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Cortical network dynamics with time delays reveals functional

connectivity in the resting brain
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Abstract In absence of all goal-directed behavior, a

characteristic network of cortical regions involving pre-

frontal and cingulate cortices consistently shows temporally

coherent fluctuations. The origin of these fluctuations is

unknown, but has been hypothesized to be of stochastic

nature. In the present paper we test the hypothesis that time

delays in the network dynamics play a crucial role in the

generation of these fluctuations. By tuning the propagation

velocity in a network based on primate connectivity,we scale

the time delays and demonstrate the emergence of the resting

state networks for biophysically realistic parameters.
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Introduction

The primate brain exhibits spontaneous coherent fluctua-

tions in absence of all environmental stimuli and goal

directed behavior (Biswal et al. 1995; Gusnard and Raichle

2001; Fox et al. 2005; Greicius et al. 2003; Damoiseaux

et al. 2006; Vincent et al. 2006; Bar 2007). These fluctu-

ations primarily occur in a network consisting of prefrontal,

parietal and cingulate cortices. In humans, this network has

been shown to greatly overlap with functional architectures

present during consciously directed activity and hence

various functional roles such as ‘‘day-dreaming’’ or

‘‘stimulus-independent thought’’ have been attributed to it.

Just recently it has been put forward that the transient

resting state activations are reminiscent of features of a

more fundamental organization of the cortex. This proposal

has been motivated by the identification of the presence of

similar resting state networks in monkeys during deep

anaesthesia (Vincent et al. 2007). In the present paper, we

put this hypothesis to test and investigate if a neural net-

work dynamics with realistic primate connectivity and time

delays is capable of generating the coherent rest state

fluctuations. The introduction of time delays is well moti-

vated, since we deal with large-scale connectivity (Jirsa

2004) involving far distant brain areas.

Anatomical connectivity analysis

The basis of our network is the connectivity matrix of one

hemisphere obtained from the CoCoMac database (Kötter

2004). This primate anatomical connectivity matrix (col-

lated from macaque tracing studies) comprises 38 nodes

with weights ranging from 0 to 3. The corresponding

‘‘Regional map’’ gives the translation between macaque

and human neuroanatomy (Kötter 2005). To quantify the

connectivity characteristics, we computed a set of network

connectivity measures (Honey et al. 2007) for all nodes

including the in- and out-degree of connectivity and the
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clustering coefficient (see Fig. 1). The in-degree and out-

degree are computed as the number of incoming and out-

going connections to/from a node, respectively, giving a

measure of how much information it can receive or give.

The degree is the sum of in- and out-degree. The clustering

coefficient is calculated as the number of all existing

connections between a node’s neighbors divided by all

such possible connections. The connection graph has 599

edges, with connection density = 0.426, characteristic path

length = 1.633 and clustering index = 0.568.

Our analysis shows that the components of the rest state

network are not clearly differentiated from other network

nodes. Anatomically the prefrontal cortex is characterized

by a large degree of afferent and efferent connectivity,

whereas cingulate and parietal areas display only a mod-

erate degree of connectivity. Clustering index is commonly

used to identify hubs in a network, but does not differen-

tiate the default network either. Previous anatomical

analyses evaluating whether the correlation between

spontaneous rest activity and its underlying anatomical

circuitry is high were based on retrograde tracer injection

studies (Vincent et al. 2007); these trace out the direct

afferent connectivity of a region of interest, i.e., the

injection site, but are not able to provide insight into the

large scale network connectivity. Our results suggest that

an anatomical connectivity analysis of the large-scale

network does not suffice to identify the network

constituents during rest, but rather requires an analysis of

the network dynamics.

Functional connectivity analysis

To explore the network dynamics supported by the present

large-scale connectivity matrix, we simulated the network

dynamics computationally. We placed neuronal oscillators

at each network node and initially considered multiple

oscillator types which are commonly used in neural pop-

ulation modeling including Hopf oscillators (Breakspear

and Jirsa 2007), Wilson–Cowan (Wilson and Cowan 1972)

and FitzHugh–Nagumo (FitzHugh 1961; Nagumo et al.

1962) systems. Since all neural oscillators provided similar

results, we present in the following the simulations based

upon FitzHugh–Nagumo systems representing neural

population activity (see also Assisi et al. 2005 for popu-

lation modeling). Each network node was characterized by

a degree of excitability, in which the increase of excitation

parameterizes the onset of oscillations emerging from a

quiescent state. Then the network node equations are given

as

_u tð Þ ¼ g u; vð Þ ¼ s vþ cu�
u3

3

� �

_v tð Þ ¼ h u; vð Þ ¼ � 1=sð Þ u� aþ bv� I½ �

Fig. 1 Characterization of the

primate connectivity matrix:

node wise degree distributions

and clustering index
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where u and v represent the fast and slow variables

respectively (Breakspear and Jirsa 2007). The network

model equations are given by:

_ui tð Þ ¼ g ui; við Þ �
X

N

j¼1

fijuj t � Dtij
� �

_vi tð Þ ¼ h ui; við Þ

where f represents the connection matrix of dimension

N 9 N (scaled by the value 0.016 to ensure dynamic

stability), N being the number of nodes and the time delays

are computed from the distance matrix d and v is the

propagation velocity,

Dtij ¼
dij

v

The simulations are carried out for transient rest state

dynamics i.e., there is no external stimulus, I = 0, and the

network dynamics evolves from a random initial condition to

its stable equilibrium point. This transient dynamics is

typically complex and involves oscillatory behavior, which

we do not characterize in more detail in the current study.

Here our only concern is the measurement of the spatial

network configurations activated during this transient. The

parameter values are set as follows: a = 1.05, b = 0.2,

c = 1.0, s = 1.25. We employed Matlab DDE23 for

numerical integration. We set the propagation velocity, v,

to multiple biologically realistic values and its infinite value.

To characterize the functional connectivity of this net-

work, we apply a set of spatiotemporal measures. The first

measure we apply is the integrated entropy (Tononi and

Edelman 1998). Let u(i) be the temporal data at ith node (in

our case the fast variables from the FitzHugh–Nagumo

system) and we compute the joint probability distribution

p(u(i),u(j)) and the entropy is obtained by

Hði; jÞ ¼ �
X

N

i¼1

X

N

j¼1

pðuðiÞ; uðjÞÞ log½pðuðiÞ; uðjÞÞ�:

Thus we obtain the entropy matrix of dimension N 9 N,

whereN is the number of nodes in the connectivitymatrix. To

quantify the entropy contribution of each node we calculate

the row or column sum (H being a symmetric matrix)

HðiÞ ¼
X

N

j¼1

Hði; jÞ:

The above quantity is known as integrated entropy,

signifying statistical independence of a particular area (i) in

the network from others and is shown in Fig. 2 for the

velocity values ?, 15, 7, 3, and 2 m/s. We find that for

instant transmission, i.e., infinitely large velocity, the

prefrontal areas (PFCORB, PFCCL) show higher

integrated entropy compared to the rest of the nodes

while for finite velocities there emerge links to anterior

cingulate (CCA) and other areas, in particular also to CCP

Fig. 2 Integrated entropy for

transmission speeds?, 15, 7, 3,

and 2 m/s
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at 7 and 15 m/s. This is indicative of the feature that in the

resting state of brain there is an underlying cingulate–

prefrontal sub network. However, the above result shows,

rather weakly, this cingulate–prefrontal connection. We

extend the analysis of the spatiotemporal data in wavelet

domain and will discuss the method and results in the

following section.

Wavelet transform decomposes a signal into both time

and scale (equivalently frequency) and has been widely

used to analyze experimental EEG and fMRI data (Salva-

dor et al. 2007). The main advantage of wavelets over

traditional Fourier analysis is that they are applicable to

non-stationary signals as often encountered in experimental

neuroscience data. Wavelets are sets of compact ortho-

normal functions, wjk, constructed by means of dyadic

translations and dilations

wjkðxÞ ¼ 2j=2wð2jx� kÞ

where integers j,k indicate dilation and translation index,

respectively and discrete wavelet transform of signal x(n) is

given by

Wjk ¼
X

n

xðnÞwjkðnÞ

There exists a large family of wavelet functions, and in

our analysis we have used Haar and Daubechies family of

wavelets (Daubechies 1992). We take the wavelet

transform of the temporal data at each node and obtain

the wavelet coefficients W. The average wavelet power

spectrum (averaged over all nodes) shows a maximum in

power corresponding to wavelet scale j = 7 = jm (Fig. 3).

We compute the covariance matrix, C, from the wavelet

coefficients corresponding to scale j = jm, for nodes say, p

and q, which is given by
Fig. 3 Averaged wavelet power spectrum

Fig. 4 The functional

connectivity obtained from

wavelet covariance matrix
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Cp;q ¼ CovðWp
jm;W

q
jmÞ

In Fig. 4 we show the thresholded covariance matrix,

where the threshold has been chosen as cth = 0.15 and dark

spots have strength greater than cth. The threshold is chosen

such that entries in the connectivity matrix lie outside the

standard deviation calculated for all elements in the

covariance matrix, C. The covariance matrix clearly

indicates that the functional subnetwork in resting state is

cingulate–prefrontal and medial premotor in nature.

Similar analysis for low velocities yield only a single

dominating entry namely PFCORB, indicating the other

areas are implicated for higher velocity regimes.

Conclusions

For increasing transmission speed the sub-networks present

in transient rest state activity disengage the cingulate

components and are left with only its prefrontal contribu-

tions for instantaneous transmission, thus resembling

characteristics of anatomical connectivity. Hence we find

evidence that the introduction of time delays aids in the

additional recruitment of cingulate cortex. This suggests

that the space–time structure of the time delays is crucial

for the understanding of the brain’s rest state. In fact, our

results demonstrate that the correlation structure of the rest

state networks previously observed in experiments can be

understood on the basis of the spatial (anatomical con-

nectivity) and temporal (time delays) properties of

connectivity. Our findings are consistent with the proposal

that coherent spontaneous fluctuations of the resting brain

reflect a more fundamental or intrinsic property of func-

tional organization of the human brain (Jirsa 2004); not

exclusively dependent on the presence of conscious mental

activity.
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Appendix: list of cortical areas

A1 Primary auditory

A2 Secondary auditory

CCA Anterior cingulate cortex

CCP Posterior cingulate cortex

CCR Retrosplenial cingulate cortex

CCS Subgenual cingulate cortex

FEF Frontal eye field

IA Anterior insula

IP Posterior insula

M1 Primary motor cortex

PCI Inferior parietal cortex

PCIP Intraparietal sulcus cortex

PCM Medial parietal cortex

PCS Superior parietal cortex

PFCCL Centrolateral prefrontal cortex

PFCDL Dorsolateral prefrontal cortex

PFCDM Dorsomedial prefrontal cortex

PFCM Medial prefrontal cortex

PFCORB Orbital prefrontal cortex

PFCPOL Prefrontal polar cortex

PFCVL Ventrolateral prefrontal cortex

PHC Parahippocampal cortex

PMCDL Dorsolateral premotor cortex

PMCM Medial (supplementary) premotor cortex

PMCVL Ventrolateral premotor cortex

S1 Primary somatosensory cortex

S2 Secondary somatosensory cortex

TCC Central temporal cortex

TCI Inferior temporal cortex

TCPOL Polar temporal cortex

TCS Superior temporal cortex

TCV Ventral temporal cortex

V1 Primary visual cortex

V2 Secondary visual cortex

VACD Dorsal anterior visual cortex

VACV Ventral anterior visual cortex

Pulvinar Pulvinar

ThalAM Anteromedial thalamus
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