and net effect) can be used
to replay glucose trace of the day under different insulin
treatment profiles. Days with large deviation between re-
simulated (under default parameters) and observed glucose
values are excluded, as well as days with <2 meals or boluses,
or days with CGM gaps greater than 4 h. If a minimum of
14 valid days is present, the optimization cycle is run:

(1) Hypoglycemic and hyperglycemic risk (derived from
the risk space analysis see Ref. 9) zones are first iden-
tified throughout the day.

(2) Actionable hypoglycemic zones (i.e., hypoglycemic
risk zones not concomitant with hyperglycemic zones)
are selected, and basal insulin and CR are modulated
using a grid search, in the hours leading to and during
the zones to minimize hypoglycemic risk without an
increase of total risk.

(3) Away from the hypoglycemic risk zones found in the
previous step, the actionable hyperglycemic risk zones

are selected, and ISF and CR are modulated to mini-
mize the hyperglycemic risk with total risk increase.

(4) Finally, daily patterns (ISF and CR for all, and basal
rates for pumpers) are regularized to allow a maxi-
mum of eight segments during the day.

The optimization was summarized in a two-page pdf report
provided to the study physician for final approval (see Sup-
plementary Data) before the experimental admission (see
Protocol below).

Protocol

Adults and adolescents with T1DM, 17–65 years of age,
were enrolled in a randomized crossover clinical trial to
demonstrate the safety and feasibility of a DSS for insulin
management in diabetes, compared with the standard of care
(SoC). The study consisted of two 48-h outpatient admissions,
separated by *4 weeks (or a multiple thereof) to minimize
menstrual cycle effects (Fig. 1). During each admission par-
ticipants were challenged with varied standardized meals (in
size and composition, see protocol in Supplementary Data), as
well as two 45-min exercise bouts (3 · 15 min of mild-to-
moderate effort with 5 min rest periods).

Participants collected glucose, insulin, and meal records
over *28 days before their experimental admission, 14 days
of which were required to be complete to be used by the
system; the collection period could be extended if necessary.

FIG. 1. Design of the protocol. After randomization to branch A (experimental then control) or B (control then exper-
imental) participants were admitted to two identical days with standardized meals and activity (bottom of figure) using
either their own treatment paradigm or following the advice given by the DSS. The data collection needed to power the DSS
occurred during the 4 weeks before the experimental admission. DSS, decision support system.
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During this period and both outpatient admissions, glucose
measurements were collected using a blinded Dexcom G4
Platinum CGM with Share� (Dexcom, San Diego, CA); the
system was blinded (for both data collection and admissions)
to mitigate the impact of CGM use on GV, unless the par-
ticipants were already using a CGM as part of their normal
care. In addition, participants used a study-issued Bayer
Contour EZ blood glucose meter (BGM); with a goal of at
least four SMBG values a day. Subjects were instructed to
enter any consumed carbohydrates (meals, snacks, and hy-
poglycemia treatment) into the bolus wizards of their pumps
(selecting no insulin injections if necessary); MDI subjects
entered carbohydrate and bolus information into the MySugr
app (MySugr, Vienna, Austria). Participants were required to
download their personal insulin pump and CGM at regular
intervals (using Diasend�; Glooko, Mountain View, CA and
Carelink�; Metronic, Milipitas, CA). Data (CGM, insulin,
and meals) were downloaded 72 h before their admission, and
loaded into the advisory system.

During both admissions, participants’ devices were
connected to the Diabetes Assistant (DiAs)—a modular,
smartphone-based diabetes management platform developed
at the University of Virginia.40 Using the DiAs web monitor-
ing capacities, participants were remotely monitored by the
team 24 h a day during the admissions and followed a strict
hypo/hyperglycemia safety protocol (see protocol in Supple-
mental Data) requiring SMBG confirmation and potential
CHO or insulin treatment for CGM value above 300 mg/dL or
below 70 mg/dL. During the control admission, DiAs was
programmed to follow standard home insulin therapy; while
during the experimental admission, DiAs implemented the
DSS modules as described above, using treatment parameters
determined by the treatment optimization module; participants
were required to interact with the advisory system at meal
time, before exercise, and anytime they wanted to request a
correction dose. During the controlled exercise period of the
admission, participants in cohort 1 (first 11 subjects) wore a
Zephyr BioHarness� 3 (Medtronic, Annapolis, MD) heart
rate monitor, and participants in cohort 2 wore a Polar�

RS800CX (Polar, Lake Success, NY) heart rate monitor.

Outcomes and statistical analysis

All glucose outcomes were computed based on CGM re-
cords. The primary outcome was GV as computed by the
coefficient of variation (CV) of the glucose trace, with sec-
ondary outcomes focusing on the quality of glycemic control,
including percent time spent between 70 and 180 mg/dL,
average CGM, as well as total insulin used. Secondary out-
comes focusing on participants’ glycemic safety included
percent time in hypoglycemia (<50, <60, and <70 mg/dL),
number of hypoglycemic treatments, and finally percent time
spent above 250 mg/dL and 300 mg/dL. Outcomes were
further divided into segments of the day: overnight (11 pm–
7 am), and around meals (the 4 h following lunch and dinner,
breakfast excluded due to exercise). Primary statistical
analysis was performed using the repeated measure ANOVA,
with the treatment mode as within subject factor, and type of
insulin treatment (pump vs. MDI) as between subject factor.
No a priori sample size was determined due to the feasibility/
pilot nature of the trial. Based on achieved recruitment, a
moderate effect size (0.3) is detectable with 80% power, or a

large effect size (0.4) with 95% power (G-Power 3.1.9.2).
Secondary analysis followed the same format unless vari-
ables could not be considered normally distributed (e.g.,
percent time below 50 mg/dL); in that case a related samples
Wilcoxon signed-rank test is used. To analyze distributions
(e.g., exercise and meals secondary outcomes), data were first
binned (to ensure minimum count of five per bins) and the w2

statistics was used with the expected counts given by SoC.
Significance level was set at P-value <0.05. Data are reported
as mean – standard deviation if normally distributed, and
median (quartiles) if not. The statistical analysis was per-
formed in SPSS 23 (IBM), data formatting, and preparation
were executed in MATLAB 2016b (Mathwork) and Excel
2016 (Microsoft).

Results

Fifty-four subjects enrolled in the study; 11 subjects did
not meet the inclusion/exclusion criteria (4 for HbA1c £ 7, 1
for gastroparesis, 1 for beta-blocker use, 1 for dietary re-
strictions, 2 for deficiencies of carbohydrate counting, and 2
for use of Metformin), 17 withdrew from the study (11 be-
cause of availability, 4 from stress due to study participation,
1 for failing to collect data, and 1 for change of treatment
parameters not requested by the study team). Two subjects
met stopping criteria (1 for use of glucagon and 1 for high
ketones), and 24 subjects completed the protocol. There were
a total of five adverse events all deemed unrelated to the DSS.
Data from subjects who withdrew were removed from anal-
ysis regardless of the degree of protocol completion.

Of the 24 subjects that completed the protocol, 15 were
women and 9 men, with 16 CSII and 8 MDI users. Age was
37 – 11 years old (11–57), with an average T1DM duration of
21 – 11 years (1–45); MDI users were significantly younger
than pump users (40.6 – 11.1 vs. 29.8 – 6.9, P = 0.02) with a
similar shorter duration of T1DM. Participants were well
controlled on average with an HbA1c of 7.2% – 1%; margin-
ally higher for CSII users compared with MDI (7.4% – 0.9%
vs. 6.9% – 1.2%, P = 0.2). Complete demographics can be
found in Table 1.

Over the course of the protocol, participants collected an
average of 37.9 – 14.0 days of CGM data, associated with
358.0 – 242.4 BGM measurements, while consuming on aver-
age 211.1 – 181.5 meals or snacks and injecting 258.2 – 197.0 U
of insulin bolus.

The primary outcome (overall CGM CV) was significantly
improved from 0.36 – 0.08 during SoC to 0.33 – 0.06 using
DSS, P = 0.045. This difference was preeminent during
daytime and not statistically visible at night (0.28 – 0.1 vs.
0.25 – 0.08, P = 0.177). Further analysis of GV using Low
and High Blood Glucose Indices (LBGI and HBGI) con-
firmed that the hypoglycemia linked variability was respon-
sible for most of the observed improvement, with LBGI being
reduced by a third (2.5 – 2.1 vs. 1.6 – 1.3, P = 0.042).

Protection against hypoglycemia was improved significantly
while using the DSS: median percent of time spent below
70 mg/dL was reduced 3.5 times from 3.2% (1.3%–4.8%) to
0.9% (0.4%–2.3%), P = 0.018, while average glycemia was
maintained 155.2 – 27.1 mg/dL versus 155.2 – 23.2 mg/dL,
P = 0.86 (Fig. 2). Exposure to hyperglycemia as measured
by time spent above 250 mg/dL may have been reduced
overall 9.7% – 7.9% versus 6.8% – 6.9%, with median 6.3%
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(3.5%–14.7%) versus 5.2% (0%–11.5%), P = 0.158, with
a possible stronger effect overnight: 5.3% – 9.5% versus
1.9% – 4.6%, with median 7.4% (0%–15.9%) versus 0% (0%–
8.6%), P = 0.055; time above 180 mg/dL did not appear to
change overall 30.3% – 19.5% versus 29.4% – 15.6%, P = 0.86
or overnight 23.6% – 27.6% versus 19.9% – 20.4%, P = 0.97.
Complete glycemic results can be found in Table 2.

Rescue carbohydrates (given only under the safety protocol)
were very high overall (88.5 – 75.7 g per visit), highlighting
the hypoglycemia-inducing exercise challenges imposed dur-

ing the 48-h admission; need for rescue CHO was not found
to be different between SoC and DSS, 96.0 – 78.1 g versus
81 – 74.2 g, P = 0.27.

Focusing on the exercise periods, starting BG was
equivalent between the two visits: 184.6 – 55.2 mg/dL ver-
sus 193.8 – 69.8 mg/dL for day 1 and 200.1 – 67.6 mg/dL
versus 200.4 – 69.8 mg/dL for day 2, P = 0.48; the average
final BG was equivalent as well: 116.4 – 40.7 mg/dL versus
113.3 – 37.7 mg/dL and 108.1 – 46.2 mg/dL versus 116.5 –
26.7 mg/dL. But differences were apparent in the exposure

FIG. 2. Evolution of average glycemia (Y-axis) and exposure to hypoglycemia (X-axis) from the control admission (gray
circle) to the experimental admission (black circle). The gray areas with dotted perimeters represent the 95% confidence
interval for the control (light gray) and experimental (dark gray) admissions.

Table 1. Characteristics of Participants Who Completed the Study

All completers CSII MDI

Mean – SD Min Max Mean – SD

Age 37 – 11 17 57 40.6 – 11.1 29.8 – 6.9
T1DM duration 21 – 11.1 1 45 24.4 – 9.7 14.3 – 11
HbA1c 7.2 – 1 5.3 9.7 7.4 – 0.9 6.9 – 1.2
Height 172 – 10.7 155.2 194.1 172.1 – 11.9 171.8 – 8.7
Weight 81.8 – 19.9 51.4 130.1 84.9 – 20.1 75.7 – 19.3
BMI 27.4 – 4.6 19.5 35.8 28.4 – 4.4 25.4 – 4.8
TDI 46.7 – 22.3 12 89 49.9 – 17.2 40.5 – 30.4
Pump/MDI 16 CSII & 8 MDI
gender (M/F) 15 women and 9 men

BMI, body mass index; CSII, continuous subcutaneous insulin infusion; HbA1c, hemoglobin A1c; MDI, multiple daily injection; SD,
standard deviation; T1DM, type 1 diabetes mellitus; TDI, total daily insulin.

CGM-BASED DSS REDUCES GV IN T1D 535



to low glucose values: 4 versus 1 event below 70 mg/dL, 8
versus 2 events below 80 mg/dL, and 16 versus 7 events below
90 mg/dL. Whereas the number of rescue CHO required during
exercise was significantly reduced using the system: 6.3 – 9.5 g
versus 4.8 – 10.2 g on day 1 and 9.4 – 13.4 g versus 3.3 – 7.7 g
on day 2, P = 0.011. This was associated with a significant
change in insulin regimen during exercise 1.11 – 0.67 U versus
0.85 – 0.63 U on day 1 and 0.96 – 0.66 U versus 0.63 – 0.57 U
on day 2, P = 0.026; and pre-exercise CHO consumption
(following DSS advice): 1.2 – 5.6 g versus 4.1 – 13.0 g on day 1
and 0.6 – 2.9 g versus 11.6 – 17.9 g on day 2, P = 0.003. The
time courses of glucose concentration during and after exercise
are shown in Figure 3. Furthermore, panel C in Figure 3 shows
a clear reduction in the risk for hypoglycemia for exercise 2-h
postmeal (with five bouts resulting in values below 80 mg/dL
versus 0 mg/dL, w2 P = 0.03), and in the overall variability of
response to exercise when using DSS, with clear shift in the
minimal glucose reached (w2 test P < 0.001).

There were no direct statistically significant changes to re-
port during postprandial excursions, but observed tendencies
may indicate that the use of DSS could reduce out-of-range

glucose values as percent time below 70 mg/dL and above
250 mg/dL; both tended to be reduced: 1.2% (0%–3.2%) ver-
sus 1.7% (0.5%–5.2%) P = 0.15, and 0% (0%–8.6%) versus
7.4% (0%–15.9%) P = 0.085, respectively. Further analysis of
the area under the glucose curve for the 4 h following meals
(breakfast is excluded due to the presence of exercise) similarly
show a tendency toward reduced AuC (w2 P = 0.12); but fo-
cusing on the more challenging high-fat, high-protein meals we
see a significant shift toward lower AuC (w2 P < 0.001; Fig. 4).

Complete postprandial glucose time course can be found in
Figure 4 and Supplementary Figures S1–S3 (Supplementary
Data are available online at www.liebertpub.com/dia).

Conclusions

In conclusion, a CGM-based DSS, informed of insulin
injections, was shown to be safe and feasible in a limited,
controlled, crossover clinical trial of adults with T1DM. The
system was able to significantly reduce GV, likely through
the reduction of exposure to hypoglycemia, without in-
creasing average glycemia or exposure to hyperglycemia.

Table 2. Glycemic Performance of Decision Support System Versus

Standard of Care Overall, Overnight, and at Meal Time

Standard of care DSS P

Glucose variability (coefficient of variation) Overall 0.36 – 0.08 0.33 – 0.06 0.045
Mealtime 0.34 – 0.09 0.3 – 0.07 0.070
Overnight 0.28 – 0.1 0.25 – 0.08 0.177

Low blood glucose index Overall 2.49 – 2.08 1.59 – 1.27 0.042
Overnight 2.18 – 1.96 1.89 – 1.83 0.276

Percent below 50 mg/dL Overall 0 (0–0.7) 0 (0–0) 0.026
Mealtime 0 (0–0) 0 (0–0) 0.173
Overnight 0 (0–0) 0 (0–0) 0.715

Percent below 60 mg/dL Overall 0.66 (0–1.6) 0.1 (0–0.5) 0.036
Mealtime 0 (0–1.7) 0 (0–0.4) 0.213
Overnight 0 (0–1.9) 0 (0–0.3) 0.110

Percent below 70 mg/dL Overall 3.21 (1.3–4.8) 0.88 (0.4–2.3) 0.018
Mealtime 1.73 (0.5–5.2) 1.23 (0–3.2) 0.149
Overnight 3.33 (0–5.6) 1.15 (0–3.2) 0.109

Percent between 70 and 180 mg/dL Overall 65.9 – 18.6 68.9 – 14.3 0.780
Mealtime 73.3 – 27.3 77.9 – 19.2 0.399
Overnight 63 – 23.5 68.2 – 20.3 0.824

Percent above 180 mg/dL Overall 30.3 – 19.5 29.4 – 15.6 0.863
Mealtime 23.6 – 27.9 19.9 – 20.4 0.965
Overnight 31.2 – 25 29.2 – 21.7 0.742

Percent above 250 mg/dL Overall 6.3 (3.5–14.7) 5.2 (0–11.5) 0.158
Mealtime 0 (0–8.9) 0 (0–0.1) 0.085
Overnight 7.4 (0–15.9) 0 (0–8.6) 0.055

Percent above 300 mg/dL Overall 1 (0–2.6) 0 (0–4.5) 0.744
Mealtime 0 (0–0) 0 (0–0) 0.248
Overnight 0 (0–4) 0 (0–0) 0.225

Average glycemia (mg/dL) Overall 155.2 – 27.1 155.2 – 23.2 0.860
Mealtime 144 – 35.5 142.7 – 29.7 0.522
Overnight 156.9 – 37.6 151.9 – 29.9 0.522

Total insulin used Overall 45.5 – 22.8 44.1 – 18.4 0.301
Basal insulin used Overall 21.4 – 11.1 20.3 – 9.1 0.189
Total rescue CHO Overall 96 – 78.1 81 – 74.2 0.271

values are reported mean – SD for normally distributed variables, and median (quartile) for others. P-values are computed using repeated
measures ANOVA or Wilcoxon matched pair signed-rank test when appropriate. bold values emphasize statistically significant differences.

DSS, decision support system.
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Hypoglycemia remains a major hurdle to tight glycemic
control in T1DM and a primary driver of GV. Results from
this pilot study clearly show that a combination of automated
titration, CGM-informed bolus calculator, and exercise ad-
visor may reduce the risk for hypoglycemia for both CSII and
MDI users, with no increase in average glycemia or time
spent above 180 mg/dL. These results were achieved at al-
most identical TDI doses.

Subanalysis of the meal and exercise regimen also indi-
cated clear trends toward better glycemic control, with large
hyperglycemic deviations less frequent when using the bolus
advice and a significant reduction of necessary rescue car-
bohydrates during exercise.

It is important to note that this study was challenging for
the participants, with four on-site visits over a relatively short
period (about 50 days) and two admissions specifically de-
signed to challenge their glucose control with meals and
exercise they may not be comfortable with outside of medical
supervision. These challenges likely lead to the high dropout
rate (11 for visit availability, 4 for study-related stress, and 2
unable to complete the data collection). In addition, the long
(4 weeks) data collection period may limit the usability of our
design. Poststudy investigation of the stability of advice gi-

ven led to a shortening of the analysis window to 2 weeks. It
is also important to note that once deployed in the patient’s
home, such a system can adapt more frequently using a
sliding window strategy to maximize data availability and
advice consistency. These issues are the subject of an ongo-
ing clinical trial (NCT03093636).

Generalization from these positive results is also limited by
the study duration (48-h observation periods), the controlled
environment under which subjects were observed, and the
limited number of subjects. Of note, 48 h is generally consid-
ered a short duration for CV assessment in home settings41;
nonetheless, the very standardized nature of the presented
study may alleviate some of these concerns, as behavioral
triggers (which can greatly vary from day to day) were re-
moved in this analysis. It may also be noted that the chal-
lenges presented to the participants, for example, large and/or
fatty meals and exercise soon after meals, were intentionally
designed to generate large GV, allowing for feasibility and
safety validation of the system. The short trial duration, the
significant glycemic challenges, and a subject sample with
very good glycemic control (HbA1c = 7.2 – 1) may also have
partially prevented the DSS system to meaningfully impact
average glycemia during this study.

FIG. 3. Glycemic average (line) and 95th percentile (shaded area) for SoC (blue) and DSS (red), during the exercise bouts
(stripped). (A) Shows the results for the exercise 2 h post breakfast, and (B) focuses on exercise 3 h post breakfast. (C)
Shows the distribution (box plot: mean: x, median: horizontal bar, 25–75 quartiles: gray box, and range: whiskers) of the
minimum BG reached during exercise. BG, blood glucose; SoC, standard of care.
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Nonetheless, this safety/feasibility data are enabling studies
powered to characterize the actual performances of this system
in clinical use (see NCT03093636).

This is, to our knowledge, the first controlled clinical trial
that demonstrates the impact of a CGM/insulin informed
real-time DSS, with insulin dosing capacity, on the glycemic
control of Type 1 diabetic patients. Previously tested systems
appear to be focused on educational feedback and/or care
provider access42–44 and do not yet seem to leverage the
wealth of information contained in CGM traces, or to com-
bine it with insulin records. Nonetheless, automated titration
of insulin using CGM records (one of the functionality of our
system) has been tested in a small clinical trial with some
success as shown in 22 T1D adolescents using an insulin
pump: decrease time above 180 mg/dL with slight increase of
hypoglycemia exposure.45 This system achieved 27% time
above 180 mg/dL (vs. 34%, P = 0.02) and 9.7% below 70 mg/dL
(vs. 9.2% ns); noting that a direct comparison is difficult, we
can observe that our system did not impact time in hyper-
glycemia as much (29% vs. 30%), but very significantly
lowered hypoglycemic exposure (0.9% vs. 3.9%).

An insulin bolus expert system (based on total meal
content) was similarly tested in 12 T1D adults: significant
increase from 44% to 54% of time in range (TIR, 70–180
mg/dL).46 It is interesting to note that in the expert bolus
system, the median TIR in the control arm was very sig-
nificantly lower than the one reported here (44% vs. 67%)
and that median TIR in the treatment group rose to 73%,
although not significantly.

In summary, automated insulin titration, coupled with
dosing and hypoglycemia real-time advice based on CGM is
safe, feasible, and may positively impact glucose control in
T1DM subjects using CSII or MDI.
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