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To further understanding of basic and complex cognitive functions, previous connectome

research has identified functional and structural connections of the human brain. Func-

tional connectivity is often measured by using resting-state functional magnetic resonance

imaging (rs-fMRI) and is generally interpreted as an indirect measure of neuronal activ-

ity. Gray matter (GM) primarily consists of neuronal and glia cell bodies; therefore, it is

surprising that the majority of connectome research has excluded GM measures. There-

fore, we propose that by exploring where GM corresponds to function would aid in the

understanding of both structural and functional connectivity and in turn the human connec-

tome. A cohort of 603 healthy participants underwent structural and functional scanning

on the same 3 T scanner at the Mind Research Network. To investigate the spatial corre-

spondence between structure and function, spatial independent component analysis (ICA)

was applied separately to both GM density (GMD) maps and to rs-fMRI data. ICA of GM

delineates structural components based on the covariation of GMD regions among sub-

jects. For the rs-fMRI data, ICA identified spatial patterns with common temporal features.

These decomposed structural and functional components were then compared by spatial

correlation. Basal ganglia components exhibited the highest structural to resting-state func-

tional spatial correlation (r = 0.59). Cortical components generally show correspondence

between a single structural component and several resting-state functional components.

We also studied relationships between the weights of different structural components and

identified the precuneus as a hub in GMD structural network correlations. In addition, we

analyzed relationships between component weights, age, and gender; concluding that age

has a significant effect on structural components.

Keywords: structural, functional, networks, source-based morphometry, independent component analysis, resting-

state, gray matter density

INTRODUCTION

A central assumption of systems neuroscience is that the structure

of the brain can predict and/or is related to functional connectivity.

This belief is derived from basic human anatomy and biomechan-

ics where the structure and form of body parts are directly related

to their function. The structure–function relationship is found

at different scales in nature, from the molecular composition

of enzymes, the morphology of organometallics, to the collec-

tive behavior of ant colonies. For the past 20 years, the field of

neuroimaging has demonstrated that function and behavior arise

from specific regions in the brain. Structural adaptations in the

cortex have been found in plasticity studies. For example, peo-

ple who recently acquired the ability to juggle exhibit changes in

gray matter (GM) volumes of the mid-temporal area (MT/V5)

and intraparietal sulcus (Draganski et al., 2004), in professional

female ballet dancers there are distinct differences in white and

gray matter compared to controls (Hanggi et al., 2010), and in

musicians, greater cortical thickness is found in superior temporal

and dorsolateral frontal regions as well, as increased GM concen-

tration (GMC) in aspects of the Heschl’s gyrus (Bermudez et al.,

2009) when compared to non-musicians. These structural alter-

ations reflect subjects’ specialized, and, in some cases, exceptional,

functional abilities. However, recent developments in neuroimag-

ing have shifted the structural–functional relationship away from

distinct brain regions and toward distributed function, with the

view that cognition is the result of the“dynamic interactions of dis-

tributed brain areas operating in a large-scale network” (Bressler

and Menon, 2010). The concept that the human brain is a complex

network of neurons linking physical structure to function (Power

et al., 2010) is not new to cognitive science.

In his seminal paper, Sporns coined the term the human con-

nectome, which is, “a comprehensive structural description of the

network of elements and connections forming the human brain

(Sporns et al., 2005).” Theoretically, by mapping the networks of

the human brain, we will strengthen our understanding of how

functional brain activity emerges from anatomical structure. This
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knowledge will provide a more comprehensive model of cognition

and produce new insights into how brain functions are affected if

there are structural irregularities (Hagmann et al., 2010). Multiple

studies of schizophrenia have already identified both structural

network abnormalities (Bassett et al., 2008) and functional net-

work connectivity differences (Lynall et al., 2010) when compared

to health controls. The majority of current brain network studies

tend to focus on one connectome modality, either structural or

functional.

A large-scale functional network is defined as a “collection of

interconnected brain areas that interact to perform circumscribed

functions (Bressler and Menon, 2010).” Functional networks

can be identified using electroencephalography (EEG), magne-

toencephalography (MEG), and functional magnetic resonance

imaging (fMRI). Recent functional network studies have used

resting-state fMRI (rs-fMRI), which measures spontaneous, high-

amplitude, (mostly) low-frequency (<0.1 Hz) blood-oxygen-

level-dependent (BOLD) signal fluctuations in subjects who are

at rest. Several different analysis approaches, including seed-based

correlation maps (Biswal et al., 1995; Fox et al., 2005) and indepen-

dent component analysis (ICA; Damoiseaux et al., 2006; Biswal

et al., 2010; Allen et al., 2011) have identified from rs-fMRI a large

number of functional networks. These networks appear to provide

robust measures of the intrinsic functional activity of the brain

(Miller et al., 2009) and have been identified both in resting data

and data collected during a task (Calhoun et al., 2008). Because

these intrinsic networks (INs) exhibit moderately high reliability

(Shehzad et al., 2009; Zuo et al., 2010a), interrater and intermethod

reliability (Franco et al., 2009; Zuo et al., 2010b), and consistency

(Damoiseaux et al., 2006), they provide a framework for study-

ing the functional architecture of the human connectome (Biswal

et al., 2010; Allen et al., 2011) and are a key focus of this study.

Structural networks of the human brain have typically been

constructed directly using various white matter (WM) connec-

tivity measurements obtained from diffusion weighted imaging

(DWI; Bassett and Bullmore, 2009) and constructed using graph

theoretical techniques. Indeed, in much of the literature struc-

tural connectivity is obtained from diffusion imaging (Honey

et al., 2010). DWI can quantify and identify structural connectiv-

ity by tracking WM bundle pathways that link to cortical regions

(Guye et al., 2008). Structural networks have also been inferred

indirectly from the inter-regional covariation of GM volume or

cortical thickness and usually measured at the group level (Sporns,

2011). Using covariance measures for specific ROIs, Mechelli

et al. (2005a) reported that the “gray matter densities (GMD) of

different regions of the human cortex is coordinated within an

individual.” Inter-regional covariation of GM volume has also

shown differences in network organization between healthy par-

ticipants and those with schizophrenia (Bassett and Bullmore,

2009). Other studies have examined cortical thickness to con-

struct GM structural networks, for example He et al. (2007) used

the inter-regional correlation of cortical thickness measurements

to construct structural networks. Additionally, modularity analysis

of the relationships between structural cortical networks identified

modules similar to known functional domains, such as sensorimo-

tor, visual, auditory/language, strategic/executive, and mnemonic

processing (Chen et al., 2008).

These prior studies highlight efforts to separately explore the

connections in structural networks or in functional networks. The

majority of studies that incorporate both structural and func-

tional imaging to investigate the human brain connectome tend

to use rs-fMRI and WM analysis. Several papers have recently

reviewed these studies (Rykhlevskaia et al., 2008; Bassett and Bull-

more, 2009; Damoiseaux and Greicius, 2009; Honey et al., 2010;

Sporns, 2011) and in general, concluded that when structural con-

nectivity is high, functional connectivity tends to be high as well

(Koch et al., 2002).

When comparing the relationship between anatomic structure

and functional connectivity only a few studies have used GM

(Calhoun et al., 2006; Seeley et al., 2009; Michael et al., 2010;

Supekar et al., 2010). This is somewhat surprising considering

that fMRI is generally interpreted as an indirect measure of neu-

ronal activity and GM primarily consists of neuronal and glia cell

bodies (Logothetis, 2002). We propose that exploring where GM

corresponds to function would aid in the understanding of both

structural and functional connectivity and in turn the human con-

nectome. We will not discuss the current debate about the exact

origins of the BOLD response measured through fMRI; however,

the relationship between the BOLD signal and the underlying

neuronal activation is an area of active debate and should be inter-

preted carefully when making direct inferences between neuronal

activity (Ekstrom, 2010).

This study has three primary aims, centered on the use of GM

to assess structural–functional spatial relationships of the human

brain. The first aim is to identify GM structural components using

GMD measurements and its variation among a large cohort of

healthy individuals (n = 603). This will be ascertained with source-

based morphometry (SBM; Xu et al., 2009), which applies spatial

ICA to find patterns of GMD with common covariation among

subjects. In this paper, the term structural components will refer

to the components revealed by SBM. Association between age,

gender, and the structural components sources will be further

assessed. We expect to see a general reduction in GMD as age

increases, particularly in regions, such as the parietal and frontal

cortex, where reductions in GMD with age have been reported to

previously (Sowell et al., 2003).

The second aim is to compare structural components with

previously determined rs-functional components and determine

their spatial similarity. This will be done by spatially correlat-

ing structural components from the SBM analysis with functional

components from a group ICA (GICA) of rs-fMRI previously

reported by Allen et al. (2011). Both of the structural and func-

tional components were obtained from the same set of subjects.

Our hypothesis is that there will be correspondence between

structural and functional components, particularly in the pre-

cuneus and posterior cingulate cortex (PCC) regions of the

default mode network (DMN) given that the linkage between

structure and function is particularly strong in these regions

(Hagmann et al., 2008; Skudlarski et al., 2008; Honey et al., 2009;

van den Heuvel et al., 2009). We also assume that there will

not be a complete direct correspondence between structure and

function; consequently, we expect to find fewer structural com-

ponents than functional networks. This is because the presence

of functional connectivity has been observed when there are no
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supportive structural connections, at least as reflected in DTI

(Greicius et al., 2009).

The third and final aim is an exploratory investigation of the

relationships between the different structural components and for

the purpose of this paper, is referred to as structural network corre-

lations (SNC). Specifically, SNC will be performed by investigating

the correlations among the structural component loading param-

eters. Networks and components are often used interchangeably

in the literature, although the definitions of networks and com-

ponents are not always consistent. Therefore, Erhardt et al. (2011)

suggested to always define the term network when it is used. Conse-

quently, our usage of networks (SNC) and components are defined

in the Section “Materials and Methods.”

Our results, using a novel approach that utilizes regions of

covariation, generally show correspondence between structure and

function and further elucidate the relationship between function

at rest and GM. Additionally, our results corroborate with previous

findings on the effects of age on GMD. Lastly, from our findings

we suggest structural and functional regions that warrant further

investigations.

MATERIALS AND METHODS

Full details on participants, data collection, and image processing

can be found in Allen et al. (2011). For completeness, we briefly

provide pertinent information here.

PARTICIPANTS

This analysis combined existing data from 603 healthy participants

scanned on the same scanner and spread across 34 studies and

18 principal investigators at the Mind Research Network (MRN).

Informed consent was obtained from all subjects according to

institutional guidelines at the University of New Mexico (UNM)

and all data were anonymized prior to group analysis. The cohort

is nearly balanced on gender (305 females) with similar age dis-

tributions across genders. Because the sample is overwhelmingly

right-handed (46 ambidextrous or left-handed individuals), hand-

edness will not be considered in this study. The age range is 12–71

with a strong right skew (mean = 23.4; SD = 9.2), thus as in Allen

et al. (2011) we use the normalizing transformation, log (age), to

reduce the leverage of older subjects in correlation and regression

analyses.

DATA COLLECTION

All MR images were collected on a 3-Tesla Siemens Trio scan-

ner. High-resolution T1-weighted structural images were acquired

with a 5-echo multi-echo MPRAGE sequence with TE = 1.64, 3.5,

5.36, 7.22, and 9.08 ms, TR = 2.53 s, TI = 1.2 s, flip angle = 7◦,

number of excitations = 1, slice thickness = 1 mm, field of

view = 256 mm, resolution = 256 × 256. T2*-weighted functional

images were acquired using a gradient-echo EPI sequence with

TE = 29 ms, TR = 2 s, flip angle = 75◦, slice thickness = 3.5 mm,

slice gap = 1.05 mm, field of view 240 mm, matrix size = 64 × 64,

voxel size = 3.75 mm × 3.75 mm × 4.55 mm. Resting-state scans

were a minimum of 5 min, 4 s in duration (truncated to 152 vol-

umes for all subjects). Participants were instructed to keep their

eyes open during the scan and stare passively at a presented fixation

cross.

IMAGE PREPROCESSING

The structural data the T1 images were preprocessed through an

automated pipeline developed at MRN (Bockholt et al., 2010).

First the images were resliced to 2 mm × 2 mm × 2 mm vox-

els. Tissue classification, bias correction, image registration, and

spatial normalization were automatically performed using voxel-

based morphometry (VBM) in SPM51, wherein the above steps

are integrated into a unified model (Ashburner and Friston, 2005).

Unmodulated GM segmentations, which produce an estimation

of local GMD, were smoothed using a Gaussian kernel with a full-

width at half-maximum (FWHM) of 10 mm (Figure 1; step 1,

left side). The smoothed GMD images were then correlated to

an a priori GM template to access segmentation outliers. Those

GMD images that were not highly correlated to the Montreal

Neurological Institute (MNI) template in SPM5 where manually

adjusted to the AC–PC line and rerun through our automated

pipeline, where they were segmented and smoothed again. GMD

is the probability distribution of the GM proportion of a voxel

and the term is synonymous with GMC, whereby concentration

and density are used interchangeably in neuroimaging literature.

The relative density or concentration of GM, from non-modulated

VBM, is the proportion of GM relative to other tissue types (WM,

cerebrospinal fluid) within a region (Mechelli et al., 2005b). As

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5

FIGURE 1 | Schematic of preprocessing and analyses for both

structural GMD images and rs-functional images.
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a caveat, GMD is sensitive in detecting some local GM struc-

tural properties, but lacks some specificity for particular structural

properties.

The fMRI data underwent typical preprocessing of realign-

ment, slice-timing correction, spatial normalization to a template

in standard MNI space, reslicing (3 mm × 3 mm × 3 mm

voxels) and spatial smoothing (FWHM = 10 mm; Figure 1;

step 1, right side). The spatial maps were evaluated for out-

liers and if possible were corrected using the same realignment

procedure that was used for the GM segmentations. Subsequent

to automated preprocessing, the data were intensity normalized

to improve the accuracy and test–retest reliability of the ICA

output.

SOURCE-BASED MORPHOMETRY

Source-based morphometry is a multivariate analysis, similar to

VBM, used to examine the relationships between GMD regions

(see Xu et al., 2009 for further details). GMD images from each

subject were flattened into row vectors and stacked to form the

subjects-by-voxel matrix upon which spatial ICA was applied

(Calhoun et al., 2001). ICA linearly decomposed the GMD matrix

into a mixing matrix (subjects-by-components) that represents the

relative strength (weight) of components for each subject and the

source matrix (voxels-by-components) that represents the max-

imally spatially independent GMD sources. ICA was performed

with the GIFT toolbox2 using the infomax algorithm (Figure 1;

step 2, left side). We evaluated GM maps decomposed at sev-

eral different model orders (number of components). The model

orders investigated were 20, 40, 60, 75, 80, and 100. We found

similar components at the different model orders and ultimately

used the high model order of 75 components to match the num-

ber of components used in the rs-fMRI analysis, as discussed in

the next section. Briefly, model orders 60 and 80 yielded compa-

rable components as the model order of 75, which was validated

by correlational analyses and visual inspection. For the purpose

of this paper, sources of GM covariation obtained from this

the SBM analysis will be referred to in this paper as structural

components.

GROUP INDEPENDENT COMPONENT ANALYSIS OF fMRI DATA

Resting-state data were decomposed into components using spa-

tial ICA to identify temporally coherent networks and their

associated time courses by estimating maximally independent spa-

tial sources from their linearly mixed fMRI signals. For this study,

spatial sources obtained from the resting-state data will be referred

to as rs-functional components. GICA was also performed using

the GIFT toolbox with a model order ICA of 75 components

(Figure 1; step 2, right side). This model order has been noted

in the literature to yield refined components that correspond to

known anatomical and functional segmentations (Kiviniemi et al.,

2009; Smith et al., 2009; Abou-Elseoud et al., 2010; Ystad et al.,

2010). See Allen et al. (2011) for a complete treatment of the GICA

implementation. For the purpose of this study the functional com-

ponents were resliced to 2 × 2 × 2 to match the dimensions of the

structural components.

2http://mialab.mrn.org/software

FEATURE IDENTIFICATION

All 75 structural components were visually inspected by three

reviewers and the GM composition of each component was

evaluated (Figure 1; step 3, left side). We excluded structural

components that had significant spatial overlap with ventricles,

WM, large vasculature, and the brainstem, or were located at the

boundaries between these regions and GM. These criteria were

designed to exclude any component that were of possible mixed

tissue sources, such that structural components for subsequent

analysis only included GM. Of the 10 structural components that

met the inclusion criteria, eight comparable components were

identified in each of the model orders mentioned previously. The

two remaining components were only not observed in the lower

model orders of 20 and 40, but were found in the other model

orders. For the rs-functional components, we followed guidelines

similar to those used by Allen et al. (2011) to select a subset of

functional components; however, we were slightly less stringent

and included two additional subcortical and cerebellar compo-

nents that were excluded from prior analyses (for further details

on rs-functional component selection, please see Allen et al., 2011).

STATISTICAL ANALYSIS

To assess spatial correspondence between structural and rs-

functional components, we calculated all pair-wise Pearson corre-

lations between the selected structural and functional component

spatial maps, yielding a n-by-m correlation matrix, where n is the

number of selected structural components and m is the number

of selected rs-functional components (Figure 1; step 4).

Structural component loading parameters, representing the

contribution of each component to a given subject, were also

used in additional association analyses (Figure 1; step 5). Pear-

son correlations were computed between the structural loading

parameters and the log-transformed (age). Finally, all pair-wise

correlations between the structural loading parameters of the

selected structural components were computed (SNC). Here, we

also used partial correlations to remove the possible effect of age

on between-component associations.

RESULTS

STRUCTURAL–FUNCTIONAL COMPONENT CORRELATIONS

Of 75 structural components, n = 10 met the inclusion criteria; for

rs-functional components, m = 30 were selected for analysis. Out

of the 10-by-30 structural and rs-functional component compar-

isons, 24 structural–functional component pairs were above the

determined correlation coefficient threshold of |r| > 0.20. Note

that this threshold also conservatively represents a significance

level of p < 0.005, corrected. Accounting for spatial smoothness in

the spatial maps and assuming, as in Smith et al. (2009), roughly

500 degrees of freedom, a correlation of r = 0.2 has a p-value of

6 × 10−6, which when Bonferroni correcting for 300 tests is 0.002.

The 24 structural–functional component pairs are presented in

order of decreasing correlation coefficient magnitude and divided

into groups with similar spatial topography (see Figures 2–4).

BASAL GANGLIA COMPONENTS

Subcortical structures comprising the basal ganglia had the highest

structural–rs-functional component correlations (0.59 and 053).
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FIGURE 2 |The structural (sMRI) components (red) and corresponding

rs-fMRI components (blue). The spatial correlation between component

pairs is indicated adjacent to the functional component number. Both sMRI

and fMRI aggregate components were converted to z -scores and

thresholded at Z > 2. Structural components are displayed at the slices with

peak activation, indicated as (x, y, z ) coordinates in MNI space. When

structural components are paired with a single functional component, the

functional component is displayed at the same slices. If a structural

component corresponds to several fMRI components, functional components

may be displayed at different coordinates that best represent their activation.

Structural components, s-IC51 and s-IC72, were respectively com-

prised of the bilateral putamen and the bilateral caudate. They

corresponded to rs-functional components, rs-IC21 and rs-IC27,

which were primarily composed of the left and right putamen and

the bilateral caudate, respectively (see Figure 2; Table 1). In both

the structural and rs-functional components, there was only one

component meeting the correlation threshold for each of these

respective structures, i.e., the pairings were distinct and unique.

POSTERIOR COMPONENTS

Posterior components showed the second highest set of corre-

lations (see Figure 2; Table 1). Component s-IC43, primarily

comprised of the PCC, is correlated to rs-IC53, which is com-

prised of the PCC, the L/R angular gyri and the medial frontal

gyrus (MFG). Component s-IC55, which contains voxels spanning

much of the occipital cortex, is correlated to three rs-functional

components. In order of correlation magnitude they are rs-IC46,

rs-IC64, and rs-IC45, which represent aspects of the medial and

lateral visual cortex. Component s-IC17, which peaks at the

precuneus and extends laterally, is also correlated to three rs-

functional components. In order of correlation magnitude these

are rs-IC72 and rs-IC50 which also largely cover the precuneus,

and rs-IC59, which represents more posterior activation over the

bilateral cuneus.
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FIGURE 3 |The structural (sMRI) components (red) and corresponding

rs-fMRI components (blue). The spatial correlation between component

pairs is indicated adjacent to the functional component number. Both sMRI

and fMRI aggregate components were converted to z -scores and

thresholded at Z > 2. Structural components are displayed at the slices with

peak activation, indicated as (x, y, z ) coordinates in MNI space. When

structural components are paired with a single functional component, the

functional component is displayed at the same slices. If a structural

component corresponds to several fMRI components, functional components

may be displayed at different coordinates that best represent their activation.

MOTOR AND MEDIAL COMPONENTS

Notably, structural components determined to be motor and

medial components are related to multiple functional components

(Figure 3; Table 2). A large component, s-IC73, spanning the

supplementary motor areas (SMA) and bilateral pre- and post-

central gyri correlates to four rs-functional components. These

are rs-IC29, with peaks at the bilateral paracentral lobule and left

insula, rs-IC24 and rs-IC23, which represent lateralized aspects

of the motor system, and rs-IC56, which is centered at the SMA.

A second structural component, s-IC74, is also quite large and

extends over much of the medial surface, particularly in the MFG.

Component s-IC74 is correlated to three rs-functional compo-

nents, two of which are also correlated to s-IC73 and one of

which is correlated to s-IC17. In order of correlation magnitude

these are rs-IC29, rs-IC56, rs-IC72, and rs-IC55, which repre-

sents the bilateral cingulate gyrus, the left and right insula, and

the bilateral MFG. A third structural component, s-IC5, largely

comprised of the bilateral supramarginal gyrus (SMG), is weakly

correlated to rs-IC38, which represents activations over similar

regions.
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FIGURE 4 |The structural (sMRI) components (red) and corresponding

rs-fMRI components (blue). The spatial correlation between component

pairs is indicated adjacent to the functional component number. Both sMRI

and fMRI aggregate components were converted to z -scores and

thresholded at Z > 2. Structural components are displayed at the slices with

peak activation, indicated as (x, y, z ) coordinates in MNI space. When

structural components are paired with a single functional component, the

functional component is displayed at the same slices. If a structural

component corresponds to several fMRI components, functional components

may be displayed at different coordinates that best represent their activation.

FRONTAL AND CEREBELLAR COMPONENTS

The frontal component, s-IC75, which is primarily comprised of

the left MFG and the right SFG is correlated to four rs-functional

components. These rs-functional components in order of cor-

relation magnitude are rs-IC68, rs-IC55, and rs-IC2, which are

primarily comprised of the MFG, the cingulate gyrus, the insula,

and the anterior cingulate cortex. Lastly, s-IC71 is correlated

with functional component, rs-IC58. Both components largely

represent cerebellar cortex (Figure 4; Table 3).

STRUCTURAL COMPONENTS AGE AND GENDER CORRELATIONS

Pearson correlations between log(age) and the structural com-

ponent loading parameters are uniformly negative (Figure 5A).

Figure 5B shows an example of this negative correlation, with

a scatter-plot of the loading parameters for component 17 (pre-

cuneus) as a function of age for all 603 subjects. The trend predicts

almost a 50% decrease in component weights from adolescence

(∼12 years age) to the age of retirement (∼65–70 years). We found

no significant correlations between gender and the structural

loading parameters.

STRUCTURAL NETWORK CORRELATIONS

The cross-correlation matrix between the structural loading

parameters is shown in the top half of the correlation matrix in

Figure 6A, wherein the majority of correlation coefficients are

above values of r = 0.2. Because we found associations between

age and loading parameters for all components, we also performed

a correlation analysis after adjusting for age (bottom half of cor-

relation matrix; Figure 6A). Partialling out variance due to age

weakened all the correlations; however, a few structural compo-

nent loading parameter pairs stayed significantly correlated after

age adjustment. An example of this is in Figure 6B, which shows

the relationship between loading parameters of s-IC17 and s-IC73

before (r = 0.68) and after (r = 0.48) adjusting for age. Figure 6C

shows an example of the relationship between components

largely due to age: the correlation between s-IC5 and s-IC73

loading parameters falls from r = 0.58 to 0.24 after adjusting

for age.

We can also create a graph of the correlations to elucidate the

more complex relationships (beyond pair-wise) between struc-

tural components. Here, we used a conservative threshold of

r > 0.4 to create a graph, as shown in Figure 7. Based on the origi-

nal correlation values, this yields 13 “edges” between 6 component

“nodes.” Using the age-corrected correlations, we find a graph

with four “edges” between four “nodes.” In both the original and

age-corrected correlations, component s-IC17 (the precuneus) is

identified as a “hub,” for it was the component with the greatest

number of correlations.

DISCUSSION

Investigating GM structural networks is a crucial next step in map-

ping the correspondence between structure and function in the

human brain. To our knowledge, this is the first study to link

GM structure and function using spatial components, obtained

from high model order spatial ICA, and from GM structural

and rs-fMRI. We have also developed a framework for process-

ing and analyzing GM structure and function in the same large

cohort of healthy individuals. Our overall goal was to assess

structural–functional relationships of the human brain and we

found several GM structural components that spatially corre-

sponded to rs-functional components. We used spatial component

correspondence as our framework for investing how structure

relates to function, but if we had a single functional parameter

instead of group obtained functional components then we could

have delved deeper into the covariation of structural–functional

correspondence across individual subjects. An example of a single

functional parameter for future investigation is the amplitude of

low-frequency fluctuation (ALFF) of the rs-fMRI signal, because

the literature suggests that ALFFs reflect the intensity of regional
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FIGURE 5 | (A) Structural components correlated to the log(age) for the 10

selected s-IC. Dark gray bar corresponds to s-IC17. In general, structural

components are negatively correlated with age. Ninety-five percent

confidence intervals are reported. (B) Correlation of the age (years) and

loading parameter for all 603 subjects using s-IC17, which is primarily

comprised of the precuneus, as an example. Where r = −0.56.

spontaneous brain activity (Yang et al., 2007). Using ALFFs, GMD,

and parallel ICA (Calhoun et al., 2009) would be a good next

direction for future studies.

The basal ganglia components are the most spatially corre-

lated structural–functional components. Additionally, it is one of

only a few structural components in which the component was

comprised of only one source, which indicates how different the

GMD is in the basal ganglia compared to other regions in the

brain. As seen in Tables 1–3, the majority of the components are

FIGURE 6 | (A) Structural network correlations (SNC) of the 10 selected

structural components. The top half of the matrix is without age adjustment

(original) and the bottom half is after age adjustment. (B) An example of the

effect of adjusting for age, where the adjustment does not remove the

significant correlation between the components for s-IC73 and s-IC17. (C)

An example of the effect of adjusting for age, where the adjustment does

remove the significant correlation between the components for s-IC73 and

s-IC5.

composed of several GM sources. This component could have also

been so clearly identified because the GMD of the basal ganglia

is so different compared to the surround WM. This structure–

function pairing is also unique because it is one of only four

pairs (out of the 24 structural–functional pairs) that has a direct
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FIGURE 7 | Structural network correlations. The SNC results for component pairs that are r < 0.4. The edges in red refer to components pairs that survived

age adjustment. The correlation coefficient values are adjacent to the edges.

one-to-one correspondence to a rs-functional component.

Another structural–functional component pair where this is seen

in the cerebellar component; however, the cerebellar correlation

value, though significant, is the weakest of the entire structure–

function analysis – nearly half the strength as in the basal ganglia

components. In similar structural network studies the focus tends

to be on the cortex, consequently, paying less attention to sub-

cortical regions, such as the basal ganglia (Robinson et al., 2009;

Bressler and Menon, 2010). Our finding further promotes the basal

ganglia as a viable and interesting region that should be addressed

in further structure–function studies.

Another directly correlated structure–functional pair is found

in the components that are primarily comprised of the SMG.

Results from lesion studies of aphasic stroke patients have found

that the left SMG plays a role in acoustic-phonetic processing,

which is an example of how structural abnormalities directly relate

to functional processing (Caplan et al., 1995).

The remaining structural–functional pair with direct corre-

spondence is found in the posterior component, specifically

comprised of the PCC. This PCC is commonly seen at rest and

is considered part of the DMN (Buckner et al., 2008). The DMN is

a particular grouping of brain regions that are consistently found

to be active during the resting-state (Raichle et al., 2001; Raichle

and Snyder, 2007; Buckner et al., 2008). The precuneus, also con-

sidered part of the DMN, is seen in our structural–functional

component correlations. Although, unlike the PCC, it is corre-

lated to several functional components, which is consistent with

the precuneus having many functional roles in addition to its role

in the DMN. The precuneus exhibits functional connectivity in

several highly integrated tasks, such as episodic memory retrieval,

self-referential processing and visuo-spatial imagery (Cavanna and

Trimble, 2006). The precuneus along with the PCC have also been

identified as part of structural core in a graph study of diffusion

imaging data (Hagmann et al., 2008). Prior structural connectiv-

ity studies have reflected the functional connectivity of the DMN

(Greicius et al., 2009; Skudlarski et al., 2010) and as hypothesized,

our study is another example of how structure corresponds to

function in the DMN. Additionally, the DMN regions have shown

a high degree of heritability (Glahn et al., 2010) and alterations in

the DMN have been found in many neurological and psychiatric

disorders (Garrity et al., 2007; Greicius, 2008; Paakki et al., 2010;

Weng et al., 2010).
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The remaining structural–functional component correlations

are comprised of one structural components that corresponds to

several functional components. Typically, the structural compo-

nent is a broad region of GM, while the functional components

are broken up into smaller and sometimes lateralized compo-

nents. This type of structural–functional correspondence is found

in the frontal, SMA, and visual regions. The structural com-

ponents comprised of the frontal and SMA are correlated to

some of the same functional components. These frontal networks

are associated with strategic and executive functions (Duncan

and Owen, 2000) and the SMA networks are primarily asso-

ciated with sensorimotor/spatial functions. Unlike, the frontal

and SMA components, the functional components comprising a

visual network do not correspond to any other structural compo-

nents, besides s-IC55, which is mainly composed of the calcarine

gyrus.

Interestingly, we found similar spatial overlap between function

and structure as Chen et al. (2008) which found that the cortex

was organized into six topological modules. The lack of more

direct correspondence between structure and function was not

surprising to us. Recent studies have shown that structural changes

in cortical thickness believed to be induced by activity are not

found in the same regions where there are functional connectivity

changes (Haier et al., 2009).

The field of human connectome research could benefit from

examining the similarities that exist between patterns of GM

covariation and functional connectivity in healthy individuals,

for these patterns may be a foundation for future research on

both healthy connectivity and changes associated with neurode-

generative disorders. A previous study found using GM volume

measures and ICA on rs-fMRI that, “normal intrinsic connec-

tivity and structural covariance patterns mirrored each other and

reflected, with high fidelity, those regions that codegenerate in dis-

tinct human neurodegenerative syndromes (Seeley et al., 2009).”

This study differed from ours in several ways, mainly that the

GM regions selected were those associated with neurodegenera-

tive syndromes. Indeed, both in Seeley et al. (2009) and in our

study, GM structure is directly observed to be associated with

function; however, the exact mechanism is still unclear. A study

on the developing brain demonstrated that different GM structural

covariance networks exist at various developmental stages and as

children aged their GM covariance topology eventually resembled

an adults intrinsic connectivity network (Zielinski et al., 2010).

Zielinski et al. (2010) findings suggest that GM structural covari-

ance networks may mature after functional coactivation. Perhaps

aging and the effects of neurodegenerative syndromes are possi-

ble mechanisms as to how structural GM covariation occurs. The

normal aging process in healthy controls could also explain our

results of structure–function correlations.

As predicted age had a strong affect on the structural com-

ponents, for decreases in GM volume are thought to be both

from maturational and degenerative changes (Taki et al., 2011) and

this study age range spanned from adolescence to later adulthood

(12–71 years). After adjusting for age, the strength of our between-

component correlations was not significantly mitigated for all of

the structural component pairs. Future studies should evaluate

structural components for distinct age groups to determine age

specific structural covariance patterns. Surprisingly, we did not

find significant associations with gender and structural loading

parameters. There are inconsistencies in the literature regard-

ing sex differences and GM (Sowell et al., 2007), which could be

attributed to the differences in methods used to obtain GM mea-

surements. Our study was comprised of a large age rage of males

and females and that may be why we did not find a main effect

of gender.

The SNC analysis revealed several structural components that

were highly covariant and similar to regions that were found

in other structural–functional correspondence studies. Specifi-

cally, the precuneus was linked to frontal, cerebral, parietal, and

motor areas. This relationship with the precuneus and the other

structural components survives after adjusting for age, which is

a possible indicator that the precuneus might play a role of a

structural “hub” in the SNC. The finding of a precuneus “hub” is

consistent with a previous study, which through mapping struc-

tural cortico-cortical pathways identified the precuneus as one

of the hubs of the structural core of the human cortex (Hagmann

et al., 2008). The subcortical components were not as strongly cor-

related to the other cortical components, which could be caused

by differences in types of GM.

The findings from our structural–functional analysis are rel-

evant to human connectome research, for the correspondence

between structural and functional covariations provides us with

information about brain connectivity. A meta-analysis by Smith

et al. (2009) demonstrated that covariation of functional networks,

from over 1,600 functional neuroimaging studies, are similar to

the functional networks found at rest. Therefore, INs can be iden-

tified from inter-subject covariation. Additionally, a recent ICA

paper showed that estimates of functional activity can be accu-

rately predicted from covariation analysis, which again provides

us with information that functional covariation is directly related

to connectivity (Calhoun and Allen, in press). This current paper is

extending this work further, by identifying both structural covari-

ation components and components where structural–functional

covariations correspond. Regions where we have identified corre-

spondence are perhaps highly dependent on structure. The regions

where we have not shown structural–functional correspondence

are also of interest. For instance, we did not find any structural

or functional covariations in regions such as the prefrontal cortex,

which are associated with higher cognitive functions (Jung and

Haier, 2007).

There are several limitations to this study, the first being the

investigation of structural networks using GMD. GMD only pro-

vides indirect measurements of structural networks; therefore,

since we do not use DWI and directly evaluate WM tract involve-

ment we are unable to make direct statements about anatomical

connectivity (Stam, 2010). Yet, as identified in a primate study,

the number of neurons differ depending if the GM is gyral or

not (Hilgetag and Barbas, 2005). Therefore, it is no longer as

straightforward to infer that the underlying anatomical connec-

tivity corresponds to GM measures, such as cortical thickness.

Future work should incorporate all three measures (fMRI, struc-

tural MRI, and DWI). The methods we used were to describe

the relationship between structure and function at the group

level, consequently the next step would be to investigate this
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relationship at the individual level. To further substantiate our

findings of structural–functional correspondence, future stud-

ies should also investigate structural and functional covariations

between structural–functional pairs at the subject level to ensure

the findings are replicable and reliable.

Additionally, we conducted a very constrained analysis that

investigated a limited number of components. We decided to use

a strict feature selection criteria to limit our analysis and results to

components that were explicitly within GM. We do not find it sur-

prising that we eliminated 65 components, for SBM is most likely

demonstrating that the brain is comprised of complex morphom-

etry that cannot be easily characterized by a voxel-wise map. The

observed SBM findings of the separate components identified for

the basal ganglia and in the cerebellum are interesting, for those

regions have well known stereotypical anatomical architectures.

These findings provide additional evidence that GMD covaria-

tion detects regions of the brain that share similar anatomical

architectures. Our study was also comprised from healthy individ-

uals over a wide age range and future studies could explore how

these structural–functional relationship manifest at different age

stages.

CONCLUSION

The use of non-invasive neuroimaging provides the ability to

describe and find structural and functional networks, foster-

ing opportunities to further understand the complexity of the

human brain. Using the multivariate approach, SBM, we found

GM structural relationship patterns and several areas in the brain

where structure and function correspond. More importantly, we

also demonstrated that GM structural components are directly

associated with functional components.
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