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Introduction

In various application areas like automotive industry, telecommunication or
robotics, the technological progress is mainly driven by a terrific development
in the field of optic and electronic components. The enormous increase of
performance is based on a higher complexity of integrated systems as well as
smaller and smaller dimensions of optic and electronic devices. Both trends
are connected with new difficulties for the design of circuits.

Circuit design consists usually of several steps: process simulation, device
simulation, compact modeling for semiconductor devices, extraction and gen-
eration of model parameters, circuit simulation. The way over a compact
modeling of devices (macro-modeling) was advantageous up to now since one
could simulate circuits without an expensive device simulation. Thus, a sim-
ulation of integrated circuits was enabled in general. Nowadays, however, the
performance of high frequency devices depends not only on their geometrical
dimensions. It is significantly influenced by the surrounding circuitry. This
requires additional (time consuming) iterations during the circuit design for
the extraction and generation of model parameters. Furthermore, high fre-
quency parts of a circuit have to be modeled with a very high precision for a
reliable evaluation of the circuit function. Consequently, for complex circuits
with high frequency devices, it is recommended to combine circuit simula-
tion directly with a device simulation of elements of the high frequency part.
This results in coupled systems of differential-algebraic equations (DAEs)
and partial differential equations (PDEs) of elliptic and parabolic type.

A coupling of DAEs and PDEs becomes more and more important also
in other applications fields (see e.g. the simulation of blood flows in a hu-
man vascular system [QRV01] or the simulation of elastic multibody systems
[Sim98, Sim00]). Theoretical investigations for such coupled systems are still
at the initial stage [CM99b, FY99, LSEL99, Sim00, Gün01a]. But they have
already shown that the existence and exploitation of certain structures is
important for an efficient and successful coupled simulation.
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Since structural information about circuit equation systems was missing for
long time, for coupled circuit and device simulation, approaches have been
established that either extend existing device-simulators by more complex
boundary conditions (see e.g. [LSK+96, Rot00]) or combine device-simulators
with circuit-simulators in form of a “black box” (see e.g. [ESTZ96]). Both
approaches are unsuited for complex circuits in high-frequency domain.

In this document, we follow an approach that includes the device model
equations into the network equation system directly. Based on a detailed
analysis of network and device modeling, we elaborate information about
the structure of the coupled circuit and device systems. This enables us to
investigate numerical properties of the systems as sensitivity with respect to
perturbations. In contrast to the studies in [Gün01a, ABGT02] we deal with
the case of instationary device equation systems here.

Furthermore, we present a treatment of the coupled systems as differential
algebraic systems in infinite-dimensional Hilbert spaces. Such systems are
also called singular or degenerate abstract differential equations. In contrary
to applications, where a singularity is given at one time point only, our
systems have an operator in front of the time derivative that is singular at
all time points. Therefore, we call the systems abstract differential algebraic
systems (ADAS). Finally, we develop a Galerkin approach for such abstract
systems that regards the involved constraints properly.

This work is divided into 4 chapters. The first one is devoted to a detailed
network analysis. First, network elements and topological properties of the
network are discussed from a mathematical point of view. Then, the most
common network approach, the modified nodal analysis (MNA) is presented
in such a way that structures of the resulting differential-algebraic equation
system become visible. This enables us to develop network topological crite-
ria for the DAE-index. Furthermore, questions concerning unique solvability
and the perturbation behavior of solutions can be answered. Finally, the
BDF methods applied to the network equation systems are investigated with
respect to feasibility, convergence and stability.

The second chapter deals with modeling of semiconductor devices. After
a short discussion of different models on different levels, we consider the
drift diffusion equations. Particular care is taken to the boundary conditions
since they play an important role for the coupling between circuit and device
equations. In the end, function and geometry of two device examples are
explained.

In the third chapter, the coupling of the network and device model equations
is discussed. Exploiting charge conservation of the drift diffusion model, the
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occurrence of semiconductor currents in the network equations can be de-
scribed by a matrix of the same structure as those for other basic network
elements. After formulating the complete coupled system, we present a ho-
mogenization that yields to boundary conditions for the device equations
independent of the network equations. This way, node potentials of the net-
work appear in the device equations but explicit given function spaces can
be chosen for the solution. In preparation of the fourth chapter, the cou-
pled system is formulated as an abstract differential algebraic system. First,
a classic description is given. Then, the system is described as variational
equation (generalized form).

The fourth chapter is devoted to abstract differential algebraic equations
in infinite-dimensional Hilbert spaces. First, we present an index concept
that orientates on perturbations of the right hand side and bases on the
tractability index for DAEs. Then, we develop network topological crite-
ria for the index of the coupled network and device equations. Finally, a
Galerkin approach for handling ADASs with monotone operators is proposed
and discussed with respect to convergence and solution behavior of perturbed
systems.

The purpose of Appendix A is to collect basic aspects of different fields that
are relevant in the framework of this work. It is devoted to readers who
are not familiar with one or the other field. Appendix B collects symbols,
common notations and physical constants used in this thesis.
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Chapter 1

Network Analysis

Electric networks are present in almost all parts of our live. Main application
areas are telecommunications, home electronics, transport communication as
well as controlling, optimization and automatization of production processes
of any kind.

Modern integrated circuits are often distinguished by a very high complexity
and a very high packing density. The development of electronic circuits has
progressed to a state where millions of transistors can be put on a chip. The
numerical simulation of such circuits requires modeling techniques that allow
an automatic generation of network equations. Furthermore, the number of
independent network variables describing the network should be as small as
possible.

The modified nodal analysis (MNA) provides a system with a relatively small
dimension (number of nodes plus the number voltage controlling elements).
It is adopted successfully in numerous programs, e.g. in SPICE (originally
developed at Berkeley in the 70s and early 80s; commercialized versions:
HSPICE, PSPICE, et.al.) and in TITAN (developed by SIEMENS / In-
fineon Technologies). The resulting systems represent differential-algebraic
equations (DAEs).

The aspect that one is usually confronted with highly nonlinear DAEs led to
the popular opinion that DAEs arising from circuit simulation do not have
a special structure and their index is generally unknown. But, our investiga-
tions in [MT97, Tis99, ET00, Est00, Tis01, EFM+03], have shown that the
network DAEs are well structured (depending on the network topology), the
relevant subspaces may be described by suitable projections and the index
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may be checked by topological criteria. Since some of these structural prop-
erties are important for the numerical simulation and for the further analysis
of the coupled systems, we will present them in this chapter in detail.

1.1 Network Modeling

The numerical simulation of electric networks is closely related to the network
modeling. Circuit models have to meet two contradicting demands. On the
one hand, they have to describe the physical behavior of a circuit as correct
as possible. On the other hand, the models should be simple enough to keep
computing time reasonably small.

A well established approach meeting both demands to a certain extent is
the description of the network by a graph with branches and nodes. Branch
currents, branch voltages and node potentials are introduced as variables.
The node potentials are defined as voltages with respect to one reference
node, usually the mass node.

The physical behavior of each network element is modeled by a relation be-
tween its branch currents j and its branch voltages v. Network elements
fully described by a relation between a single branch current and a single
branch voltage are called one-port or two-terminal elements. One port re-
flects one branch, one terminal reflects one end of a branch. Correspond-
ingly, the other elements are called multi-port or multi-terminal elements.
The describing current-voltage relations are called characteristic equations.
The characteristic equations of basic network elements are given later in this
section.

In order to complete the network model, the topology of the elements has
to be taken into account. Assuming the electrical connections between the
circuit elements to be ideally conducting and the nodes to be ideal and con-
centrated, the topology can be described by Kirchhoff’s laws as we will see
in the next sections.

1.1.1 Network Elements

The analysis and design of circuits requires an approximation of real elements
by appropriate models. The level of the models ranges from simple algebraic
equations, over ordinary and partial differential equations to Boltzmann and
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Schroedinger equations depending on the effects to be described. Due to
the high number of network elements (up to millions of elements) belonging
to one circuit one is restricted to relatively simple models. In order to de-
scribe the physics as good as possible, so called compact models represent
the first choice in network simulation. Complex elements such as transistors
are modeled by small circuits containing basic network elements described
by algebraic and ordinary differential equations only.

The development of such replacement circuits forms its own research field and
leads nowadays to transistor models with more than 500 parameters. As an
example, a model circuit describing a MOSFET (metal oxide semiconductor
field effect transistor) on a very low modeling level is depicted in Figure
1.1. The correct adjustment of the parameters becomes more and more a

1

Source

Gate

Drain

Bulk

4

32

Figure 1.1: Circuit model for a MOSFET on a low modeling level

problem for the network design. Such a complexity motivates the idea to
go back to a higher description level, that means to use distributed device
models represented by a system of partial differential equations. This will be
investigated in later chapters.

The basic network elements are ideal resistors, ideal condensers, ideal coils
and ideal batteries. In order to express that we deal with ideal elements we
use the terms resistor, capacitor, inductor, and voltage source, respectively.
Furthermore, we shall use current sources that play an important role for the
description of more complex elements such as transistors.

The characteristic equation of a resistor may be described as

v(t) = r(j(t), t) or j(t) = g(v(t), t) (1.1)

where j(t) reflects the current and v(t) the voltage through the resistor at
the time t. The functions r and g, respectively, can be linear and nonlin-
ear. Typical examples are Ohms resistors and diodes. In the first case, the
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functions r and g are linear and time-independent. In the second case, the
function g reflects an exponential function with respect to the first argument.

Note, that j and v may form vector valued functions of time in case of multi-
terminal elements. An element with n terminals is uniquely determined by
the relation between n−1 branch voltages and n−1 branch currents. There-
fore, one chooses often one reference terminal and considers the branches
between the reference terminal and all other terminals (see Figure 1.2).

n (reference terminal)

1 2 3 4 5

6 7 ...

Figure 1.2: n-terminal circuit element

Capacitors store energy in their electric fields. Its charge q(t) may be ex-
pressed by

q(t) = qC(v(t), t).

The function qC is usually monotone. Due to the definition of the current we
get the voltage-current characteristics

j(t) =
dqC(v(t), t)

dt
.

As described for resistors, the currents, charges and voltages may be vector
valued functions in case of multi-terminal elements. Typical examples are
the ideal condenser and the varactor diode. Transistor modeling requires
often nonlinear multi-terminal capacitors.

Inductors store energies in their magnetic fields. The flux φ(t) is represented
by

φ(t) = φL(j(t), t).

Regarding the definition of voltage, we arrive at

v(t) =
dφL(j(t), t)

dt
.

Also in this case, the currents, fluxes and voltages may be vector valued
functions. Most of coils have a nonlinear current-flux characteristics. One
can approximate them by linear functions only in a small current range. In
case of large currents, the flux growths sub-linearly.
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Independent voltage and current sources are distinguished by the fact that
the voltage and the current are given by

v(t) = vs(t) and j(t) = is(t), respectively.

If we have
v(t) = vs(j(t)) or j(t) = is(ĵ(t))

then the sources are called current controlled. Again, v, j and ĵ may be
vector valued functions. Here, the branches corresponding to j are different
from those corresponding to ĵ. In case of

v(t) = vs(v̂(t)) or j(t) = is(v(t)),

the sources are called voltage controlled. Here, the branches corresponding
to v are different from those corresponding to v̂.

In general, we have

v(t) = vs(t, j(t), v̂(t)) for voltage sources

and
j(t) = is(t, ĵ(t), v(t)) for current sources.

1.1.2 Network Topology

Assuming that quantum mechanical interactions between the network ele-
ments can be neglected, the electrical behavior of the network is described
by Maxwell’s equations which imply Kirchhoff’s laws.

Considering one node with branch currents j1, ..., jn entering this node (see
Figure 1.3) we may describe Kirchhoff’s current law (KCL) as

n∑

k=1

jk = 0, (1.2)

that means, the sum of all branch currents entering a node equals zero.

If we consider a loop with the branch voltages v1, ..., vn (see Figure 1.4),
then we may formulate Kirchhoff’s voltage law (KVL) as

n∑

k=1

vk = 0,
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i

i

.
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i

1

2
3

4
n ..

Figure 1.3: node with n conducting branches

n
. . .

v
v

v

v

1

2

3

Figure 1.4: Loop with n conducting branches

that means, the sum of all branch voltages in a loop equals zero. Using
Kirchhoff’s laws, one can describe the network topology in an elegant way by
the (reduced) incidence matrix A = (aij) that describes the relation between
all nodes (except the mass node) and all branches of the network. It is defined
as

aij =







1 if the branch j leaves the node i,

−1 if the branch j enters the node i,

0 else.

In Appendix A.1, we have collected some useful properties of this matrix
concerning the spaces spanned by certain rows or columns.

Let a connected network with n nodes and b branches be given. If j =
(j1, j2, ..., jb)

T is the vector of all branch currents of the circuit, then Kirch-
hoff’s current law implies

Aj = 0. (1.3)

As shown in Appendix A.1, the (reduced) incidence matrix has full column
rank. Consequently, the maximal number of independent node equations
describing the network is given by (1.3).

The incidence matrix allows, additionally, a simple description of the rela-
tion between node potentials and branch voltages of the network. If v =
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(v1, v2, ..., vb)
T is the vector of all branch voltages and e = (e1, e2, ..., en−1)

T

denotes the vector of all node potentials, then the relation

v = ATe (1.4)

is satisfied. Each individual equation of (1.4) corresponds to one branch
voltage. If we apply Kirchhoff’s voltage law to a loop containing both nodes
of the considered branch and the mass node, we get (1.4) directly.

1.1.3 The Modified Nodal Analysis

Let a connected electrical network be given. The nodal analysis is based on
the network equations (1.3)

Aj = 0 (1.5)

and (1.4)
v = ATe (1.6)

as well as the characteristic equations of all network elements. As described
in the section before, they may be written as

f(
dqC(v, t)

dt
,
dφL(j, t)

dt
, v, j, t) = 0. (1.7)

The system (1.5)-(1.7) is a differential algebraic system, that means a coupled
system of differential and algebraic equations in the network variables j, v
und e. The dimension of this system equals 2b+n−1. The approach leading
to this system is called sparse tableau analysis.

The so called modified nodal analysis (MNA) requires a much smaller number
of unknowns. In this case, one replaces the branch currents of all current
defining elements in (1.5) by their characteristic equations, and all branch
voltages by node voltages using (1.6). It is not difficult to see, that the
resulting system represents a differential-algebraic equation.

In order to design an effective solution scheme, it is important to look at the
structure of the equations. Other physical systems, like multibody systems,
in mechanics, can be described by differential-algebraic equations, which are
Euler equations of a variational principle (see e.g. [ESF98, RR99]). This
gives them a structure, which is exploited by modern numerical schemes.
In electrical network simulation, the structure is not so evident. Therefore,
simulation methods could not be based on a particular structure until a few
years ago. Our detailed investigations in [Tis99] lead to a structure based
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description of the network equations. It has been extended for a more general
class of networks in [ET00, EFM+03].

We will explain this structure here for networks containing resistors, ca-
pacitors, inductors and independent sources. Since we want to present the
essential idea we will neglect the case of controlled sources. The treatment
of controlled sources requires a lot of technical details which are presented in
[ET00].

For the vector jR of branch currents and the vector vR of branch voltages of
all resistors, we obtain

jR = g̃(vR, t).

Here, the function g̃ represents the composition of the functions g for each
resistor. Since we are not interested in the individual functions g anymore,
we will use g instead of g̃ in the following, that means jR = g(vR, t). Anal-
ogously, for the branch currents jC/jL and the branch voltages vC/vL of all
capacitors/inductors, we have

jC =
dqC(vC , t)

dt
, vL =

dφL(jL, t)

dt
.

Finally we get
vV = vs(t) and jI = is(t)

for the branch voltages vV of all voltage sources and the branch currents jI

of all current sources.

The essential idea for getting structure information is a numbering of the
network branches in such a way that the incidence matrix forms a block
matrix with blocks describing the different types of network elements. The
blocks are then given as follows:

A = (AR, AC , AL, AV , AI), (1.8)

where the index stands for resistive, capacitive, inductive, voltage source and
current source branches, respectively. Replacing the branch currents of all
current defining elements in (1.5) by their characteristic equations, and all
branch voltages by node voltages using (1.6), we obtain the system

AC
dqC(AT

Ce, t)

dt
+ ARg(AT

Re, t) + ALjL + AV jV = − AIis(t),

dφL(jL, t)

dt
− AT

Le = 0,

AT
V e = vs(t)
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with the unknowns e(t), jL(t), and jV (t). Consequently, the classical modified
nodal approach results in a differential algebraic equation system of the form

ACC(AT
Ce, t)AT

C

de

dt
+ AC

∂qC

∂t
(AT

Ce, t)

+ ARg(AT
Re, t) + ALjL + AV jV = − AIis(t), (1.9)

L(jL, t)
djL

dt
+

∂φL

∂t
(jL, t) − AT

Le = 0, (1.10)

AT
V e = vs(t). (1.11)

if the functions qC(v, t) and φL(j, t) are sufficiently smooth and

C(v, t) :=
∂qC

∂v
(v, t), L(j, t) :=

∂φL

∂j
(j, t).

Denoting the number of nodes by n, the number of inductive branches by
nL and the number of voltage source branches by nV , the dimension of the
system is n − 1 + nL + nV .

In the charge oriented MNA approach, one introduces additionally charges q
and fluxes φ as unknown variables. This implies the equivalent system

AC
dq

dt
+ ARg(AT

Re, t) + ALjL + AV jV = − AIis(t), (1.12)

dφ

dt
− AT

Le = 0, (1.13)

AT
V e = vs(t), (1.14)

q = qC(AT
Ce, t), (1.15)

φ = φL(jL, t). (1.16)

At a first glance, the charge oriented system (1.12)-(1.16) seems to be dis-
advantageous since its dimension is significantly larger than the dimension
of system (1.9)-(1.11). However it is, for several reasons, the main approach
used in circuit simulators. For a detailed discussion of these reasons we refer
to [GF99a, Gün01a]. We only want to mention a few aspects here. Re-
placement circuit models for semiconductor elements are often formulated
by (1.15)-(1.16). This way charge and flux conservation is guaranteed au-
tomatically. Numerical methods applied to system (1.9)-(1.11) require the
differentiation of the functions qC and φL. Solving the resulting system of
nonlinear equations requires the second derivatives of these functions, i.e.,
we need more smoothness. This plays a significant role for the numerical
solution since models are usually not twice differentiable. Additionally, it is
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computationally more expensive. Furthermore, charge and flux conservation
is only fulfilled approximately.

Finally, the simple form of the equations (1.15) and (1.16) involves only
function evaluations for the determination of q and φ. Consequently, from
the computational point of view, the dimension of the charge oriented system
equals the dimension of the classical system. In fact, one has to apply a
numerical method to the system

AC
dqC(AT

Ce, t)

dt
+ ARg(AT

Re, t) + ALjL + AV jV = − AIis(t), (1.17)

dφL(jL, t)

dt
− AT

Le = 0, (1.18)

AT
V e = vs(t) (1.19)

directly (without the differentiation done in (1.9)-(1.11)). Note, that the
system (1.17)-(1.19) represents a DAE with a proper stated leading term
[Mär02a, Mär02b] if the matrices C(v, t) and L(j, t) are positive definite
for all voltages v, currents j and time points t. These conditions seem to
be natural from the physical point of view. For two-terminal capacitors,
this means that a positive change of the voltage yields a current in forward
direction. The current flows in reverse direction if the voltage change is
negative.

1.2 Numerical Analysis

A straightforward approach based on BDF methods [Gea71] for the numerical
solution of such DAEs has been used for numerous circuits and “is still among
the best for this purpose” [VS94]. However, more and more complex circuit
models can lead to DAEs of higher index (≥ 2). DAEs of higher index are
ill-posed in the sense that small perturbations in the initial data may cause
arbitrarily large changes in the solution data. See Appendix A.3 for more
details about the index of a differential algebraic equation.

Furthermore, we are again confronted with basic questions. Do the circuit
equations of the more complex models will have a unique solution? Does the
numerical solution converge to the exact solution? Has the numerical solution
the same qualitative behavior as the exact solution? Of special interests are
answers to these problems based on criteria that can be checked during the
model design.
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Some answers, particularly for unique solvability, are known for certain kinds
of networks [BM64, CR65, KR65, OW69, CL75, Mat76, Cam81, Sza82, HB84,
NC84, Has86, Mat87, Fos92]. Typically, the results are based on the exis-
tence of specific trees or on the regularity of certain matrices. In [NC84]
topological criteria for unique solutions of nonlinear resistive circuits con-
taining linear controlled sources have been discussed for the first time. The
authors apply a set of operations to the graph of the circuit and check a
certain oriented structure, a cactus graph or a generalization thereof.

Beside investigations of special circuit systems, general differential-algebraic
equations have widely been investigated during the last 20 years (see e.g.
[Cam85, GM86, DHZ87, BCP89, HLR89, HW91, Kva90, Mär92, Rei90, RR91,
LMM93, MS93, KM94, BC95, CG95b, CG95a, RR96, Lam97, BC98, KM98,
KR99, HS02, RR02, HL03]). The results cover, among other things, unique
solvability, feasibility of numerical methods as well as stability properties.
However, most of the results suppose a certain structure (e.g. Hessenberg
form), high smoothness and depend mainly on the index of the DAE.

Recently, the special structure and the index of the network equations have
been investigated in several papers. In [GF95, GR96], it was shown that
the index of a circuit may depend on the model level of transistors. A more
general study of different circuit configurations was presented in [GF99a,
GF99b]. It clarifies that the index may become arbitrarily high and may also
depend on parameters. Furthermore, higher index configurations appear for
certain charge and flux sources.

For a reliable and effective numerical simulation, the question how to avoid
models described by higher index DAEs is of central importance. In [Tis97,
Tis99] we have seen that networks consisting of passive resistors, capacitors
and inductors and independent sources lead to a differential algebraic system
with an index not higher than two. This result could be generalized to
networks containing ideal transformers and gyrators [Rei98] and to networks
containing controlled sources satisfying certain assumptions [ET00]. Since
these results and the used approach are of importance for the analysis of the
coupled systems considered in Chapter 3, we will briefly summarize the ideas
and results in the next sections of this chapter.

1.2.1 Index of Network Equations

We consider electric networks consisting of resistors, capacitors, inductors
and independent sources. As described in Section 1.1.1, these elements may
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be multi-port elements. Furthermore, they may have nonlinear characteris-
tics. We make the following assumptions

(A1) Smoothness. The functions qC(v, t), φL(j, t) and g(v, t) are continu-
ously differentiable for all v ∈ R

n−1, j ∈ R
nL and t ∈ [t0, T ]. The input

signals vs(t) and is(t) are continuous for all t ∈ [t0, T ].

(A2) Local Passivity. The matrices

C(v, t) =
∂qC

∂v
(v, t), L(j, t) =

∂φL

∂j
(j, t), G(v, t) =

∂g

∂v
(v, t)

are positive definite for all v ∈ R
n−1, j ∈ R

nL and t ∈ [t0, T ].

(A3) Consistency. The circuit contains no loops of voltage sources only and
no cutsets of current sources only.

Assumption (A3) is necessary for a consistent model description. If it would
not be satisfied, then the circuit equations would have either no solution or
infinite many solutions due to Kirchhoff’s laws.

Studying the network equations in more detail, it turns out that special
loops and cutsets play an essential role as we will see in Theorem 1.5. The
expressions loop and cutset are explained in Appendix A.1.

Definition 1.1
A loop consisting of capacitors and voltage sources only is called a CV -loop
(see Figure 1.5). A cutset containing, inductors and current sources only, is
called an LI-cutset (see Figure 1.5).

Figure 1.5: Example of an LI-cutset (left) and a CV -loop (right)

Using the splitting (1.8) of the incidence matrix, we can give a simple math-
ematical characterization of CV -loops and LI-cutsets.
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Lemma 1.2 The matrix (AC , AR, AV ) of a connected circuit has full row
rank if and only if the circuit does not contain LI-cutsets.

Proof. Due to Theorem A.1, the matrix (AC , AR, AV ) has full row rank if
and only if it has n− 1 linear independent columns. By Theorem A.3, this is
equivalent to the existence of a tree containing C-, R-, and V -branches only,
which is the case for circuits without LI-cutsets.

2

Lemma 1.3 Let QC be a projector onto ker AC. Then, the matrix QT

CAV

has full column rank if and only if the circuit does not contain a CV -loop
with a voltage source.

Proof. (⇒) We assume that the circuit has a CV -loop with a voltage
source. Then, the columns of (AV , AC) are linear dependent (see Theorem
A.2). Consequently, there is a non-zero vector

(
x
y

)
such that

AV x + ACy = 0.

Consequently, QT
CAV x = 0. Furthermore, x 6= 0 since the loop contains a

voltage source. Thus, QT
CAV has not full column rank.

(⇐) We assume that there is a non-zero vector x such that QT
CAV x = 0.

Thus, AV x ∈ ker QT
C = im AC . It exists a y such that AV x + ACy = 0. Since

x 6= 0, we have a CV -loop with a voltage source.
¤

As we will see later, the spaces ker (AC AR AV )T and ker QT
CAV will play an

essential role for the index determination. In order to be able to describe the
elements of these spaces in a simple manner, we introduce two new projectors.
Let QCRV be a projector onto ker (AC AR AV )T and Q̄V −C be a projector onto
ker QT

CAV . Additionally, let QCRV be chosen such that

ker QCRV ⊇ ker QC . (1.20)

Such a choice is always possible since ker (AC AR AV )T ∩ ker QC = {0}.

The following lemma shows useful properties for a certain type of matrices,
that is important for later discussion of the network equation systems.

Lemma 1.4 For a positive definite matrix M ∈ L(Rm, Rm) and any matrix
N ∈ L(Rm, Rk), it holds

(i) ker NMNT = ker NT,
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(ii) im NMNT = im N , and

(iii) im MNT ⊕ ker N = R
m.

Proof: Ad(i) This is a simple consequence of the assumption that M is
positive definite.

Ad(ii) The relation im NMNT ⊆ im N is trivial. Considering (i), the equality
follows from

dim im N = dim ker NT, dim im NMNT = dim ker NMTNT

and the fact that MT is also positive definite.

Ad(iii) Part (i) implies immediately that

im MNT ∩ ker N = {0}.

Let an arbitrary y ∈ R
k be given. Because of (ii), we find an x ∈ R

k such
that

Ny = NMNTx.

Introducing y1 = MNTx and y2 = y − MNTx, we get y = y1 + y2 with
y1 ∈ im MNT and y2 ∈ ker N .

2

With the collected facts in the lemmas before, we may proof the following
index characterization for network DAEs.

Theorem 1.5 Let the assumptions (A1)-(A3) be satisfied. Then, the DAE
(1.17)-(1.19) has index

(i) zero if and only if the network does not contain voltage sources and
from each node exists a capacitive path to ground (mass node);

(ii) one if and only if the circuit has not index zero and, furthermore, it
contains no LI-cutset and no CV -loop with at least one voltage source;

(iii) two in all other cases.

Remark 1.6 The theorem includes simple topological criteria for calculat-
ing the index of a network model. In contrast to the algorithm presented in
[Rei98], this approach provides a very cheap and reliable index determination
and has been successfully implemented as an index monitor in the industrial
code TITAN (cf. [EFM+03]).
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Proof. We follow the matrix chain concept of the tractability index. For
a short description of this approach see Appendix A.3. Recall the equation
system (1.17)-(1.19):

AC
d

dt
qC(AT

Ce, t) + ARg(AT
Re, t) + ALjL + AV jV = − AIis(t),

d

dt
φL(jL, t) − AT

Le = 0,

AT
V e = vs(t).

Ad(i) We have to check, under which conditions, the matrix

G0(A
T
Ce, jL, t) =

(
ACC(AT

Ce,t)AT
C 0 0

0 L(jL,t) 0
0 0 0

)

is nonsingular. Since C(·) and L(·) are positive definite, this is obviously
the case if and only if ker AT

C = {0} and the zero rows and columns in G0

disappear (cf. Lemma 1.4). Regarding Theorem A.3, the null space is trivial
if and only if the network has a tree containing capacitors only. But this is
equivalent to the assertion that each node has a capacitive path to ground.
The zero rows and columns in G0 disappear if and only if the circuit does
not contain voltage sources.

Ad(ii) The null space of G0(·) is constant and has the form

ker G0(·) = ker AT
C × {0} × R

nV ,

where nV denotes the number of V -branches in the network. For the matrix
chain, we need a projector onto this null space. We are given one by

Q0 :=
(

QC 0 0
0 0 0
0 0 I

)

.

Regarding

B0(A
T
Ce, jL, t) =

(
ARG(AT

Re,t)AT
R AL AV

−AT
L 0 0

AT
V 0 0

)

,

we arrive at

G1(A
T
Ce, jL, t) =

(
ACC(AT

Ce,t)AT
C+ARG(AT

Re,t)AT
RQC 0 AV

−AT
LQC L(jL,t) 0

AT
V QC 0 0

)

. (1.21)

Let z =
(

ze
zL
zV

)

be an element of the null space of G1(·). For brevity, we use

only a dot for the arguments if their values are not important. The choice of
z implies

(
(QCze)

T 0 zT
V

)
G1(·)z = 0,
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which yields to zT
e QT

CARG(·)AT
RQCze = 0. Applying Lemma 1.4, we get

AT
RQCze = 0, (1.22)

since G(·) is positive definite. The last row in the equation G1(·)z = 0 reads
as AT

V QCze = 0. Together with (1.22), we obtain

QCze = QCRV ze.

The first row in G1(·)z = 0 implies

ACC(·)AT
Cze + AV zV = 0,

if we regard again (1.22). Consequently, QT
CAV zV = 0, that means

zV = Q̄V −CzV .

Now, it is not difficult to verify that

ker G1(·) = {z =
(

ze
zL
zV

)

: QCze = QCRV ze, zV = Q̄V −CzV ,

zL = L−1(·)AT
LQCRV ze, PCze = − H−1

C (·)AV Q̄V −CzV } (1.23)

for PC := I − QC and HC(v, t) := ACC(v, t)AT
C + QT

CQC . HC(·) is positive
definite, since C(·) is positive definite. Due to Assumption (A3), the matrices

(AL, AC , AR, AV )T and AV

have full column rank (see Theorems A.1, A.2 and A.3). Consequently, we
have

ker AT
LQCRV = ker QCRV and ker AT

V Q̄V −C = ker Q̄V −C .

Together with (1.23), we see that G1(·) is nonsingular if and only if QCRV = 0
and Q̄V −C = 0. But this is equivalent to the assertion due to Lemma 1.2,
Lemma 1.3, and the definition of these projectors.

Ad(iii) It remains to show that

Ḡ2(A
T
Ce, jL, t) = G1(A

T
Ce, jL, t) + B0(A

T
Ce, jL, t)P0Q1(A

T
Ce, jL, t)

is nonsingular, if P0 = I −Q0 and Q1(A
T
Ce, jL, t) is a projector onto the null

space of G1(A
T
Ce, jL, t). Regarding (1.23), (1.20), and

PCH−1
C (·) = H−1

C (·)PT
C ,
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it is not difficult to verify that

Q1(v, j, t) :=

(
QCRV 0 −H−1

C
(v,t)AV Q̄V −C

L−1(j,t)AT
LQCRV 0 0

0 0 Q̄V −C

)

is a projector onto kerG1(v, j, t). Using this projector, we obtain

B0(·)P0Q1(·) =

(
ALL−1(·)AT

LQCRV 0 −ARG(·)AT
RPCH−1

C
(·)AV Q̄V −C

0 0 −AT
LPCH−1

C
(·)AV Q̄V −C

0 0 −AT
V H−1

C
(·)AV Q̄V −C

)

and

Ḡ2(·) =
(

ACC(·)AT
C+ARG(·)AT

RQC+ALL−1(·)AT
LQCRV 0 AV −ARG(·)AT

RPCH−1

C
(·)AV Q̄V −C

−AT
LQC L(jL,t) −AT

LPCH−1

C
(·)AV Q̄V −C

AT
V QC 0 −AT

V H−1

C
(·)AV Q̄V −C

)

.

Let z =
(

ze
zL
zV

)

belong to the null space of Ḡ2(·). This yields to

0 =
(

QT
CRV 0 0

0 0 Q̄T
V −C

)

Ḡ2(·)z =
(

QT
CRV ALL−1(·)AT

LQCRV ze

Q̄T
V −CAT

V H−1

C
(·)AV Q̄V −CzV

)

.

Applying Lemma 1.4, we get

AT
LQCRV ze = 0 and AV Q̄V −CzV = 0,

since L−1(·) and H−1
C (·) are positive definite. Note that the inverse of a

positive definite matrix is also positive definite.

Recall that the matrices (AC , AR, AV , AL)T and AV have full column rank.
Consequently,

QCRV ze = 0 and Q̄V −CzV = 0.

Furthermore, 0 = Ḡ2(·)z = G1(·)z and, hence,

z = Q1(·)z = Q1(·)

(
QCRV ze

0
Q̄V −CzV

)

= 0,

that means, Ḡ2(·) is nonsingular.
2
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1.2.2 Unique Solvability

Solutions of DAEs have not only to follow the flow given by the inherent
regular differential equation but also to satisfy constraints. It is well-known,
for index-1 systems, that these constraints are given by the derivative-free
part of the DAE. For higher index systems, certain hidden constraints have
additionally to be satisfied. They arise through the differentiation of parts
of the DAE. Using our structural information about the circuit systems, we
may formulate all constraints as follows.

The derivative-free part of the system (1.17)-(1.19) is obviously described by

QT
C [ARg(AT

Re, t) + ALjL + AV jV + AIis(t)] = 0, (1.24)

AT
V e − vs(t) = 0. (1.25)

We want to call these constraints index-1 constraints in the following. From
the section before, we know that a higher index (= 2) is caused by CV -loops
and LI-cutsets. Correspondingly, the hidden constraints are caused by the
differentiations of the KVL equations of CV -loops and the KCL equations
of LI-cutsets. Therefore, we need an additional smoothness assumption.

(A4) Let the charges qC(v, t) of capacitors of CV -loops and the fluxes φL(jL, t)
of inductors of LI-cutsets be twice continously differentiable. Further-
more, the input signals is(t) and vs(t) are assumed to be continuously
differentiable.

Then, the hidden constraints my be described by (see [ET00])

Q̄T
V −CAT

V H−1
1 (·)PT

C [AC
∂qC

∂t
(AT

Ce, t) + ARg(AT
Re, t) + ALjL

+ AV jV + AIi(·)] + Q̄T
V −Cv′

s(t) = 0,(1.26)

QT
CRV [ALL−1(·)(AT

Le −
∂φL

∂t
(jL, t)) + AIi

′
s(t)] = 0.(1.27)

This becomes clear by the proof of the following theorem.

Theorem 1.7 Let the assumptions (A1)-(A4) be satisfied. Then, the DAE
(1.17)-(1.19), completed by an initial value satisfying all constraints (1.24)-
(1.27), is locally uniquely solvable.

Remark 1.8 The theorem shows, additionally, that an initial value is con-
sistent for the system (1.17)-(1.19) if it satisfies the constraints (1.24)-(1.27).
Recall that an initial value is called consistent, if it exists locally a solution
through this initial point.
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Remark 1.9 For the computation of consistent initial values, one only needs
to calculate a DC-operation point1 in order to fulfill the index-1 constraints,
and solve, furthermore, a linear system to satisfy the hidden constraints (see
[Est02, Est00]). More precisely, if xDC is a DC-operation point, then the
value

x0 :=






PCRV eDC + QCRV ê

jDC
L

P̄V −CjDC
V + Q̄V −C ĵV






is consistent if QCRV ê is the unique solution of the linear system

QT
CRV ALL−1(jDC

L , t0)A
T
LQCRV ê =

QT
CRV

[

ALL−1(jDC
L , t0)

(
∂φL(jDC

L , t0)

∂t
− PCRV eDC

)

− AIi
′
s(t0)

]

and Q̄V −C ĵV is the unique solution of

Q̄T
V −CAT

V H−1
C (AT

CeDC , t0)AV Q̄V −C ĵV =

Q̄T
V −C

[

AT
V H−1

C (AT
CeDC , t0)P

T
C

(

AC
∂qC(AT

CeDC , t0)

∂t

+ ARg(AT
ReDC , t0) + ALjDC

L + AIis(t0)
)

− v′
s(t0)

]

.

Indeed, a few technical computations show that x0 constructed in such a way
fulfills all constraints (1.24)-(1.27).

Remark 1.10 Applying well-known solvability results for index-1 DAEs
(see e.g. [GM86]) we obtain unique solvability for circuit systems which con-
tain neither LI-cutsets nor CV -loops. However, most solvability results for
index-2 systems are not applicable since the considered DAE does not have
a Hessenberg structure.

Proof: First, we rewrite the system (1.17)-(1.19) as the extended system

AC
dq

dt
+ ARg(AT

Re, t) + ALjL + AV jV = − AIis(t), (1.28)

dφ

dt
− AT

Le = 0, (1.29)

AT
V e = vs(t), (1.30)

q = qC(AT
Ce, t), (1.31)

φ = φL(jL, t). (1.32)

1A DC operation point is a point satisfying the stationary network equations.
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Obviously, (e, jL, jV ) is a solution of the system (1.17)-(1.19) if and only if
(q, φ, e, jL, jV ) with

q = qC(AT
Ce, t), φ = φL(jL, t)

is a solution of the extended system (1.28)-(1.32). The advantage of the
extended formulation is its special structure. It has a constant leading co-
efficient matrix and the higher index variables appear only linearly. More
precisely, we may formulate (1.28)-(1.32) as [Est00]

Āx′ + b̄(Ux, t) + B̄Tx = 0. (1.33)

for x = (q, φ, e, jL, jV ), where T and U are complementary projectors

T =





0 0 0 0 0
0 0 0 0 0
0 0 QCRV 0 0
0 0 0 0 0
0 0 0 0 Q̄V −C



 , U =





I 0 0 0 0
0 I 0 0 0
0 0 PCRV 0 0
0 0 0 I 0
0 0 0 0 P̄V −C



 ,

and the matrices Ā and B are given by

Ā =





AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



 , B̄T =





0 0 0 0 AV Q̄V −C

0 0 − AT
LQCRV 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



 .

Finally, we have

b̄(PCRV e, jL, P̄V −CjV , q, φ) =









ARg(AT
RPCRV e,t)+ALjL+AV P̄V −CjV +AI is(t)

−AT
LPCRV e

AT
V PCRV e−vs(t)

q−qC(AT
CPCRV e,t)

φ−φL(jL,t)









.

Note, that the projector T represents a projector onto the space of the index-2
components N ∩ S(·) with

N = ker Ā, S(·) = {z : b̄′x(·)Uz ∈ im Ā}.

The Theorem 2.4.6 of [Est00] implies that x is a solution of (1.33) if and only
if the initial value x0 satisfies the constraints given by the derivative-free part,
i.e.

W0b̄(Ux0, t0) = 0, (1.34)
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for

W0 =





QT
CRV 0 0 0 0
0 0 0 0 0
0 0 Q̄T

V −C 0 0

0 0 0 I 0
0 0 0 0 I



 ,

and x is a solution of the index-1 system

(
Ā + W1(Ux, t)(KW1

W0b̄)
′
x(Ux, t)

)
x′(t) + b̄(Ux, t)

+ B̄Tx − Ŵ1b̄(Ux, t) + W1(Ux, t)(KW1
W0b̄)

′
t(Ux, t) = 0 (1.35)

for

W1(·) =






QT
CRV 0 0 0 QT

CRV ALL−1(·)
0 0 0 0 0

0 0 Q̄T
V −C Q̄T

V −CAT
V H−1

C
(·)AC 0

0 0 0 0 0
0 0 0 0 0






and

KW1
W0 =






QT
CRV 0 0 0 0
0 0 0 0 0
0 0 Q̄T

V −C 0 0

0 0 0 I 0
0 0 0 0 I




 , Ŵ1 =






QT
CRV 0 0 0 0
0 0 0 0 0
0 0 Q̄T

V −C 0 0

0 0 0 0 0
0 0 0 0 0




 .

Note, that W0 is a projector along im Ā and W1 is a projector along

im [Ā + (b̄′x(Ux, t) + BT )Q̄0]

for any projector Q̄0 onto ker Ā. The condition (1.34) means exactly that x0

fulfills the constraints (1.24)-(1.25). Consequently, it remains to show that
the index-1 system (1.35) has a unique solution.

For brevity, we rewrite (1.35) as

¯̄A(x, t)x′(t) + ¯̄b(x, t) = 0. (1.36)

The leading coefficient matrix ¯̄A(x, t) has a constant nullspace

ker ¯̄A(x, t) = ker
(
Ā + W1(Ux, t)(KW1

W0b̄)
′
x(Ux, t)

)
= ker Ā

since Ā is constant. Furthermore, ¯̄A(x, t) and ¯̄b(x, t) are continuously differ-
entiable with respect to x and continuous with respect to t. Consequently
(cf. [GM86]), the index-1 system (1.36) has a unique solution if and only if
x0 is consistent for the system (1.36), i.e.

¯̄b(x0, t0) ∈ im ¯̄A(x0, t0).
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Regarding all constraints (1.24)-(1.27), we obtain

¯̄b(x0, t0) =








PT
C ARG(AT

Re0,t0)+PT
C ALjL0+PT

C AV jV 0+PT
C AI is(t0)−QCRV TALL−1(·)AT

Le0

−AT
Le0

Q̄T
V −CAT

V H−1

C
(·)PT

C (ARg(AT
Re0,t0)+ALjL0+AV jV 0+AI is(t0))

0

0








= ¯̄A(x0, t0)y

if we choose y such that

y1 = −AT
Le0, ACy2 = PT

C (ARg(AT
Re0, t0) + ALjL0 + AV jV 0 + AIis(t0)),

y3 = 0, y4 = 0, y5 = 0.

Consequently, the system (1.36) and, finally, the system (1.17)-(1.19) have a
unique solution. 2

Remark 1.11 The proof has shown that QCRV e and Q̄V −CjV represent the
index-2 variables of the system. They are of importance when solving the
network equation systems (1.17)-(1.19) numerically since they are caused
by instability effects. We will present the details for that in Section 1.2.4.
Network topologically spoken, QCRV e and Q̄V −CjV represent the voltages of
LI-cutsets and currents of CV -loops, respectively.

1.2.3 Perturbation Analysis

Our aim is to derive some statements about the feasibility, convergence and
stability of numerical methods applied to the circuit equation systems. All
problems are closely related to the question about the solution behavior of
slightly perturbed network equations. The following theorem gives detailed
information about the influence of small perturbations.

Theorem 1.12 Let the assumptions of Theorem (A1)-(A4) be satisfied and
a solution x∗ := (e∗, jL∗, jV ∗) of (1.17)-(1.19) be given.

(i) Then, the perturbed initial value problem

AC
dqC(AT

Ce, t)

dt
+ ARr(AT

Re) + ALjL + AV jV + AIi(·) = δe, (1.37)

dφL(jL, t)

dt
− AT

Le = δL, (1.38)

AT
V e − v = δV , (1.39)
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combined with a consistent initial value x0 = (e0, jL0, jV 0) is locally
uniquely solvable if the initial error |x0 − x∗(t0)| and the perturbations
‖δ‖∞ (for δ := (δe, δL, δV )), ‖QT

CRV δ′e‖∞, ‖Q̄T
V −Cδ′V ‖∞ are sufficiently

small.

(ii) For the solution x = (e, jL, jV ) of the perturbed system (1.37)-(1.39),
the inequality

‖x−x∗‖∞ ≤ c(‖δ‖∞+‖QT
CRV δ′e‖∞+‖Q̄T

V −Cδ′V ‖∞+|x0−x∗(t0)|) (1.40)

is true for a constant c > 0.

Remark 1.13 The theorem implies immediately that the perturbation in-
dex [HW91] of the network equation systems (1.17)-(1.19) does not exceed 2
and coincides with the differential as well as the tractability index.

Proof: We want to apply Theorem 3.12 of [Tis96] to the extended system

AC
dq

dt
+ ARg(AT

Re) + ALjL + AV jV + AIi(·) = δe,

dφ

dt
− AT

Le = δL,

AT
V e − v = δV ,

q − qC(AT
Ce, t) = 0,

φ − φL(jL, t) = 0.

The Theorem 3.12 of [Tis96] reads as follows. Let x∗ ∈ {x ∈ C([t0, T ], Rm) :
Px ∈ C1([t0, T ], Rm)} be a solution of the index-2 tractable DAE

A(t)ẋ(t) + g(x(t), t) = 0.

Further, let UQ0x∗ ∈ C1([t0, T ], Rm) be fulfilled and let Q1 as well as UQ0G
−1
2 g′

x

be of class C1. If the structural condition

Q1(t)(I + ĝ′
x(x, t) − ĝ′

x(x∗(t), t))
−1T (t)Q0 = 0

with

ĝ(x, t) := [U(t)Q + P0Q1(t)]G
−1
2 (t)g(x, t)

is satisfied for all (x, t) with |x−x∗(t)| ≤ ̺, the perturbation q is continuous,
and its part

q̂(t) := [U(t)Q0 + P0Q1(t)]G
−1
2 (t)q(t)
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is of class C1, then the perturbed initial value problem

A(t)ẋ(t) + g(x(t), t) = q(t)

P0P1(s)x(s) = us ∈ im P0P1(s), |us − P0P1(s)x∗(s)| ≤ τ

‖q‖∞ + ‖q̂′‖∞ ≤ σ

is locally uniquely solvable for sufficiently small τ and σ. Moreover, the
inequality

‖x − x∗‖∞ + ‖(P0P1(x − x∗))
′‖∞ ≤

const (‖q‖∞ + ‖q̂′‖∞ + |us − P0P1(s)x∗(s)|)

is satisfied. For the definition of Q0, P0, Q1, P1 and G2 see Appendix A.3
and use G0 := A.

Regarding Remark 3 on page 51 in [Tis96], the assumptions of the theorem
are satisfied since the space N ∩ S(·) of index-2 components is constant (see
proof of Theorem 1.7). Considering that Tx appears only linearly in (1.33),
it turns out that besides the perturbation δ itself the derivative of the part
P0Q1(·)G

−1
2 (·)δ has an influence on the solution of the perturbed system. For

the system (1.33) we get

P0 =





P̄C 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





Using the nonsingular matrix functions [ET00]

HC(AT
Ce, t) = ACC(AT

Ce, t)AT
C + QT

CQC

H̄C = ACAT
C + QT

CQC

HL(jL, t) = AT
CRV ALL−1(jL, t)AT

LQCRV + PT
CRV PCRV

HV −C(AT
Ce, t) = Q̄T

V −CAT
V H−1

C (AT
Ce, t)AV Q̄V −C + P̄T

V −CP̄V −C

and

P̂C = P̄CAT
CH̄−1

C (·)AV Q̄V −CH−1
V −C(·)Q̄T

V −CAT
V H−1

C (·)AC

P̂L = AT
LQCRV H−1

L (·)QT
CRV ALL−1(·),

we obtain

Q1(·) =






P̂C 0 0 0 0

0 P̂L 0 0 0

0 QCRV H−1

L
(·)QT

CRV ALL−1(·) 0 0 0
0 0 0 0 0

− Q̄V −CH−1

V −C
Q̄T

V −CAT
V H−1

C
(·)AC 0 0 0 0




 .
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The nonsingular matrix G2 is given by

G2(·) =







AC 0 ARG(·)AT
R AL AV

0 I −AT
L 0 0

0 0 AT
V 0 0

P̂C+Q̄C 0 −C(·)AT
C 0 0

0 P̂L 0 −L(·) 0







,

which leads to

PQ1(·)G
−1
2 (·) =





0 0 P̄CAT
CH̄−1

C
(·)AV Q̄V −CH−1

V −C
(·)Q̄T

V −C P̂C 0

AT
LQCRV H−1

L
(·)QT

CRV 0 0 0 P̂L

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





and the theorem is proven. 2

1.2.4 Feasibility, Convergence and (In)stability of the
BDF Methods

Let again the assumptions (A1)-(A4) be fulfilled. We consider a partition π
of a compact interval [t0, T ] with the following properties.

π : t0 < t1 < · · · < T, (1.41)

hmin ≤ hn := tn − tn−1 ≤ hmax, hmin > 0, n ≥ 1,

κ1 ≤
hn−1

hn

≤ κ2, n ≥ 1,

where κ1 and κ2 are suitable constants such that the BDF methods are stable
for explicit ordinary differential equations (cf. [Gri83, GM86]).

Then, the BDF method applied to network equation systems (1.17)-(1.19)
may be formulated as

AC
1

hn

k∑

i=0

αniqC(AT
Cen, tn) + ARg(AT

Ren, tn)

+ ALjnL + AV jnV + AIis(tn) = δne, (1.42)

1

hn

k∑

i=0

αniφL(jnL, tn) − AT
Len = δnL, (1.43)

AT
V en − vs(tn) = δnV . (1.44)

Here, δn describes the perturbations on the n-th step for n ≥ k, which is
caused by numerical computations including errors arising from solving the
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nonlinear equations (e.g. with a Newton-like method). Obviously, the system
(1.42)-(1.44) is equivalent to

AC
1

hn

k∑

i=0

αniqn + ARg(AT
Ren, tn) + ALjnL

+ AV jnV + AIis(tn) = δne, (1.45)

1

hn

k∑

i=0

αniφn − AT
Len = δnL, (1.46)

AT
V en − vs(tn) = δnV , (1.47)

qn − qC(AT
Cen, tn) = 0, (1.48)

φn − φL(jnL, tn) = 0 (1.49)

if
qn = qC(AT

Cen, tn) and φn = φL(jnL, tn).

But the system (1.45)-(1.49) represents nothing else than the BDF method
applied to the extended system (1.28)-(1.32). Since the equations (1.48) and
(1.49) require only function evaluations, we don’t need to consider perturba-
tions in these equations. We denote the exact solution by x∗ and the local
truncation error (lte) by τn. Then, we may formulate the following feasibility
and stability result.

Theorem 1.14 Let the assumptions (A1)-(A4) be fulfilled. Supposed there
is a constant c > 0 such that the starting values satisfy the relation

‖xn − x∗(tn)‖ ≤ chn, n < k, (1.50)

then it holds that:

(i) There are constants c1 > 0 and r > 0 such that the BDF with

‖δn‖ ≤ c1 for n ≥ k and
‖QT

CRV δne‖ + ‖Q̄T

V −CδnV ‖

hn

≤ c1 for n ≥ 0,

is feasible for all partitions (1.41) with sufficiently small stepsizes, i.e.,
the nonlinear equations are solvable with xn ∈ B(x∗(tn), r).

(ii) Supposed there is a constant c2 > 0 with

‖δn‖ ≤ c2hn for n ≥ k,

‖QT

CRV δne‖ + ‖Q̄T

V −CδnV ‖ ≤ c2h
2
n for n ≥ 0,
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we find a constant c3 > 0 such that the following error estimation holds:

max
n≥k

‖x∗(tn) − xn‖ ≤ c3

[

max
n<k

‖x∗(tn) − xn‖

+ max
n≥k

‖δn − τn‖ + max
n≥0

‖QT

CRV δne‖ + ‖Q̄T

V −CδnV ‖

hn

]

.

Proof: Since N ∩S(·) is constant and the errors QT
CRV δe as well as Q̄T

V −CδV

reflect the errors in those constraints that have to be differentiated, we may
apply Theorem 4.2 of [Tis96]. Regarding the expressions for Q1(·) and G2(·)
in the proof of Theorem 1.12, we obtain the assertion immediately. 2

Remark 1.15 Theorem 1.14 shows that the BDF methods applied to net-
work equation systems are stable if the circuit does not contain L-I cutsets
and C-V loops. In general, they are weekly unstable.

Corollary 1.16 Suppose that the errors in the initial values are O(hk) and
the errors in the Newton iteration satisfy O(hk) for all equations as well as
O(hk+1) for the equations

QT

CRV (ALjL + AIi(t)) = 0, (1.51)

Q̄T

V −C(AT

V e − v(t)) = 0. (1.52)

Then, the k-step BDF method applied to network equation systems (1.17)-
(1.19) is convergent and globally accurate of O(hk).

This is a simple conclusion from Theorem 1.14 if one regards that the errors
QT

CRV δe and Q̄T
V −CδV correspond to the errors solving the equations (1.51)

and (1.52), respectively.

Remark 1.17 Since, the equations (1.51) and (1.52) are linear, they are
always solved quite accurately by Newton’s method. This explains that the
BDF method often works well in practice even for systems of index 2.

In the next chapter, we deal with modeling of semiconductor devices. Par-
ticular care is taken to the boundary conditions since they are important for
the coupling of network and device equations.
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Chapter 2

Semiconductor Device
Modeling

Considering the literature, one finds an enormous amount of books and pa-
pers dealing with semiconductor device modeling. We refer here only to
[Sel84, GG86, GG89, MRS90, Wac91]. These contributions provide a compre-
hensive overview of the topic and focus onto the mathematical background.

Semiconductor device models describe the electron transport in the the semi-
conductor. In consideration of the degree of simplification one distinguishes
between quantum level transport and semi-classical transport completed with
balance equations. The first one yields the Schrödinger equation and the sec-
ond one leads to the Boltzmann equation. Simplifying the Boltzmann equa-
tion further by the method of moments [Sch90], one obtains the so called
energy balance equations (considering four moments) or the drift diffusion
equations (considering only two moments).

From the practical point of view, the interest in semiconductor device mod-
eling is to replace as much laboratory testing as possible by numerical simu-
lation in order to minimize the costs. Thus, mathematical models requiring
expensive simulations are not preferable. For most semiconductor technolo-
gies, the drift diffusion equations seem to represent a reasonable compromise
between computational efficiency and an accurate description of the under-
lying physics.

However with the increased miniaturization of semiconductor devices, one
comes closer and closer to the limits of validity of the drift diffusion equations.
The reason for this is, on one hand, that in ever smaller devices the free
carriers can not longer be modeled as a continuum. On the other hand,
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the drift diffusion equations are derived through a limiting process where
the mean free path of a particle tends to zero. Through miniaturization
this mean free path becomes larger and larger in comparison to the size of
the device. In addition, quantum mechanical effects play a more and more
important role in novel device structures.

Nevertheless, the drift diffusion equations remain an important tool since
microscopic effects not described by them appear only locally. Thus, the most
likely approach will be to use more sophisticated models only locally, and to
use the drift diffusion equations in the parts of the device where they are
sufficient to describe the physics (usually in the bulk of the semiconductor).

Therefore, we concentrate in Section 2.1 on the drift diffusion equations con-
sidered as an important model description for the device part in coupled
network and device simulation.

Regarding the coupling between network and device simulation, the type
of contacts between the semiconductor and the network has to be taken
into account. Usually, they consist of layers of metal, insulator, or other
semiconductors. This implies that the boundary conditions for the transport
equations in the bulk of the semiconductor have to be formulated in such a
way that the physical processes at the interfaces are described appropriately.
We will discuss them in Section 2.2, but for a more detailed description we
refer to [Sch90, Sze81].

Finally, we present the geometry and doping concentration for two typical
examples of semiconductor devices in Section 2.3.

2.1 The Drift Diffusion Model for Semicon-

ductor Devices

In this part we describe the drift diffusion model for semiconductor devices
including a brief derivation. For a more detailed discussion see e.g. [Sel84,
Sze81].

First, we introduce Ω to be a nonempty, open and bounded domain with a
regular boundary Γ = ∂Ω in R

N with 1 ≤ N ≤ 3 such that Ω̄ describes the
range of the semiconductor inclusive its contacts.
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2.1.1 Current-Density Equations

The conductivity of semiconductors is strongly connected to the number of its
free charge carriers. As charge carriers, we have to consider not only electrons
but also holes. If a semiconductor atom lacks one of its valence electrons,
then it may attract an electron from another atom. This can be considered
as a movement of a hole from one atom to another one. Correspondingly,
holes are considered as positive charge carriers, whereas electrons are negative
charge carriers.

As the name of the drift-diffusion model already expresses, the current in
a semiconductor is mainly driven by drift and diffusion. The drift current
is caused by an electric field E that is present due to the existence of free
charge carriers. It is given by

qµnnE and qµppE

for electrons and holes, respectively. Here, q represents the elementary
charge. The variables n and p denote the concentrations of electrons and
holes, respectively. The electron and hole mobilities, µn and µp are bounded,
strictly positive functions depending on semiconductor material, doping, tem-
perature and the electric field E.

The diffusion current is caused by a movement of charge carriers that aims
to compensate inhomogeneous concentrations. The diffusion current is pro-
portional to the gradient of the charge carrier concentration. More precisely,
we have

qDngrad n and − qDpgrad p.

Dn and Dp are called carrier diffusivities. In general, they are bounded,
strictly positive functions depending on semiconductor material, doping and
temperature.

In thermal equilibrium, the mobilities µp, µn and the diffusivities Dn, Dp

related by

Dn =
kT

q
µn and Dp =

kT

q
µp

for non-degenerate semiconductors. Here, T denotes the temperature and k
is the Boltzmann constant. The last equations are called Einstein relations.

Since the electric field E is related to the electrostatic potential V by

E = − grad V, (2.1)
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we obtain for the current densities of electrons and holes

Jn = − qµn n grad V + qDn grad n, (2.2)

Jp = − qµp p grad V − qDp grad p. (2.3)

Note that one has to consider an additional current, if a magnetic field is
applied to the semiconductor. However, this is usually negligible for devices
included in integrated circuits.

2.1.2 Continuity Equations

The continuity equations describe particle conservation and are given by

− q∂tn + div Jn = qR, (2.4)

q∂tp + div Jp = − qR. (2.5)

Here, R describes the generation/recombination rate. There are several phys-
ical mechanisms causing generation and recombination of electrons and holes.
The main ones are phonon transitions, photon transitions, Auger (three par-
ticle) transitions and impact ionization. Corresponding to the different mech-
anisms, different models have been developed in order to describe the gen-
eration and recombination process. The mostly used models are Shockley-
Read-Hall recombination

RRSH =
np − n2

i

τp(n + ni) + τn(p + ni)
,

Optic recombination
ROPT = COPT(np − n2

i ),

Auger recombination

RAU = (CAU
n n + CAU

p p)(np − n2
i ),

and impact ionization

RII = − αn
‖Jn‖

q
− αp

‖Jp‖

q
.

Here, ni represents the intrinsic charge density. If the semiconductor is in
equilibrium, then np is constant and ni is defined by

n2
i = np.
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The factors τn and τp reflect the average lifetimes of electrons and holes,
respectively. The constants COPT, CAU

n and CAU
p have to be determined

by experiments. αn and αp are the ionization rates for electrons and holes,
respectively. They may be approximated by

αn = α∞
n · exp

(

−

(
Ecrit

n

E

)βn

)

,

αp = α∞
p · exp

(

−

(
Ecrit

p

E

)βp
)

.

with constants αn, αp, βn, βp, Ecrit
n and Ecrit

p .

If all effects are present, then one simply adds up all rates such that

R = RRSH + ROPT + RAU + RII.

2.1.3 Poisson Equation

The transport equations (2.2)-(2.5) constitute equations for the concentra-
tions of electrons and holes (n and p) as well as the densities of electron
and hole current (Jn and Jp). Additionally, the existence of these charge
carriers causes an electrical field. In order to obtain a self-consistent formu-
lation, the transport equations have to be completed by an equation that
determines this electrical field. This is given by the third Maxwell equation,
which relates the electric field to the electric charges. It reads

div D = ̺ (2.6)

where D is the electric displacement and ̺ is the charge density. The electric
charge is the source of the electric displacement. The electric field E is related
to D by

D = εE (2.7)

with the permittivity constant ε of the medium if the medium is homoge-
neous. Inserting (2.7) and (2.1) into (2.6), we get

div (−ε grad V ) = ̺.

In a semiconductor, the local charge is composed of electrons, holes, donor
atoms and acceptor atoms. Thus, the charge ̺ is given by

̺ = q(p − n + N+
D − N−

A ),
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where q is the elementary charge, N+
D the donor concentration and N−

A the
acceptor concentration. Finally, we arrive at the Poisson equation

div ( − ε grad V ) = q(p − n + N+
D − N−

A ). (2.8)

The impurity atoms are assumed to be fixed in the semiconductor, i.e. N+
D

and N−
A are independent of time and, thus, given as functions of the position.

This assumption is justified if the impurity concentrations are sufficiently
small. But it holds no longer true in case of high power transistors and high
power diodes.

2.1.4 Complete Drift-Diffusion Model

Summarizing the model equations (2.2), (2.3), (2.4), (2.5) and (2.8), we get
the drift-diffusion model equations

div (εgrad V ) = q(n − p − N), (2.9)

− ∂tn + 1
q
div Jn = R, (2.10)

∂tp + 1
q
div Jp = − R, (2.11)

Jn = q(Dngrad n − µnngrad V ), (2.12)

Jp = q( − Dpgrad p − µppgrad V ). (2.13)

The unknowns are the electrostatic potential V , the electron and hole con-
centrations, n and p, as well as the current densities of electrons and holes,
Jn and Jp. Note, that Jn and Jp are given by (2.12)-(2.13). Thus, inserting
(2.12) and (2.13) into (2.10) and (2.11) yields to a system in the primary
variables V , n and p only.

The doping concentration N := N+
D − N−

A represents a given function de-
pending only on the position variable x. The sizes ε and q are constants.
The mobilities µn and µp as well as the diffusivities Dn and Dp are bounded,
strictly positive functions. They may depend on position x (due to depen-
dency on doping) and on the gradient of the potential gradV (due to depen-
dency on the electric field E. Finally, the generation/recombination rate R
may depend on n, p, Jn, Jp and grad V corresponding to the applied model.

The system (2.9)-(2.13) represents a system of five coupled partial differential
equations. The Poisson equation (2.9) is of elliptic type. Regarding the
current density equations (2.12) and (2.13), the continuity equations (2.10)
and (2.11) are of parabolic type.



2.2 The Boundary Conditions 39

Note that we assume a constant temperature. It is justified for applications
with low performance devices. In case of high performance devices, one has
to consider the temperature T as a variable. The drift diffusion equations
have to be completed by an energy balance equation (see e.g. [Wac95, Jün01,
AGH02]). It is a future task to combine such energy models with the network
equations.

2.2 The Boundary Conditions

Semiconductors have essentially three different types of adjoining materials.
The contacts between the network and the semiconductor are usually layers
of metal. The second kind of bounding materials are insulators (e.g. oxide).
Finally, they may be bounded by other semiconductors. Such semiconductor-
semiconductor interfaces are called heterojunction. Here, we are interested
in devices with one semi-conducting material only and we do not consider
heterojunction.

The following sections are devoted to a brief explanation of the boundary
conditions connected with different types of interfaces. For a more detailed
description, we recommend the books [Sze81, Sel84, Sch90].

2.2.1 Metal-Semiconductor Contacts

Many semiconductor devices have low resistance or rectifying contacts. The
corresponding models are called Ohmic and Schottky contacts, respectively.
They have been established in many device simulation programs and we
want to consider such contacts here. Note that, in [Sch90], a new model
was presented for non-ideal contacts including tunneling effects (regarded in
Ohmic contact models) as well as thermionic emissions (regarded in Schottky
contact models) and generalizing both types of metal contact models. This
results, in general, in mixed boundary conditions which are coupled in a
highly nonlinear manner.

Ohmic Contacts

Ohmic contacts are characterized by a high doping of the semiconductor.
This implies a large band bending and a very thin barrier at the metal-
semiconductor interface. In this case, tunneling of electrons is the dominant
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transport mechanism. It leads to high current densities at low voltage drops
and, consequently, to a low resistance of the contact.

Since tunneling is not included in the drift diffusion equations describing
electron transport in the semiconductor volume, one should place the actual
boundary for the simulation domain at the end of the tunneling region. At
high doping concentrations, the tunneling length comprises the total deple-
tion region, and the boundary is placed at the depletion layer edge. Conse-
quently, we have charge neutrality at the actual boundary that means

n − p − N = 0.

Furthermore, the electrostatic potential at the boundary is given by

V = Vap + Vbi, (2.14)

where Vap is the applied voltage and Vbi is the so called built-in potential of
the semiconductor. The built-in potential depends on semiconductor mate-
rial, doping concentration, and temperature.

For very high doping (ideal ohmic contact), the resistance tends to zero which
implies [Sch90]

np = n2
i

with the intrinsic concentration ni depending on material and temperature.
This leads to Dirichlet boundary conditions for the electron and hole con-
centrations

n =
1

2
(
√

N2 + 4n2
i + N), (2.15)

p =
1

2
(
√

N2 + 4n2
i − N). (2.16)

Schottky Contacts

Schottky contacts have a rectifying behavior. This is caused by low semicon-
ductor doping which leads to a slow weak band bending and a thick barrier
at the interface. Therefore, thermionic emission of electrons is the dominant
transport mechanism here.

In this case, the carriers crossing the interface have to overcome the barrier
height φB arising from the band bending. This implies

V = Vap + Vbi + VB, (2.17)
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where Vap, Vbi are as in (2.14) and

qVB = φB.

In zero order approximation, the barrier height φB is a constant, dependent
on the combination of the materials.

Denoting ν as the unit outer normal vector on the contact, the boundary
condition for the continuity equations read as

Jn · ν = − qvn(n − n0), (2.18)

Jp · ν = qvp(p − p0), (2.19)

where vn and vp are the recombination velocities depending on material and
temperature. The quantities n0 and p0 are the quasi-equilibrium concentra-
tions. They depend on barrier height and temperature.

Note that we have Dirichlet boundary conditions for the potential V and,
consequently, mixed boundary conditions for the concentrations n and p.

2.2.2 Semiconductor-Insulator Interface

As a consequence of Maxwell’s third law (2.6), we obtain as boundary con-
dition for the Poisson equation

ε
∂V

∂ν
− εi

∂Vi

∂ν
= σ,

where ε and εi are the dielectric constants of the semiconductor and the
insulator, respectively, and σ is the surface charge at the interface.

Regarding the existence of surface recombination, we obtain

Jn · ν = − qRsurf and Jp · ν = qRsurf (2.20)

with

Rsurf =
np − n2

i
1
sp

(n + n1) + 1
sn

(p + p1)

for the continuity equations. Here, n and p denote the electron and hole con-
centration at the contact, respectively. The recombination velocities sn and
sp as well as the concentrations n1, p1, and the intrinsic carrier concentration
ni are parameters depending on the material of the semiconductor and the
effective doping. By ν we denote the outer unit normal vector. If surface
recombination can be neglected, then we arrive at

Jn · ν = 0, Jp · ν = 0. (2.21)
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2.3 Device Examples

This section is devoted to an illustration of geometry and doping for typical
semiconductors. We start with a p-n diode model which belongs to the basic
semiconductor devices. The second example describes a MOSFET (Metal
Oxide Semiconductor Field Effect Transistor). It is one the most important
semiconductor devices in chip industry since it can be used as a switch that
needs almost no power.

2.3.1 Diode

A diode is a semiconductor element that has rectifying properties. The cur-
rent flows mainly in one direction. In Figure 2.1, an example of a p-n diode is
depicted. Here, Ω+/Ω− represent the positive(p)/negative(n) doping regions
of the diode. Γ1 and Γ2 constitute metal contacts connecting the semicon-
ductor with the network. Depending on the doping, they are of Ohmic or
Schottky type. The rest of the boundary of the diode can be considered as
electrically neutral.

Γ
Γ2

1

Ω
Ω

+

−

Figure 2.1: Two-dimensional cross section of a p-n diode

If the applied potential at Γ1 is lower than the potential applied to Γ2, then
electrons from Ω− and holes from Ω+ accumulate at the boundary between
Ω− and Ω+. Consequently, negative charge carriers from the n-region move
to the p-region, positive charge carriers from the p-region move to the n-
region and a significant current flows through the diode. It usually increases
exponentially with an increasing voltage difference. However, if the applied
potential at Γ1 is lower than the potential applied to Γ2, then the depletion
zone at the Ω−/Ω+ boundary is enlarging. Only a few free charge carriers
are situated there and the current flowing through the diode is almost zero.
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2.3.2 MOSFET

A MOSFET (Metal Oxide Semiconductor Field Effect Transistor) is used as a
switch for digital circuits. Figure 2.2 shows a two-dimensional cross section of
an n-channel MOSFET. Ω−

i /Ω+ (i=1,2) represent again the negative/positive
doping regions. The n-regions Ω−

i are usually highly doped. The p-region Ω+

has a lower doping concentration. Source and drain are always Ohmic metal
contacts. Depending on technology, the bulk contact may be an insulator
or a Schottky metal contact. The gate interface accomplished by the oxide
layer constitutes a metal-insulator-semiconductor contact. The rest of the
boundary can be considered as insulating boundaries.

drain

bulk

gate

source
oxide

+

ΩΩ 1
−

2
−

Ω

Figure 2.2: Two-dimensional cross section of a MOSFET

Application of a sufficiently high voltage at the gate contact creates a large
electrical field in a channel normal to the oxide layer surface (see Figure 2.3).
Consequently, electrons from Ω+ are accumulated in a thin channel close to
the oxide layer. Although Ω+ has a positive doping, the electron density
dominates the hole density in this channel. Therefore, it is called inversion
layer. Applying a voltage between source and drain makes the charge carriers
moving towards the drain along the channel and parallel to the oxide layer.
Finally, a current moves from source to drain. Thus, the source-drain current
can be switched on and off by applying different voltages to the gate.
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source drain

gate

−
1

Ω+

+ + + ++

Ω

oxide

−−−−−
−
2Ω

Figure 2.3: MOSFET channel for charge carrier transport if a high potential
is applied to gate.

The next chapter is devoted to the coupling of the network and device model
equations. On the one hand, the boundary conditions of the semiconductor
equations depend on the node potentials of the network. On the other hand,
the network currents flowing through a semiconductor depend on the current
densities for holes and electrons as well as the gradient of the electrostatic
potential of the semiconductor.



Chapter 3

Coupling of the Network and
Device Model Equations

From the engineering point of view, the coupling of network and device sim-
ulation is not a new task (see e.g. [ELD82, MP92, LSK+96, Sch96, ESTZ96,
Rot00]).

In contrast, the mathematical analysis of coupled network and device model
equations represents a very young research field. First results have already
been obtained in [Grö87] and [GG89]. In [Grö87], a semiconductor connected
to a resistor has been considered. In [GG89], the connection of a semicon-
ductor with a simple circuit has been studied. Simple means here that the
currents entering the semiconductor may be expressed by a function of the
applied voltages. In both cases, the network is treated as a special boundary
condition for the semiconductor. This approach fails if more than one device
belongs to the network. This is, in particular, the case for integrated circuits.
However, as we will see later in this chapter, the approach may be extended
by a modification of the considered operator equation.

More recently, networks containing uniform lossy transmission lines have
been investigated in [Gün01b] and [Gün01a]. The resulting equation systems
represent also coupled systems of differential algebraic equations and partial
differential equations. In contrast to the case here, the PDEs are of hyperbolic
type.

To the authors knowledge, an existence analysis for integrated networks con-
taining semiconductor device models has only been developed in [ABGT02].
There, the stationary drift diffusion model for diodes has been considered.
Here, we are dealing for the first time with the instationary case.
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For brevity, we will consider a network that contains exactly one semicon-
ductor first. One can simply verify that the following arguments remain
true if one considers a network with several semiconductors. At the end
of Section 3.3, we will formulate the coupled system for networks with nS

semiconductors.

3.1 The Coupling Conditions

As we have seen in Chapter 1, the network equations for linear electric net-
works including capacitors, inductors, resistors, independent voltage and cur-
rent sources are described by

AC
dqC(AT

Ce, t)

dt
+ ARg(AT

Re, t) + ALjL + AV jV + AIis = 0, (3.1)

dφL(jL, t)

dt
− AT

Le = 0, (3.2)

AT
V e − vs = 0. (3.3)

The unknowns are the nodal potentials e, the currents of inductors jL and
the currents of voltage sources jV . The matrices AC , AL, AR, AI and AV are
constant and span the incidence matrix. Thus, they are constant and have
the entries −1, 0, and 1 only. Finally, is and vs are input functions of time
only. The small s shall indicate that the input functions describe wave forms
of sources.

Equation (3.1) represents the KCL for each node except the mass node.
Equation (3.2) and (3.3) describe the element characteristics of inductors
and voltage sources, respectively.

The task is now to include the semiconductor device that is described by
the drift-diffusion model. Consequently, the currents of the semiconductor
device have to be added to the KCL equation (3.1). We denote the vector
of all branch currents leaving the semiconductor device by ĵS. Let bS be
the number of terminals of the semiconductor. Again, n is chosen to be the
number of all nodes of the network. Furthermore, the mass node has number
n. Then, we introduce the matrix ÂS ∈ L(RbS , Rn−1) with the entries

âik :=

{

1 if the current jSk
enters node i,

0 else.
(3.4)

This way, the matrix ÂS describes the incidence of currents of the semi-
conductor device. However, it differs from the other incidence matrices AN
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(N corresponds to one of the basic network elements) by the fact that each
column contains only entries 1 but no −1. We arrive at the system

AC
dqC(AT

Ce, t)

dt
+ ARg(AT

R, t)e + ALjL + AV jV + ÂS ĵS + AIis = 0, (3.5)

dφL(jL, t)

dt
− AT

Le = 0, (3.6)

AT
V e − vs = 0. (3.7)

In Chapter 2 we have seen that the semiconductor equations are given by

div (εgrad V ) = q(n − p − N), (3.8)

− ∂tn + 1
q
div Jn = R(n, p, Jn, Jp), (3.9)

∂tp + 1
q
div Jp = − R(n, p, Jn, Jp), (3.10)

Jn = q(Dngrad n − µnngrad V ), (3.11)

Jp = q( − Dpgrad p − µppgrad V ). (3.12)

Here, the unknowns are the electrostatic potential V , the electron concen-
tration n, the hole concentration p, the electron current density Jn and the
hole current density Jp.

How are the device equations (3.8)-(3.12) connected with the network equa-
tions (3.5)-(3.7)? This depends on the kind of contacts. We have to dis-
tinguish between metal–semiconductor contacts and metal–insulator–semi-
conductor contacts. For example, a MOSFET (see Section 2.3.2) has usually
three metal–semiconductor contacts (source, drain, bulk) and one metal–
insulator–semiconductor contact (gate).

We consider metal–semiconductor contacts first. Let Γk be a metal–semi-
conductor contact. The index k shall indicate that this contact represents
terminal k of the semiconductor. Then, the current flowing through terminal
k is given by

ĵSk
=

∫

Γk

Jtot · ν dσ.

Jtot represents the total current density and ν is the outward unity normal
vector of Γk. In the semiconductor we meet three types of currents: the
current of electrons, the current of holes, and the displacement current caused
by the electrostatic potential. Consequently, the total current density is given
by

Jtot = Jn + Jp − ε ∂t grad V.
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This implies

ĵSk
=

∫

Γk

(Jn + Jp − ε ∂t grad V ) · ν dσ. (3.13)

Note that the displacement current disappears if one considers the stationary
case only. But it can not be neglected in the non-stationary case in order to
guarantee charge conservation. See Section 3.4 for more details about this.

The semiconductor current represents only one part of the coupling. The
other part is given by the boundary condition for the electrostatic potential
V . Regarding the results in Section 2.2, we find that

V (x, t) = Vap(t) + W (x) on Γk (3.14)

where

W (x) =

{

Vbi(x) for Ohmic contacts,

Vbi(x) + VB for Schottky contacts.

Here, Vap(t) is the applied potential at time t. It equals ej(t) if terminal k
(corresponding to Γk) enters node number j. Regarding equation (3.4), we
find that

Vap(t) =

{

0 if terminal k enters the mass node,

âT
k e(t) else

for âT
k := (â1k, ..., ân−1,k). Introducing the vector c(x) = (c1(x), ..., cbS

(x))
with the entries

ck(x) =

{

1 if x belongs to Γk,

0 else,

we may write equation (3.14) as

V (x, t) = c(x) · ÂT
Se(t) + W (x) on Γ. (3.15)

We turn to metal-insulator-semiconductor interfaces (see Figure 3.1). Let Γk

denote the boundary between the semiconductor and the insulator. Further-
more, we denote the boundary between the metal and the insulator by ΓMI.
Since the insulator is free of charge carriers, the particle current normal to
the boundary equals zero, that means

(Jn + Jp) · ν = 0

on Γk and on ΓMI. Consequently,

ĵSk
= −

∫

ΓMI

εik ∂t grad Vik · ν dσ,
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metal

l

h

semiconductor

ν

k
Γ

insulator
k

k

ΓMI

Figure 3.1: Metal-insulator-semiconductor interface

where Vik represents the electrostatic potential Vi in the insulator. Due to
the absence of charge carriers, we get

∆Vik = div grad Vik = 0. (3.16)

If the thickness hk of the insulator is sufficiently small with respect to the
length (in R

2) or diameter (in R
3) lk of the insulator, we may assume that

Vik varies in the direction of ν only. Consequently, we may solve the Poisson
equation in one dimension in the insulator. It yields

grad Vik(x + hkν, t) · ν = grad Vik(x, t) · ν

and
Vik(x + hkν, t) = Vik(x, t) + hkgrad Vik(x, t) · ν (3.17)

for all x ∈ Γk. We know from Section 2.2 that

εgrad V · ν − εikgrad Vik · ν = σk (3.18)

for all x ∈ Γk. Regarding that the surface charge σk on Γk depends only on
the material (i.e., not on time), we get

εik ∂t grad Vik(x + hkν, t) · ν = ε ∂t grad V (x, t) · ν

for all x ∈ Γk and, finally,

ĵSk
= −

∫

Γk

ε ∂t grad V · ν dσ. (3.19)

It remains to determine the boundary conditions for the potential V . Using
(3.17) and (3.18), we get

Vik(x, t) = Vik(x + hkν, t) −
hk

εik

(εgrad V (x, t) · ν − σk).
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At the metal contact, the potential is given by

Vik(x + hkν, t) = Vap(t) + Vbi(x)

for all x ∈ Γk. Here, Vbi denotes again the built-in potential of the semicon-
ductor which depends on the material, on doping and on temperature. The
applied potential reads again as

Vap(t) = c(x) · ÂT
Se(t). (3.20)

Using the continuity of the potential at Γk, that means

Vik(x, t) = V (x, t) on Γk,

we get

V (x, t) = Vap(t) + Vbi(x) −
hk

εik

(εgrad V (x, t) · ν − σk).

Equivalently, we have mixed boundary conditions

ε grad V (x, t) · ν + α(x)V (x, t) = α(x)Vap(t) + β(x)

with

α(x) :=
εik

hk

and β(x) := σk + αVbi ∀x ∈ Γk.

Regarding (3.20), we get

ε grad V (x, t) · ν + α(x)V (x, t) = α(x)c(x) · ÂT
Se(t) + β(x). (3.21)

Note that for short channel transistors, the thickness of the insulator is not
sufficiently small with respect to the length. In this case, one has solve the
Poisson equation in the insulator numerically. More precisely, we would have
to add equation (3.16) to the coupled system and to complete the model by
corresponding boundary conditions. This would be also necessary if particle
currents in the insulator can not be neglected (e.g. for MIS tunnel diodes).

Since we are more interested in the analysis of the device-network coupling,
we shall concentrate on the case where (3.19) and (3.21) are satisfied. We do
not expect fundamental differences for the case where the system is extended
by the Poisson equation for the insulator.
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3.2 Charge Conservation

As mentioned before, the presented device model is charge conserving. In
fact, we have

div (Jn + Jp) = q(∂tn − ∂tp)

if we add the continuity equations (3.9) and (3.10). Additionally,

div (ε ∂t grad V ) = q(∂tn − ∂tp),

if we differentiate the Poisson equation (3.8) with respect to time. This
implies

div Jtot = div (Jn + Jp − ε ∂t grad V ) = 0

and, by Gauss law,

dQ

dt
=

∮

Γ

Jtot · ν dσ =

∫

Ω

div Jtot dx = 0.

Furthermore, we get for the sum of all currents leaving the semiconductor

∑

k

ĵSk
=

∑

k
Γk⊆ΓO∪ΓS

∫

Γk

(Jn + Jp − ε ∂t grad V ) · ν dσ

−
∑

k
Γk⊆ΓMI

∫

Γk

ε ∂t grad V · ν dσ =

∮

Γ

Jtot · ν dσ = 0.

This means, that the current flowing through one terminal of the semicon-
ductor may be described by the negative sum of the currents flowing through
the other terminals. We choose one terminal (usual the bulk terminal) and
call it the reference terminal. We delete the current of the reference terminal
from ĵS and denote the resulting vector by jS. This implies

ÂS ĵS = ASjS

if the entries of the matrix AS are defined as

aik :=







1 if the current jSk
enters node i,

−1 if the reference terminal is connected to node i,

0 else

for i = 1, ..., n− 1 and k = 1, ..., bS − 1. Recall that n is the number of nodes
of the network and bS is the number of terminals of the semiconductor.
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This way, AS has the same form as the other incidence matrices AN for
N ∈ {C,R,L, V, I}. Including the row for the mass node, each column of AS

has exactly one 1 and one −1. Finally, we have

AC
dqC(AT

Ce, t)

dt
+ ARg(AT

Re, t) + ALjL + AV jV + ASjS + AIis = 0 (3.22)

instead of equation (3.5). Regarding (3.13) and (3.19), we obtain

jS =

∫

Γ

[(Jn + Jp) · ν χ1 − ε ∂t grad V · ν χ2] dσ (3.23)

if the vector valued functions χ1 and χ2 are defined as

χ1k(x) =

{

1 if x ∈ Γk and Γk ⊆ (ΓO ∪ ΓS),

0 else,

χ2k =

{

1 if x ∈ Γk and Γk ⊆ (ΓO ∪ ΓS ∪ ΓMI),

0 else,

and
∫

Γ

v(x) dx :=






∫

Γ
v1(x) dx

...
∫

Γ
vm(x) dx






for any vector valued function v with v(x) ∈ R
m.

Note that, in case of several semiconductors, one has to choose one refer-
ence terminal for each semiconductor and to follow the procedure for each
semiconductor.

3.3 Complete Coupled System

At this point, we have all informations collected in order to formulate the
complete coupled network-device equation system. We have seen that the
coupling conditions depend mainly on the kind of contacts of the device.
Therefore, we introduce ΓO, ΓS and ΓMI as the unification of all Ohmic
contacts, Schottky contacts and metal-insulator contacts, respectively. The
remaining boundaries ΓI do not have a connection to the network and are
considered as ideal insulating materials. As usual, we denote the whole
boundary of the semiconductor by Γ, that means

Γ = ΓO ∪ ΓS ∪ ΓMI ∪ ΓI.
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We start with the network equations (3.22),(3.6)-(3.7)

AC
dqC(AT

Ce, t)

dt
+ ARg(AT

Re, t) + ALjL + AV jV + ASjS + AIis = 0, (3.24)

dφL(jL, t)

dt
− AT

Le = 0, (3.25)

AT
V e − vs = 0. (3.26)

The unknowns e, jL and jV depend on time t only. The next part is given
by the semiconductor equations (3.8)-(3.12)

div (εgrad V ) = q(n − p − N), (3.27)

− ∂tn + 1
q
div Jn = R(n, p, Jn, Jp), (3.28)

∂tp + 1
q
div Jp = − R(n, p, Jn, Jp), (3.29)

Jn = q(Dngrad n − µnn grad V ), (3.30)

Jp = q(−Dpgrad p − µpp grad V ). (3.31)

Here, the variables V , n, p, Jn, and Jp depend on position x and on time t.
The third part describes the semiconductor current as follows (see (3.23))

jS =

∫

Γ

[(Jn + Jp) · ν χ1 − ε ∂t grad V · ν χ2] dσ. (3.32)

The fourth part consists of the boundary conditions for the Poisson equation
(3.27), which depend on the network potentials e. Considering (3.15) and
(3.21), we find

V = c · ÂT
Se + W on ΓO ∪ ΓS, (3.33)

ε grad V · ν + αV = αc · ÂT
Se + β on ΓMI, (3.34)

grad V · ν = 0 on ΓI. (3.35)

Recall that the entries of c satisfy

ck(x) =

{

1 if x belongs to Γk,

0 else.

Finally, the system is completed by the boundary conditions for the continu-
ity equations (3.28)-(3.29) (see Section 2.2)

n = 1
2
(
√

N2 + 4n2
i + N), p = 1

2
(
√

N2 + 4n2
i − N) on ΓO, (3.36)

Jn · ν = − qvn(n − n0), Jp · ν = qvp(p − p0) on ΓS, (3.37)

Jn · ν = − qRsurf(n, p), Jp · ν = qRsurf(n, p) on ΓMI, (3.38)

Jn · ν = 0, Jp · ν = 0 on ΓI. (3.39)

Obviously, they are not directly coupled to the network.
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Remark 3.1 If the network contains nS > 1 devices described by the drift-
diffusion equations, then V , n, p, Jn, Jp are vector valued functions where
Vl, nl, pl, Jln, Jlp are the unknowns corresponding to the semiconductor
with number l (1 ≤ l ≤ nS). In this case, equations (3.27)-(3.39) are to be
understood as nS times given, i.e. for each set of unknowns Vl, nl, pl, Jln, Jlp

(1 ≤ l ≤ nS).

We have not specified initial conditions yet. Due to the constraints in the
network equation system, we may not specify initial conditions for all vari-
ables. Since the constraints are in implicit form and since they involve not
only network variables but also device variables, it is not a trivial task to set
up correct initial conditions in advance. However, we will see later in this
Chapter that the coupled system may be written as an abstract differential
algebraic system (ADAS). This will allow us to apply the index concept for
ADAS (see [LMT01]), which yields a formulation of suitable initial conditions
for the coupled system.

3.4 Homogenization

Considering existence results and Galerkin approaches for partial differential
equations, Dirichlet boundary conditions are usually treated by a suitable
choice of a function space as solution space. In our case, the boundary
conditions (3.33) and (3.34) for the Poisson equation depend on the node
potentials that are described implicitly by the network equations. But an
implicitly given function space is not very handy. Therefore, we shall ho-
mogenize the conditions (3.33) as follows.

If the semiconductor has bS terminals, then let the terminal bS be the ref-
erence terminal. We choose smooth functions f1(x), ..., fbS−1(x) defined on
whole Ω such that

fk(x) =

{

1 if x belongs to Γk ⊆ (ΓO ∪ ΓS ∪ ΓMI)

0 if x belongs to (ΓO ∪ ΓS ∪ ΓMI)\Γk

(3.40)

and, additionally,
grad fk · ν = 0 on Γ (3.41)

for k = 1, ..., bS − 1. For common geometries, one should always find such
smooth functions. If f(x) = (f1(x), ..., fbS−1(x))T and the reference terminal
ΓbS

enters node j, then we get

c · ÂT
Se = ej + f · AT

Se on ΓO ∪ ΓS ∪ ΓMI.
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Furthermore, let g be a smooth function on whole Ω such that

g = W on ΓO ∪ ΓS (3.42)

and

grad g · ν = 0 on ΓMI ∪ ΓI. (3.43)

Introducing

Ṽ (x, t) := V (x, t) − ej(t) − f(x) · AT
Se(t) − g(x), (3.44)

we get, for the boundary conditions (3.33)-(3.35),

Ṽ = 0 on ΓO ∪ ΓS, (3.45)

ε grad Ṽ · ν + αṼ = β̃ on ΓMI, (3.46)

grad Ṽ · ν = 0 on ΓI, (3.47)

with β̃ := β − αg − ε grad g · ν. Furthermore, the node potentials e appear
in the Poisson equation (3.27) and in the current-density equations (3.30)-
(3.31). More precisely, we have

div (εgrad Ṽ ) = q(n − p − N) − div (εgrad (f · AT
Se + g)) (3.48)

as well as

Jn = q(Dngrad n − µnn grad (Ṽ + f · AT
Se + g)), (3.49)

Jp = q( − Dpgrad p − µpp grad (Ṽ + f · AT
Se + g)), (3.50)

As mentioned in Remark 3.1 V , n, p, Jn, Jp are vector valued functions if
the network contains nS > 1 semiconductors. In the following, we will use
the notation Vl, nl, pl, Jln, Jlp for the unknowns of the semiconductor with
number l (1 ≤ l ≤ nS). All equations in variables with the index l are to be
understood as given for each l = 1, ..., nS.

Summarizing all equations we arrive at the homogenized coupled system
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AC
dqC(AT

Ce, t)

dt
+ ARg(AT

Re, t) + ALjL + AV jV + ASjS + AIis = 0, (3.51)

dφL(jL, t)

dt
− AT

Le = 0, (3.52)

AT
V e − vs = 0, (3.53)

div (εlgrad Ṽl) = q(nl − pl − Nl) − div (εlgrad (fl · A
T
Se + gl)),(3.54)

− ∂tnl + 1
q
div Jln = Rl(nl, pl, Jln, Jlp), (3.55)

∂tpl + 1
q
div Jlp = − Rl(nl, pl, Jln, Jlp), (3.56)

Jln = q(Dnlgrad nl − µnlnl grad (Ṽl + fl · A
T
Se + gl)), (3.57)

Jlp = q(−Dplgrad pl − µplpl grad (Ṽl + fl · A
T
Se + gl)), (3.58)

jSl =

∫

Γl

[(Jln + Jlp) · ν χ1l − εl ∂t grad Ṽl · ν χ2l] dσ, (3.59)

Ṽl = 0 on ΓlO ∪ ΓlS, (3.60)

εl grad Ṽl · ν + αlṼl = β̃l on ΓlMI, (3.61)

grad Ṽl · ν = 0 on ΓlI, (3.62)

nl = 1
2
(
√

N2
l + 4n2

il + Nl), pl = 1
2
(
√

N2
l + 4n2

il − Nl) on ΓO,(3.63)

Jln · ν = − qvnl(nl − n0l), Jlp · ν = qvpl(pl − p0l) on ΓS, (3.64)

Jln · ν = − qRlsurf(nl, pl), Jlp · ν = qRlsurf(nl, pl) on ΓlMI,(3.65)

Jln · ν = 0, Jlp · ν = 0 on ΓlI. (3.66)

In the following chapter we want to study the solution behavior of equation
systems like the coupled system described above. Furthermore, we are in-
terested in numerical solutions. For a systematic treatment, we prefer to
formulate the coupled system as an abstract differential equation system in
Hilbert spaces. Due to the constraints of the network, we will call it as
abstract differential algebraic system (ADAS) or abstract DAE. Obviously,
there exist several formulations as ADAS. In the next two sections we will
develop two of them which we will investigate in Chapter 4 in detail. The
first approach follows the standard/classical way. The second one formulates
the system as variational equation.
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3.5 The Coupled Problem as Abstract DAE

The intention of this section is to formulate the homogenized system (3.51)-
(3.66) as an operator equation of the form

A
d

dt
D(u(t), t) + B(u(t), t) = 0 for all t ∈ [t0, T ] (3.67)

where A, B(·, t) and D(·, t) are operators acting in Hilbert spaces X, Y and
Z as follows:

A : Z → Y, B(·, t) : X → Y, D(·, t) : X → Z. (3.68)

The interesting case is A not bijective on the whole interval [t0, T ]. Therefore,
systems of the form (3.67) are called as abstract differential algebraic systems.
We shall discuss these systems in Chapter 4.

Regarding the homogeneous Dirichlet boundary conditions (3.60) for the po-
tential Ṽ on ΓO ∪ ΓS, we are looking for solutions

u(t) = (e(t), jL(t), jV (t), jS(t), Ṽ (·, t), n(·, t), p(·, t), Jn(·, t), Jp(·, t))

for the coupled system (3.51)-(3.59) that belong to X =
9

X
i=1

Xi with

X1 = R
n−1, X2 = R

nL , X3 = R
nV , X4 =

ns

X
l=1

R
kl−1

X5 = {v ∈
ns

X
l=1

H2(Ωl) : vl = 0 on ΓlO ∪ ΓlS},

X6 = X7 =
ns

X
l=1

H1(Ωl), X8 = X9 =
ns

X
l=1

H(div ; Ωl).

Here, n, nL, nV and nS denote the number of nodes, inductors, voltage
sources and semiconductors, respectively. Furthermore, kl and Ωl are the
number of terminals and the space region of the semiconductor with number
l. We need higher regularity for V since we have to evaluate the gradient of
V at the boundary for the determination of the semiconductor current jS.
Furthermore, we choose

Y := X1 × X2 × X3 × (
ns

X
l=1

L2(Ωl))
5 × X4,

Z := R
nC × X2 × X4 × (

ns

X
l=1

H1(Ωl))
2,

where nC denotes the number of capacitors in the network.
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We can write the coupled system (3.51)-(3.59) as abstract differential alge-
braic system of the form (3.68) with

A =








AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0
0 0 0 0 0
0 0 I 0 0








, D(u, t) =





qC(AT
Cu1,t)

φL(u2,t)
−r1l u5l

u6l
u7l



 ,

and

B(u, t) =














ARg(AT
Ru1,t)+ALu2+AV u3+ASu4+AI is(t)

−AT
Lu1

AT
V u1−vs(t)

div (εlgrad u5l)−q(u6l−u7l−Nl)+div (εlgrad (fl·A
T
S u1+gl))

−
1
q

div u8l+Rl(u6l,u7l,u8l,u9l)

1
q

div u9l+Rl(u6l,u7l,u8l,u9l)

u8l−q(Dnlgrad u6l−µnlu7lgrad (u5l+fl·A
T
S u1+gl))

u9l−q(−Dplgrad u7l−µplu7lgrad (u5l+fl·A
T
S u1+gl))

u4l−r2l (u8l+u9l)














where

r1lv :=

∫

Γl

εl grad v · ν χl2 dσ,

r2lv :=

∫

Γl

v · ν χl1 dσ.

In the matrix notation of D(u, t) and B(u, t), all lines containing variables
with the index l are to be understood as given for each semiconductor
l = 1, ..., nS. Correspondingly, the dimension of the identity operators in
A is chosen such that it suits to D(u, t). In the next section, we will formu-
late the generalized problem corresponding to the coupled system. For the
generalized formulation, we can apply the Galerkin method which is investi-
gated in the next chapter.

3.6 The Generalized Problem of the Coupled

System

The intention of this section is to formulate the homogenized system (3.51)-
(3.66) as an operator equation of the form

A
d

dt
D(u(t), t) + B(u(t), t) = 0 for all t ∈ [t0, T ] (3.69)



3.6 The Generalized Problem 59

where A(t), B(·, t) and D(·, t) are bounded operators for all t ∈ [t0, T ].

Let Ωl again be the domain of the semiconductor with number l, a bounded
region in R

N with a regular boundary. Following the idea of generalized
problems for partial differential equations (see e.g. [Zei90b]), we have to do
the following steps.

(i) For each partial differential equation, define a suitable space of test
functions.

(ii) Multiply the partial differential equations by a test function, integrate
over the domain Ω and use the integration by parts formula.

(iii) Multiply each equation of the network system by a test real value.

(iv) Build the sum over all resulting equations.

We denote again by u all unknowns, i.e.

u1 = e, u2 = jL, u3 = jV , u4l = jSl, u5l = Ṽl, u6l = nl, u7l = pl

for all l = 1, ..., nS . Jln and Jlp are considered as functions of nl, pl, grad nl,
grad pl and grad Vl in the following.

Ad(i) Due to the boundary condition (3.60) for u5, a suitable space of test
functions for the Poisson equation is given by

V5 = {v ∈
nS

X
l=1

H1(Ωl) : vl = 0 on ΓlO ∪ ΓlS}.

Although we have used the letter V already for the potential, we want to use
it also for the space of test functions since it is very common in literature.
Due to the context, it should always be clear whether we mean the potential
or the space.

Considering (3.63)-(3.66) for the continuity equations, we choose

V6 = V7 = {v ∈
nS

X
l=1

H1(Ωl) : vl = 0 on ΓlO}.

Ad(ii) Multiplying the Poisson equation (3.54) by v5 ∈ V5, integrating over
Ω, using the integration by parts formula, regarding the boundary conditions
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(3.61)-(3.62) and the choice of f , g (see (3.40), (3.43)), we obtain

∫

Ωl

εlgrad u5l · grad v5l dx +

∫

ΓlMI

αlu5lv5l dσ

+

∫

Ωl

q(u6l − u7l)v5l dx +

∫

Ωl

εlgrad (fl · A
T
Su1l) · grad v5l dx

=

∫

Ωl

qNlv5l dx −

∫

ΓlMI

β̃lv5l dσ −

∫

Ωl

εlgrad gl · grad v5l dx (3.70)

for all v5 ∈ V5 and l = 1, ..., nS. Regarding the current density equations
(3.57)-(3.58) as well as the boundary conditions (3.64)-(3.66) for the conti-
nuity equations, we get analogously, for all v6 ∈ V6, v7 ∈ V7 and l = 1, ..., nS,

∫

Ωl

∂tu6lv6l dx + 1
q

∫

Ωl

Jln · grad v6l dx +

∫

ΓlS

vln(u6l − nl0)v6l dσ

= −

∫

Ωl

Rl(u6l, u7l, Jln, Jlp)v6l dx −

∫

ΓlMI

Rlsurf(u6l, u7l)v6l dσ (3.71)

and
∫

Ωl

∂tu7lv7l dx − 1
q

∫

Ωl

Jlp · grad v7l dx +

∫

ΓlS

vlp(u7l − pl0)v7l dσ

= −

∫

Ωl

Rl(u6l, u7l, Jln, Jlp)v7l dx −

∫

ΓlMI

Rlsurf(u6l, u7l)v7l dσ (3.72)

with

Jln = q(Dlngrad u6l − µlnu6l grad (u5l + fl · A
T
Su1 + gl)), (3.73)

Jlp = q(−Dlpgrad u7l − µlpu7l grad (u5l + fl · A
T
Su1 + gl)). (3.74)

Ad(iii) The network equations (3.51)-(3.53) yield to

vT
1 AC

dqC(AT
Cu1, t)

dt
+ vT

1 ARg(AT
Ru1, t)

+ vT
1 ALu2 + vT

1 AV u3 + vT
1 ASu4 = − vT

1 AIis(t), (3.75)

vT
2

dφL(u2, t)

dt
= vT

2 AT
Lu1, (3.76)

vT
3 AT

V u1 = vT
3 vs(t), (3.77)
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for all v1 ∈ V1 := R
n−1, v2 ∈ V2 := R

nL , and v3 ∈ V3 := R
nV . Recall that is

and vs are input functions depending on time only. Finally, equation (3.59)
implies

vT
4lu4l = vT

4l

∫

Γl

[(Jln + Jlp) · ν χl1 − εl ∂t grad u5l · ν χl2] dσ (3.78)

for all v4 ∈ V4 :=
nS

X
l=1

R
kl−1 and l = 1, ..., nS.

Ad(iv) We introduce the function space

V := V1 × V2 × V3 × V4 × V5 × V6 × V7.

Considering the boundary conditions (3.63) we are looking for solutions that
belong to the affine space u ∈ V + ũ where

ũ =






0
0
0
0
0
ñ
p̃






and ñ, p̃ ∈
nS

X
l=1

H1(Ωl) with

ñl = 1
2
(
√

N2
l + 4n2

li + Nl), p̃l = 1
2
(
√

N2
l + 4n2

li − Nl)

on ΓlO for all l = 1, ..., nS. Here Nl and nli denote the doping concentration
and the intrinsic charge density of the semiconductor with the number l.
Additionally, we introduce

Z := R
nC × R

nL × V4 × V̂6 × V̂7,

H := R
nC × R

nL × V4 ×
nS

X
l=1

L2(Ωl) ×
nS

X
l=1

L2(Ωl).

Then, Z equipped with the norm

‖z‖2
Z := ‖z1‖

2 + ‖z2‖
2 + ‖z3‖

2 +

nS∑

l=1

∫

Ωl

(z2
4l + |grad z4l|

2 + z2
5l + |grad z5l|

2) dx

forms a real, separable, and reflexive Banach space. Here, ‖ · ‖ denotes the
Euclidean norm. Furthermore, H equipped with the scalar product

(z̄|z)H := z̄T
1 z1 + z̄T

2 z2 + z̄T
3 z3 +

nS∑

l=1

∫

Ωl

(z̄4lz4l + z̄5lz5l) dx ∀z̄, z ∈ H
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forms a real, separable Hilbert space. Additionally, Z ⊆ H ⊆ Z∗ represents
an evolution triple. Note, that the notation z̄ is used for an other element of
H only. It does not mean the conjugate complex of z. We are dealing with
real spaces here.

Building the sum over the equations (3.70)-(3.78), we arrive at the operator
equation

A
d

dt
D(u(t), t) + B(u(t), t) = 0 for t ∈ [t0, T ] (3.79)

with the operators A, B, and D defined as follows. The operator

D : (V + ũ) × [t0, T ] → Z

is chosen as

D(u, t) =









qC(AT
Cu1, t)

φL(u2, t)
r 1u5

u6

u7









(3.80)

with

r 1u5 =






...
∫

Γl
εl grad u5l · ν χl2 dσ

...






for all u5 ∈ V5. The derivative d
dt
D(u, t) is to be understood as a Z∗-valued

distribution satisfying

〈
d

dt
D(u(t), t), z〉Z =

d

dt
(D(u(t), t)|z)H

for all z ∈ Z and u(t) ∈ V + ũ. The operator A : Z∗ → V ∗ is given by

〈Az̄, v〉V := 〈z̄,A∗v〉Z , A∗v :=









AT
Cv1

v2

AT
Sv4

v6

v7









(3.81)

for all z̄ ∈ Z∗ and v ∈ V . Finally, the operator B : (V + ũ) × [t0, T ] → V ∗
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reads as

〈B(u, t), v〉V = vT
1 [ARg(AT

Ru1, t) + ALu2 + AV u3 + ASu4 + AIis(t)]

− [vT
2 AT

L + vT
3 AT

V ]u1 + vT
3 vs(t) + vT

4 u4 − vT
4 r 2(Jn + Jp)

+

nS∑

l=1

[∫

Ωl

εgrad (ul5 + fl · A
T
Su1 + gl) · grad v5l dx

+

∫

Ωl

q(u6l − u7l − Nl)v5l dx + 1
q

∫

Ωl

(Jln · grad v6l − Jlp · grad v7l) dx

+

∫

Ωl

Rl(u6l, u7l, Jln, Jlp)(v6l + v7l) dx

+

∫

ΓlMI

(αlu5l − β̃l)v5l dσ +

∫

ΓlMI

Rlsurf(u6l, u7l)(v6l + v7l) dσ

+

∫

ΓlS

[vln(u6l − nl0)v6l + vlp(u7l − pl0)v7l] dσ

]

(3.82)

for all u ∈ V + ũ and v ∈ V , where

r 2(Jn + Jp) =






...
∫

Γl
(Jln + Jlp) · ν χl1 dσ

...






and Jln, Jlp given by (3.73), (3.74).

Remark 3.2 By means of standard arguments, it follows that a sufficiently
smooth function u is a solution of (3.79) if and only if

u = (e, jL, jV , jS, Ṽ , n, p)

with Jln, Jlp given by (3.73), (3.74) satisfies the coupled system (3.51)-(3.66).

In the next chapter, we deal with general abstract differential algebraic sys-
tems. First, we introduce an index concept for such systems. Then, we
present network topological criteria for the coupled circuit and device equa-
tions using the formulation given in Section 3.5. Finally, we investigate ab-
stract systems as given in Section 3.6. A Galerkin approach providing unique
solutions for linear systems with monotone operators is proposed as a first
step for a treatment of general ADASs.
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Chapter 4

Abstract Differential Algebraic
Systems

In order to treat coupled systems of partial differential equations (PDEs) and
differential-algebraic equations (DAEs) in a systematic way we shall study
abstract differential algebraic systems (ADASs) of the following form

A
d

dt
D(u(t), t) + B(u(t), t) = 0 for t ∈ [t0, T ]. (4.1)

This equation is to be understood as an operator equation with operators
A, D(·, t) and B(·, t) acting in real Hilbert spaces. More precisely, let X, Y ,
Z ⊆ Z̃ be Hilbert spaces and

A : Z̃ → Y, D(·, t) : X → Z, B(·, t) : X → Y. (4.2)

In [Mär02a, LMT01], the case Z = Z̃ has been considered. This is enough for
the classical formulation of the coupled system (see Section 3.5). However,
for the generalized formulation, we need the more general case Z ⊆ Z̃ (see
Section 3.6).

Such systems with A and D being invertible have already been studied in
[GGZ74]. However, the classical formulation as well as the generalized for-
mulation of the coupled system lead to abstract differential algebraic sys-
tems with operators A or D(·, t) that are not invertible on the whole time
interval. Such systems are also called singular (see e.g. [Cam80, Cam82]
for the finite dimensional case) or degenerate differential equations (see e.g.
[Kur93, FY99]).
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In [FY99], systems of the form (4.1) with linear operators have been studied.
More precisely, initial value systems of the form

A
d

dt
Du + Bu = Ag(t) for t ∈ (0, T ], (4.3)

Du(0) = v0 ∈ imD, (4.4)

with X = Y = Z, D = M and A = I are treated by a semigroup approach.
I denotes the identity operator. The system (4.3)-(4.4) is reduced to multi-
valued differential equations of the form

dv

dt
∈ Av + f(t) for t ∈ (0, T ], (4.5)

v(0) = v0, (4.6)

where A := −BD−1. Here, the operator D−1 is defined as (multi-valued)
function satisfying

D−1v = {u ∈ DD : Du = v} for all v ∈ imD.

with DD being the definition domain of D. The existence and uniqueness of
classical solutions of (4.3)-(4.4) satisfying

Du ∈ C1([0, T ]; X) and Bu ∈ C([0, T ]; X)

is shown provided that g ∈ C1([0, T ]; X), Bu(0) ∈ imA,

Re(−Bu|Du)X ≤ β‖Du‖2
X , for all u ∈ DB ⊆ DD (4.7)

as well as the operator

λ0AD + B : DB → X is bijective for some λ0 > β. (4.8)

A similar result is obtained for systems of the form (4.3)-(4.4) with A = D∗

or D = I.

This approach via multi-valued differential equations concentrates on the
dynamic part of the system. It is limited to systems with special constraints.
So, for instance, condition (4.7) implies

Re(Bw,Dv) = 0 for all w ∈ kerD ∩ DB, v ∈ DD.

Together with condition (4.8), we obtain, for the finite dimensional case, a
DAE of index 1 with the constraint

(BQ)∗Bu = (BQ)∗g(t)
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where Q denotes a projector onto kerD. This is obvious since (BQ)∗D = 0
if we use the Euclidean norm.

Furthermore, the semigroup approach has been extended to linear systems
with time dependent operators in [FY99] supposed that A = I or D = I.
There, it is assumed that the operator D(t)(λD(t) + B(t))−1 or (λD(t) +
B(t))−1D(t), respectively, is bounded in a certain way for λ from a specific
region in C. Unfortunately, it is usually quite difficult to verify this condition
for coupled systems in practice. Additionally, having DAEs in mind, we think
that we should not concentrate on the pencil operators λD(t) + B(t) in the
non-stationary case. Even in the finite-dimensional case, it is not reasonable
to demand non-singularity of λD(t) + B(t) for existence and uniqueness of
solutions (see e.g. [BCP89, GM86]). Regarding the trivial example

((
− t − t2

1 t

)

u

)′

+

(
1 0
0 1

)

u = f(t),

we see that λD(t) +B(t) is nonsingular for all λ but a solution exists only if
f1(t) + t f2(t) = 0. On the other hand, considering the example

((
t 0
1 0

)

u

)′

+

(
0 t
0 1

)

u =

(
− t
0

)

,

the matrix pencil λD(t) + B(t) is singular of all λ but there is a unique
solution satisfying

u1(t) = −t, u2(t) = 1.

Hence, investigating time dependent differential algebraic equations, one has
turned away from matrix pencils about 15 years ago.

Using an operational method developed in [PG78], more general linear sys-
tems of the form (4.3)-(4.4) with either A = I or D = I are treated in [FY99].
But it is restricted to systems with constant injective operators B having a
bounded inverse.

Nonlinear abstract systems of the form

d

dt
(Du) + Bu = F (t,Ku), t ∈ [0, T ]

where D, B, K are linear closed operators from a complex Banach space X
into a Banach space Y , have been investigated in [FP86, FP89, BF98, FR99].
The theory developed there bases mainly on properties of the operator

T := D(λD + B)−1,
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λ being a regular point of the operator pencil λD + B. Most results are
presented for problems with the resolvent operator (T−ξI)−1 having a simple
pole at ξ = 0. In the finite dimensional case, such problems are DAEs of
index 1. In [FR99] also problems are investigated where (T −ξI)−1 has a pole
of multiple order at ξ = 0. Considering again the finite dimensional case,
these are problems of higher index. Existence and uniqueness of solutions of
such problems are obtained by a study of the transformed problem

d

dt
(Tv) + v = f(t, Nv), t ∈ [0, T ]

with N = K(λD + B)−1, f(t, w) = e−λtF (t, eλtw) and

v(t) = e−λt(λD + B)u(t).

Beside certain smoothness conditions and consistent initial conditions, the
nonlinear function f has to fulfill a structural condition of the form

πkf(t, Nv) = πkf(t, N
m−1∑

j=k

Πjv), k = m − 1, ..., 1

for certain projectors Πj satisfying Πkv = πk(Pv)ϕk if m is the order of the
pole of (T − ξI)−1 in ξ = 0 and ker Tm is spanned by {ϕk = Tm−1−kϕn}

m−1
k=0 .

Although the assumptions are shown to be satisfied for a sample circuit with
an LI-cutset in [FR99], we don’t know network topological conditions (as
presented in Section 1.2.1) for general networks that guarantee all assump-
tions. In particular, the determination of the order of the pole of the operator
(T − ξI)−1 in ξ = 0 becomes a problem for coupled systems described in Sec-
tion 3.5 and 3.6.

Nevertheless, the order of the pole plays a significant role for the characteri-
zation of the systems. Indeed, in the linear, finite dimensional case, the pole
order equals to the index of the DAE.

Since we are interested in network topological conditions characterizing the
behavior of solutions of our coupled PDE-DAE system, we will present an
index concept for abstract differential algebraic systems in Section 4.1 that
is based on the tractability index for DAEs used in Chapter 1. It orients
towards the sensitivity of solutions due to perturbations of the right hand
side. The main reason for studying this kind of index is our interest in the
time domain behavior of the circuit. One can compare it with the time index
introduced in [LSEL99] and the modal index introduced in [CM99a] for linear
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PDAEs with constant coefficients. For a comparison of the different index
concepts in certain case studies, we refer to [LMT01].

In Section 4.2, we will show that the index of coupled systems described in
Section 3.5 does not exceed 2. Furthermore, a network topological criterion
for index-1 systems will be given.

It remains the question when solutions for general coupled network-device
systems described in Section 3.5 exist and are unique. In order to answer
this question, techniques of the theory of DAEs for networks and the theory
of PDEs for semiconductor devices should be combined. Furthermore, we are
also interested in a numerical solution of the coupled systems. Therefore, we
prefer approaches for the treatment of semiconductor devices that are based
on a Galerkin approach (see e.g. [GG86, Grö87, GG89, Gaj93]). For this, the
generalized drift diffusion equations are treated as variational problem.

We aim to combine this approach with projector techniques from DAE theory
in order to treat the coupled network-device systems. Therefore, we have to
consider the generalized formulation presented in Section 3.6. In Section
4.5 we present a Galerkin method for linear abstract differential algebraic
systems. In the further sections, it will be shown that the linear system
has a unique solution under certain monotonicity conditions and that the
Galerkin method converges to the unique solution of the system. In contrast
to Galerkin methods for parabolic differential equations, the choice of the
basis of the function space is not arbitrary anymore in order to guarantee
convergence. This is not really surprising, since the solution has to satisfy
certain constraints as we know from the theory of DAEs.

In Section 4.7 we will see that the assumed monotonicity conditions imply the
abstract system to have index 1 and the unique solution to depend continu-
ously on time-dependent perturbations of the right hand side. Furthermore,
the solution will be shown to depend continuously on perturbations of the
initial data. Additionally, we will see in Section 4.5 that the DAEs result-
ing from the Galerkin approach have at most index 1, i.e., they suit to the
abstract system from the numerical point of view.

4.1 Index concept for ADA Systems

From the finite dimensional case we know that the sensitivity of solutions
of DAEs with respect to perturbations depends on its index. Since we are
interested in the transient behavior of solutions of the coupled system, we
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want to follow the concept in [LMT01] extending the tractability index for
DAEs (see Appendix A.3) to abstract differential algebraic systems.

Having the classical formulation of the coupled system (3.67) in mind, we
consider systems of the form

A
d

dt
D(u(t), t) + B(u(t), t) = 0 for t ∈ [t0, T ] (4.9)

with operators A, B(·, t) and D(·, t) acting in Hilbert spaces X, Y and Z as
follows:

A : Z → Y, B(·, t) : X → Y, D(·, t) : X → Z.

We assume the existence of the Fréchet derivatives B0 and D0 of the oper-
ators B(·, t) and D(·, t). More precisely, we assume the existence of linear,
continuous operators B0(u, t) and D0(u, t) satisfying

B(u + h, t) − B(u, t) − B0(u, t)h = o(‖h‖), h → 0,

D(u + h, t) −D(u, t) −D0(u, t)h = o(‖h‖), h → 0,

for all h in some neighborhood of zero in X, all u ∈ X and all t ∈ [t0, T ].
Furthermore, we assume that imD0(u, t) and kerD0(u, t) do not depend on
u and t. Finally, A and D are assumed to be well matched in the sense that

kerA⊕ imD0(u, t) = Z (4.10)

forms a topological direct sum for all u ∈ X and t ∈ [t0, T ]. We will see in
the next section that these assumptions are satisfied for our coupled system
provided that Rl is sufficiently smooth and the functions µln, µlp, Dln, Dlp,
grad fl, div (εlgrad fl) and grad gl are bounded on Ωl.

We introduce G0(u, t) := AD0(u, t) for all u ∈ X and t ∈ [t0, T ]. Since we
are interested in abstract differential algebraic systems containing equations
without time derivatives, we assume that codim(cl(im (G0(u, t))) > 0 for all
u ∈ X and t ∈ [t0, T ].

Remark 4.1 Since A and D are assumed to be well matched, the relations

imG0(u, t) = imA and kerG0(u, t) = kerD0(u, t) (4.11)

are fulfilled for all u ∈ X and t ∈ [t0, T ]. Indeed, there is a constant projection
operator R : Z → Z satisfying

imR = imD0(u, t) and kerR = kerA
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for all u ∈ X and t ∈ [t0, T ] because kerA and imD0(u, t) form a topological
direct sum. Consequently,

imG0(u, t) = imAR = imA

and
kerG0(u, t) = kerRD0(u, t) = kerD0(u, t).

Remark 4.2 Considering the formulation of (4.9), the natural solution space
is given by

C1
D([t0, T ], X) := {u ∈ C([t0, T ], X) : D(u(·), ·) ∈ C1([t0, T ], Z)}.

For a linearization

A
d

dt
(D0(u∗(t), t)u) + B0(u∗(t), t)u = q

of (4.9) at u∗ ∈ C1
D([t0, T ], X), the natural solution space reads as

C1
D0

([t0, T ], X) := {u ∈ C([t0, T ], X) : D0(u∗(·), ·)u(·) ∈ C1([t0, T ], Z)}.

The next proposition shows that both solution spaces coincide.

Proposition 4.3 Let D0(u, t) depend continuously differentiable on u, t.
Additionally, assume the partial derivative D′

t(u, t) to exist and to be con-
tinuous. Furthermore, suppose that the constant space kerG0(u, t) splits X,
i.e., there is a linear space W ⊆ X such that

kerG0(u, t) ⊕ W = X

forms a topological direct sum. Then, C1
D([t0, T ], X) = C1

D0
([t0, T ], X).

Proof: Since kerG0(u, t) splits X, we find a projection operator P0 : X →
X with

imP0 = W and kerP0 = kerG0(u, t).

Using the mean value theorem in Banach spaces, we get

D(u, t) −D(P0u, t) =

∫ 1

0

D0(su + (1 − s)P0u, t)(I − P0)u ds = 0 (4.12)

for all u ∈ X and t ∈ [t0, T ]. Additionally, D0(u, t) acts bijectively from W
to imR for all u ∈ X and t ∈ [t0, T ]. Applying the implicit function theorem
to

F : Z × W × [t0, T ] → imR with F (v, w, t) := D(w, t) −Rv
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at v = D(u(t), t) and w = P0u(t) for u ∈ C1
D([t0, T ], X), we obtain a contin-

uously differentiable function g(·, t) : Z → W satisfying F (v, g(v, t), t) = 0
for v in a neighborhood of D(u(t), t). In particular, we have

P0u(t) = g(D(u(t), t), t).

Due to the smoothness assumptions, g is also continuously differentiable with
respect to t. Consequently,

D(u(·), ·) ∈ C1([t0, T ], Z) ⇔ P0u(·) ∈ C1([t0, T ],W ) (4.13)

if we regard (4.12). Analogously to (4.12), we obtain

D0(u, t) = D0(P0u, t)

for all u ∈ X and t ∈ [t0, T ]. This implies D0(u∗(·), ·) ∈ C1([t0, T ], L(X,Z))
for u∗ ∈ C1

D([t0, T ], X). Thus,

D0(u∗(·), ·)u(·) ∈ C1([t0, T ], Z) ⇔ P0u(·) ∈ C1([t0, T ],W )

since kerD0(u∗(·), ·) = kerP0 and D0(u∗(·), ·) acts bijectively from imP0 to
imR. Regarding (4.13), the proposition is proven.

2

As the tractability index for finite-dimensional differential algebraic systems,
the following index concept for ADASs bases on linearizations.

Definition 4.4
The abstract differential algebraic system (4.9) has index 1 if there is a pro-
jection operator Q0 : X → X onto the constant space kerG0(u, t) such that
the operator

G1(u, t) := G0(u, t) + B0(u, t)Q0

is injective and cl(imG1(u, t)) = Y for all u ∈ X and t ∈ [t0, T ].

Remark 4.5 The definition is independent of the choice of the projection
operator Q0. If Q̃0 is an other projection operator onto kerG0, then

G̃1 = G0 + B0Q̃0 = G1(I + Q0Q̃0P0)

holds for P0 := I − Q0 since

Q0 = Q̃0Q0 and Q̃0 = Q0Q̃0.

For brevity, we have omitted the arguments u and t. The operator I+Q0Q̃0P0

is continuous and injective. Its inverse operator is given by I −Q0Q̃0P0 and,
thus, also continuous. Consequently,

ker G̃1 = kerG1 and im G̃1 = imG1.
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Remark 4.6 This index definition shall characterize the behavior of ab-
stract differential algebraic systems with respect to perturbations of the right
hand side. It should not be confused with the Fredholm index of operators.

Definition 4.7
The abstract differential algebraic system (4.9) has index 2 if and only if there
are projection operators Q0 : X → X onto ker G0(u, t) and Q1(u, t) : X →
X onto kerG1(u, t) such that codim(cl(imG1(u, t))) > 0 and the operator

G2(u, t) := G1(u, t) + B0(u, t)P0Q1(u, t)

is injective as well as cl(imG2(u, t)) = Y for all u ∈ X and t ∈ [t0, T ].

Remark 4.8 The definitions require implicitly kerG0 and kerG1 to be closed
in X. Due to the choice of the spaces X and Y , this condition is satisfied for
the coupled system as abstract DAE in the classical form (see Section 3.5).

4.2 Network Topological Index Criteria

In Chapter 1, we have seen that the network DAEs have an index ≤ 1 if the
network neither contains LI-cutsets nor CV -loops with at least one voltage
source. The question arises whether one can find such network topological
criteria also for the index of the coupled system (3.51)-(3.66) formulated as
abstract DAE (3.67) (see Section 3.5).

This question can be answered positively for coupled systems with one-
dimensional semiconductor models having two metal-semiconductor contacts.
It turns out that LI-cutsets are also relevant for the coupled systems. How-
ever CV -loops have to be replaced by CV S-loops, i.e. loops consisting of
capacitors, voltage sources and semiconductors.

Lemma 4.9 The network does not contain LI-cutsets if and only if the ma-
trix

(AC , AR, AV , AS) has full row rank. (4.14)

The network does not contain CV S-loops with at least one voltage source or
one semiconductor if and only if the matrix

(QT
CAV , QT

CAS) has full column rank (4.15)

for any projector QC onto ker AT

C.



74 Abstract Differential Algebraic Systems

This lemma is a consequence of the Theorems A.1-A.3. We may apply the
same arguments as in the proof of Lemma 1.2 and Lemma 1.3.

Recall that the capacitance, resistance and inductance matrices are given by

C(v, t) =
dqC(v, t)

dv
, G(v, t) =

dg(v, t)

dv
, and L(j, t) =

dφL(j, t)

dj
.

Theorem 4.10 Let C(v, t), G(v, t) and L(j, t) be positive definite for all
voltages v, currents j and t ∈ [t0, T ]. Additionally, let the network be
consistent, i.e., it contains neither loops of voltage sources only nor cut-
sets of current sources only. Furthermore, let all semiconductor models be
one-dimensional with two metal-semiconductor contacts. We assume fur-
ther Rl to be continuously differentiable and the functions µln, µlp, Dln, Dlp,
grad fl, div (εlgrad fl), grad gl to be bounded on Ωl for all semiconductors
(l = 1, ..., nS). Finally, εl > 0 for all l = 1, ..., nS. Then, the ADAS (3.68)
has index 1 if and only if the network contains neither LI-cutsets nor CV S-
loops with at least one voltage source or one semiconductor.

Proof: Recall that

A =








AC 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0
0 0 0 0 0
0 0 I 0 0








, D(u, t) =





qC(AT
Cu1,t)

φL(u2,t)
−r1l u5l

u6l
u7l



 ,

and

B(u, t) =














ARg(AT
Ru1,t)+ALu2+AV u3+ASu4+AI is(t)

−AT
Lu1

AT
V u1−vs(t)

div (εlgrad ũ5l)−q(u6l−u7l−Nl)+div (εlgrad (fl·A
T
S u1+gl))

−
1
q

div u8l+Rl(u6l,u7l,u8l,u9l)

1
q

div u9l+Rl(u6l,u7l,u8l,u9l)

u8l−q(Dnlgrad u6l−µnlu7lgrad (u5l+fl·A
T
S u1+gl))

u9l+q(−Dplgrad u7l−µplu7lgrad (u5l+fl·A
T
S u1+gl))

u4l−r2l (u8l+u9l)














where

r1lv :=

∫

Γl

εl grad v · ν χl2 dσ, (4.16)

r2lv :=

∫

Γl

v · ν χl1 dσ. (4.17)
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Let xlL and xlR be the left and the right contact of the semiconductor with
number l. Furthermore, we choose, without loss of generality, the right con-
tact as the reference terminal. Then, (4.16), (4.17) read as

r1lv = − [εl grad v](xlL), r2lv = − v(xlL).

Under the assumptions, the Fréchet derivatives of the operators D(·, t) and
B(·, t) exist and are given as follows:

D0(u, t) =





C(AT
Cu1,t)AT

Cu1 0 0 0 0 0 0 0 0

0 L(u2,t)u2 0 0 0 0 0 0 0
0 0 0 0 r1l 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0





and

B0(u) =











ARG(AT
Re,t)AT

R AL AV AS 0

−AT
L 0 0 0 0

AT
V 0 0 0 0

div (εlgrad fl·A
T
S ) 0 0 0 div (εgrad )

0 0 0 0 0
0 0 0 0 0

qµnu6lgrad (fl·A
T
S ) 0 0 0 qµnu6lgrad

qµpu7lgrad (fl·A
T
S ) 0 0 0 qµpu7lgrad

0 0 0 I 0

0 0 0 0
0 0 0 0
0 0 0 0
−q q 0 0

R′

ln
(u) R′

lp
(u) R′

lJn
(u)−

1
q

div R′

lJp
(u)

R′

ln
(u) R′

lp
(u) R′

lJn
(u) R′

lJp
(u)+

1
q

div

jln(u) 0 I 0
0 jlp(u) 0 I
0 0 −r2l −r2l











For brevity, we have introduced

jln(u) := qµlngrad (u5l + fl · A
T
Su1 + gl) − qDlngrad ,

jlp(u) := qµlpgrad (u5l + fl · A
T
Su1 + gl) + qDlpgrad .

Then, the image space of

G0(u, t) =








ACC(AT
Cu1,t)AT

C 0 0 0 0 0 0 0 0

0 L(u2,t) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 r1l 0 0 0 0








is given by
im AT

C × X2 × 0 × 0 × X6 × X7 × 0 × 0 × X4.
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Obviously, codim(cl(imG0(u, t))) > 0 for all u ∈ X and t ∈ [t0, T ]. Further-
more, G0(u) has the nontrivial nullspace

ker AT
C × 0 × X3 × X4 ×Nr1 × 0 × 0 × X8 × X9

where
Nr1 = {v ∈ X5 : r1lvl = 0, l = 1, ..., nS}.

This follows from Lemma 1.4 and the assumption that C(AT
Cu1, t) and L(u2, t)

are positive definite. We choose

Qr1 : X5 → X5

u 7→ v

with
vl(x) = ul(x) − hl(x) · r1lul ∀x ∈ Ωl, l = 1, ..., nS,

as projection operator onto Nr1 . Here, hl is chosen as a smooth function
satisfying

hl(xlL) = hl(xlR) = 0 and r1lhl = 1.

Then,

Q0 =








QC 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 Qr1

0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I








is a projection operator onto kerG0. The continuity of Q0 follows from the
continuous embedding of H1(Ωl) into L2(∂Ωl) for all l = 1, ..., nS and the
choice of the space X5. Furthermore,

G1(u, t) =











ACC(AT
Cu1,t)AT

C+ARG(AT
Ru1,t)AT

RQC 0 AV AS

−AT
LQC L(u2,t) 0 0

AT
V QC 0 0 0

div (εlgrad fl·A
T
S QC ) 0 0 0

0 0 0 0
0 0 0 0

qµnu6lgrad fl·A
T
S QC 0 0 0

qµpu7lgrad fl·A
T
S QC 0 0 0

0 0 0 I

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

div (εlgradQr1l
) 0 0 0 0

0 I 0 R′

lJn
(u)−

1
q

div R′

lJp
(u)

0 0 I R′

lJn
(u) R′

lJp
(u)+

1
q

div

qµlnu6lgradQr1l
0 0 I 0

qµlpu7lgradQr1l
0 0 0 I

r1l 0 0 −r2l −r2l











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(i) We show that G1(u, t) is not injective if the network contains LI-cutsets
or CV S-loops.
If the network contains an LI-cutset, then we find a nontrivial w ∈ X1

with
AT

Cw = 0, AT
Rw = 0, AT

V w = 0, AT
Sw = 0.

It implies w = QCw and, consequently,

v = (w,L−1(u2, t)A
T
Lw, 0, 0, 0, 0, 0, 0, 0)

belongs to the nullspace of G1(u, t).
If the network contains a CV S-loop, then we find a nontrivial (w1, w2, w3) ∈
R

nC × X3 × X4 with

ACw1 + AV w2 + ASw3 = 0.

Applying Lemma 1.4, we find a w4 ∈ im PC such that

ACw1 = ACC(AT
Cu1, t)A

T
Cw4.

Choosing w5 ∈ X5 with

w5(x) = −h(x)w3

and h(x) = (h1(x), ..., hnS
(x)), the vector function

v = (w4, 0, w2, w3, w5, 0, 0, 0, 0)

belongs to the nullspace of G1(u, t). The existence of at least one volt-
age source or one semiconductor in the CV S-loop ensures that the
constructed v is nontrivial because at least w2 or w3 is nontrivial.

(ii) Now we show that G1(u, t) is injective if the network contains neither
LI-cutsets nor CV S-loops with at least one voltage source or one semi-
conductor. We assume that

G1(u, t)w = 0. (4.18)

Integrating the 4th line of (4.18)

div (εl grad (fl · A
T
SQCw1)) + div (εl grad (Qr1l

w5l)) = 0,

we obtain

εl grad (fl · A
T
SQCw1) + εl grad (Qr1l

w5l)

= r1l(fl · A
T
SQCw1) + r1l(Qr1l

w5l) = 0,
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since r1lfl = 0 for the chosen function fl (see (3.41)). Integrating once
again, we obtain

fl · A
T
SQCw1 + Qr1l

w5l

= fl(xlL) · AT
SQCw1 + [Qr1l

w5l](xlL) = AT
SQCw1,

because fl(xlL) = 1 (see (3.40)) and imQr1 belongs to X5. Evaluating
this equation at xlR, we arrive at

AT
SQCw1 = 0 and, consequently, Qr1l

w5l = 0. (4.19)

From the 3rd line of (4.18), we know that AT
V QCw1 = 0. The 1st line

of (4.18) implies

QT
CARG(AT

Ru1, t)A
T
RQCw1 + QT

CAV w3 + QT
CASw4 = 0.

Regarding the two relations for w1 above and the fact that G(AT
Ru1, t)

is positive definite, we obtain

(ACARAV AS)TQCw1 = 0, i.e. QCw1 = 0, (4.20)

since the network does not contain LI-cutsets. Furthermore, using the
2nd and the 5th-8th line of (4.18) as well as the fact that L(u, t) is
positive definite, we get

w2 = 0, w8 = w9 = 0, w6 = w7 = 0. (4.21)

The 1st line of (4.18) reads as

ACC(AT
Cu1, t)A

T
Cw1 + AV w3 + ASw4 = 0

now and implies

AT
Cw1 = 0, w3 = 0, w4 = 0,

since C(AT
Cu1, t) is positive definite and the network does not contain

CV S-loops with at least one voltage source or one semiconductor. To-
gether with (4.20) and the 9th line of (4.18), this yields to

w1 = 0, r1lw5l = 0.

Regarding (4.19), we get w5l = 0. That means that G1(u, t) is injective.
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(iii) It remains to show that imG1(u) = Y if the network contains nei-
ther LI-cutsets nor CV S-loops with at least one voltage source or one
semiconductor. Since C∞(Ωl) is dense in L2(Ωl), it is enough to show
that

R
n−1 × R

nL × R
nV × (

nS

X
l=1

C∞(Ωl))
5 × R

nS ⊆ imG1(u, t).

Let y belong to R
n−1×R

nL ×R
nV ×(XnS

l=1 C∞(Ωl))
5×R

nS . With similar
arguments like above, one can show that the matrix





ACC(AT
Cu1, t)A

T
C + ARG(AT

Ru1, t)A
T
RQC AV AS

AT
V QC 0 0

AT
SQC 0 0





is nonsingular because the network contains neither LI-cutsets nor
CV S-loops with at least one voltage source or one semiconductor. Con-
sequently, we find w1, w3 and w4 such that

ACC(AT
Cu1, t)A

T
Cw1 + ARG(AT

Ru1, t)A
T
RQCw1

+ AV w3 + ASw4 = y1,

AT
V QCw1 = y3,

AT
SQCw1 = −

∫ xlR

xlL

1
εl(τ)

∫ τ

xlL

y4l(s) ds dτ. (4.22)

Defining

w2 = L−1(u2, t)y2 + L−1(u2, t)A
T
LQCw1,

w5l(x) =

∫ x

xlL

1
εl(τ)

∫ τ

xlL

y4l(s) ds dτ + (1 − fl(x))AT
SQCw1

− hl(x)(w4l − y9l − r2ly7l − r2ly8l),

w8l = y7l −
q
εl

µlnu6l

∫ x

xlL

y4l(s) ds,

w9l = y8l −
q
εl

µlpu7l

∫ x

xlL

y4l(s) ds,

w6l = y5l − R′
lJn

(u)w8l + 1
q
div w8l − R′

lJp
(u)w9l,

w7l = y6l − R′
lJn

(u)w8l − R′
lJp

(u)w9l −
1
q
div w9l

successively, we obtain w ∈ X and G1(u, t)w = y. Note that (4.22)
ensures w5l(xlR) = 0 in order to guarantee w5 ∈ X5. 2
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Theorem 4.11 Let the assumptions of theorem 4.10 be satisfied. Addi-
tionally, we assume that εl is constant and greater than zero on Ωl for all
l = 1, ..., nS. Let, furthermore, the network have an LI-cutset or a CV S-
loop. Then, the ADAS (3.68) has the index 2.

Remark 4.12 Theorem 4.10 and 4.11 correspond exactly to Theorem 25
and Theorem 26 in [Sch02]. There, a simplified semiconductor model, de-
scribed by the Poisson equation only, has been studied instead of the complete
system of drift-diffusion equations. Furthermore, it has been assumed there
that the network has index 1 if all semiconductors are removed. We don’t
need this assumption here.

Proof: Regarding the proof of Theorem 4.10, it remains to show that there
is a bounded projection operator Q1(u, t) onto kerG1(u, t) which provides an
injective operator G2(u, t) with

cl (imG2(u, t)) = Y.

(i) Existence of Q1. First, we introduce two new projectors. Let QC−V S

be a projector onto kerQT
C(AV , AS) and QCRV S be a projector onto

ker (AC , AR, AV , AS)T with ker QC ⊆ ker QCRV S. Then,

Q1(u, t) :=











QCRV S 0 −H−1

C
(AT

Cu1,t)(AV ,AS)QC−V S 0 0 0 0 0

L−1(u2,t)AT
LQCRV S 0 (0, 0) 0 0 0 0 0

0 0
QC−V S

0 0 0 0 0

0 0 0 0 0 0 0
0 0 (0,−hl(x))QC−V S 0 0 0 0 0
0 0 (0, 0) 0 0 0 0 0
0 0 (0, 0) 0 0 0 0 0
0 0 (0, 0) 0 0 0 0 0
0 0 (0, 0) 0 0 0 0 0











is a bounded projection operator in X for the nonsingular matrix

HC(AT
Cu1, t) := ACC(AT

Cu1, t)A
T
C + QT

CQC .

Furthermore, a few computations show that imQ1(u, t) ⊆ kerG1(u, t).
Assume that w belongs to kerG1(u, t). Following step (ii) in the proof
of Theorem 4.10, we obtain that (see (4.19) and (4.20))

Qr1l
w5l = 0 and (AC , AR, AV , AS)TQCw1 = 0, i.e., QCw1 = QCRV Sw1.

Considering the 2nd and 5th-8th line of G1(u, t)w = 0, we obtain

w2 = L−1
2 (u2, t)A

T
LQCRV Sw1, w8l = w9l = 0, w6l = w7l = 0.
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The first line of G1(u, t)w = 0 implies

QT
C(AV, AS)

(
w3

w4

)

= 0, i.e.,

(
w3

w4

)

= QC−V S

(
w3

w4

)

and

PCw1 = − H−1
C (AT

Cu1, t)(AV , AS)

(
w3

w4

)

.

Finally, by construction of Qr1l
and the 9-th line of G1(u, t)w = 0, we

get

w5l = Qr1l
w5l + hl(x)r1lw5l = hl(x)r1lw5l = − hl(x)w4.

Summarizing all equations, we obtain kerQC = ker QCRV S.

(ii) Injectivity of G2. By definition of G2, we get

G2(u, t) = G1(u, t) + B0(u, t)(I −Q0)Q1(u, t) =

G1(u, t) +






















ALL−1(·)AT
LQCRV S 0 −ARG(·)AT

RPCH−1

C
(·)(AV,AS)QC−V S 0 0 0 0 0

0 0 AT
LPCH−1

C
(·)(AV,AS)QC−V S 0 0 0 0 0

0 0 −AT
V PCH−1

C
(·)(AV,AS)QC−V S 0 0 0 0 0

0 0
−div (εlgrad [fl·A

T
S PCH−1

C
(·)(AV,AS)

+(0, hl)]QC−V S )
0 0 0 0 0

0 0 (0, 0) 0 0 0 0 0

0 0 (0, 0) 0 0 0 0 0

0 0
−qµlnu6lgrad [fl·A

T
S PCH−1

C
(·)(AV,AS)

+(0, hl)]QC−V S

0 0 0 0 0

0 0
−qµlpu7lgrad [fl·A

T
S PCH−1

C
(·)(AV,AS)

+(0, hl)]QC−V S

0 0 0 0 0

0 0 (0, 0) 0 0 0 0 0






















.

For brevity, we have used a dot instead of the arguments u and t. We
assume that w belongs to kerG2(u, t). Then, the 4-th line of G2(u, t)w =
0 reads as

div (εlgrad [fl · A
T
SQCw1 − fl · A

T
SPCH−1

C (·)(AV, AS)QC−V S ( w3
w4

)

−(0, hl)QC−V S ( w3
w4

)]) = 0.

Integrating this equation once yields to

grad [fl · A
T
SQCw1 − fl · A

T
SPCH−1

C (·)(AV, AS)QC−V S ( w3
w4

)

−(0, hl)QC−V S ( w3
w4

) + Qr1l
w5l] = − (0, 1

εl
)QC−V S ( w3

w4
) ,
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if we regard that (grad fl)(xlL) = 0 and (εlgrad hl)(xlL) = 1. Integrat-
ing once again and evaluating the resulting function at xlR, we obtain

AT
SQCw1 − AT

SPCH−1
C (·)(AV, AS)QC−V S ( w3

w4
)

= (0, xlR−xlL

εl
)QC−V S ( w3

w4
) ,

since fl(xlL) = 1, fl(xlR) = hl(xlL) = hl(xlR) = 0 and Qr1l
w5l ∈ H1

0 (Ωl).
Together with the 3-rd line of G2(u, t)w = 0 this reads as

(AV, AS)TQCw1 − (AV, AS)TPCH−1
C (·)(AV, AS)QC−V S ( w3

w4
)

=
(

0 0

0
xlR−xlL

εl

)

QC−V S ( w3
w4

) .

Multiplying this equation by QT
C−V S, we arrive at

QT
C−V S

(

(AV, AS)TH−1
C (·)(AV, AS) +

(
0 0

0
xlR−xlL

εl

))

QC−V S ( w3
w4

) = 0.

Since

(AV, AS)TH−1
C (·)(AV, AS) and

(
0 0
0 xlR−xlL

εl

)

are positive semidefinite, we get

QT
C−V S(AV, AS)TH−1

C (·)(AV, AS)QC−V S ( w3
w4

) = 0

and
QT

C−V S

(
0 0

0
xlR−xlL

εl

)

QC−V S ( w3
w4

) = 0.

We introduce
( v1

v2
) := QC−V S ( w3

w4
) .

Thus,
AV v1 + ASv2 = 0 and v2 = 0.

since H−1
C (·) is positive definite and xlR−xlL

εl
is positive. Since the net-

work does not contain loops of voltage sources only, the matrix AV has
full column rank (see Theorem A.2). Hence, we have also v1 = 0, i.e.,

QC−V S ( w3
w4

) = 0. (4.23)

This implies

G2(u, t)w = G1(u, t)w +








ALL−1(·)AT
LQCRV Sw1

0
0
0
0
0
0
0
0








.
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Multiplying the first line of this equation system by QT
CRV S yields to

QT
CRV SALL−1(·)AT

LQCRV Sw1 = 0, i.e., AT
LQCRV Sw1 = 0.

since L−1(·) is positive definite. Consequently,

(AC , AR, AL, AV )TQCRV Sw1 = 0

Since the network does not contain cutsets of current sources only, we
find always a tree containing capacitive, resistive, inductive and voltage
source branches only. Thus, the matrix (AC , AR, AL, AV ) has full row
rank (see Theorem A.3) and

QCRV Sw1 = 0. (4.24)

Consequently, G1(u, t)w = 0, i.e., w = Q1(u, t)w. On the other hand,
(4.23) and (4.24) imply Q1(u, t)w = 0, i.e., w = 0.

(iii) Dense solvability of G2. Since C∞(Ωl) is dense in L2(Ωl), it is enough
to show that

R
n−1 × R

nL × R
nV × (

nS

X
l=1

C∞(Ωl))
5 × R

nS ⊆ imG2(u, t).

Let y belong to R
n−1×R

nL ×R
nV ×(XnS

l=1 C∞(Ωl))
5×R

nS . With similar
arguments like above, one can show that the matrix





ACC(·)AT
C+ARG(·)AT

RQC

+ALL−1(·)AT
LQCRV S

(AV,AS)−ARG(·)AT
RPCH−1

C
(·)(AV,AS)QC−V S

(AV,AS)TQC −

"

(AV,AS)TPCH−1

C
(·)(AV,AS)+

 

0 0

0
xlR−xlL

εl

!#

QC−V S





is nonsingular. Consequently, we find w1, w3 and w4 such that

ACC(·)AT
Cw1 + ARG(·)AT

RQCw1

+ ALL−1(·)AT
LQCRV Sw1 + AV w3 + ASw4

− ARG(·)AT
RPCH−1

C (·)(AV, AS)QC−V S ( w3
w4

) = y1,

AT
V QCw1 − AT

V PCH−1
C (·)(AV, AS)QC−V S ( w3

w4
) = y3

and

AT
SQCw1 − [AT

SPCH−1
C (·)(AV, AS) + (0, xlR−xlL

εl
)]QC−V S ( w3

w4
)

= −

∫ xlR

xlL

1
εl

∫ τ

xlL

y4l(s) ds dτ. (4.25)
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Defining

w2 = L−1(·)y2 + L−1(·)AT
LQCw1

− L−1(·)AT
LPCH−1

C (·)(AV, AS)QC−V S ( w3
w4

) ,

w8l = y7l −
q
εl

µlnu6l[

∫ x

xlL

y4l(s) ds − (0, I)QC−V S ( w3
w4

)],

w9l = y8l −
q
εl

µlpu7l[

∫ x

xlL

y4l(s) ds − (0, I)QC−V S ( w3
w4

)],

w6l = y5l − R′
lJn

(·)w8l + 1
q
div w8l − R′

lJp
(·)w9l,

w7l = y6l − R′
lJn

(·)w8l − R′
lJp

(·)w9l −
1
q
div w9l,

w5l(x) =

∫ x

xlL

1
εl

∫ τ

xlL

y4l(s) ds dτ + (1 − fl(x))AT
SQCw1

− (1 − fl(x))AT
SPCH−1

C (·)(AV, AS)QC−V S ( w3
w4

)

− hl(x)(w4l − y9l − r2lw8l − r2lw9l)

successively, we obtain w ∈ X and G2(u, t)w = y. Note that (4.25)
ensures w5l(xlR) = 0 in order to guarantee w5 ∈ X5.

2

Remark 4.13 As in case of DAEs, we do not have a free choice for initial
conditions of all components. Theorem 4.10 and 4.11 provide us an informa-
tion about those components we may choose an initial condition for.

• If the coupled system has index 1, then we may require an initial con-
dition for P0u(t0) in imP0, i.e., for PCe in im PC , jL, r1lṼl, nl and
pl for all l = 1, ..., nS. They correspond to the voltages of all capaci-
tive branches, the currents of all inductive branches, the gradient of the
electrostatic potential at the left terminal of each semiconductor as well
as the electron and hole density on each semiconductor. Note, that we
could require an initial condition for the gradient of the electrostatic
potential at the right terminal of a semiconductor, if we would choose
the left one as reference terminal.

• In case of an index-2 system, we may require an initial condition for
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P0P1(u(t0), t0)u(t0) in

imP0P1(u(t0), t0) =

im











PC 0 PCH−1

C
(AT

Ce(t0),t0)(AV,AS)QC−V S 0 0 0 0 0

−L−1(jL(t0),t0)AT
LQCRV S I (0, 0) 0 0 0 0 0

0 0 (0, 0) 0 0 0 0 0
0 0 (0, 0) 0 0 0 0 0
0 0 (0, hl)QC−V S hlr1l 0 0 0 0
0 0 (0, 0) 0 I 0 0 0
0 0 (0, 0) 0 0 I 0 0
0 0 (0, 0) 0 0 0 0 0
0 0 (0, 0) 0 0 0 0 0











.

Obviously, we have a free choice for the electron and hole density on
each semiconductor. Additionally, a few computations show that we
have a free choice for all inductors that do not belong to SI if the set
of inductive branches SI is chosen such that each LI-cutset contains
exactly one inductor of SI . Furthermore, all voltages of capacitive
branches that do not belong to SC,S can be chosen freely if the set of
capacitive branches SC,S is chosen such that each CV S-loop contains
either one capacitor or one semiconductor of SC,S. Finally, the gradient
of the electrostatic potential at the right terminal of a semiconductor
may be chosen freely if the semiconductor does not belong to SC,S.

It remains the interesting question, how one can solve the coupled system
numerically and how sensitive the solution depends on perturbations. The
index characterization above gives a hint for the sensitivity with respect to
perturbations of the right hand side. But first of all we need the existence
and uniqueness of solutions.

In the next sections, we will show that for linear systems arising from a
generalized formulation of coupled systems (cf. Section 3.6). For this, we
formulate a Galerkin approach, which requires the solution of DAEs. Then,
we will show that the Galerkin method converges, under certain assumptions,
to a solution of the abstract differential algebraic system. Finally, we will see
that the solution is unique and depends continuously on the data. Naturally,
the combination of the Galerkin approach with a numerical method for DAEs
(e.g. BDF, cf. Section 1.2.4) provides a numerical method for the solution of
abstract differential algebraic systems.
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4.3 Linear ADA Systems

The goal is to obtain existence and uniqueness of solutions for abstract dif-
ferential algebraic equations of the form

A(Du(t))′ + B(t)u(t) = q(t) for almost all t ∈ (t0, T ) (4.26)

with linear operators A, D and B(t) acting in special Hilbert spaces which
naturally arise by a generalized formulation of coupled systems of differential
algebraic equations and partial differential equations of elliptic and parabolic
type (cf. Section 3.6). Here, (Du)′ denotes the generalized derivative of Du
in the sense of distributions (see Appendix A.4).

Obviously, if A and D represent identity mappings and B is an elliptic opera-
tor, then the system (4.26) represents a system of parabolic differential equa-
tions. Usual approaches to obtain existence results in the theory of parabolic
differential equations are the theory of semigroups and the Galerkin method
(see e.g. [Zei90a]). From the numerical point of view, the Galerkin method
is preferable. Firstly, it provides canonically a numerical method for solving
the ADA system. Secondly, the theory of semigroups treats the abstract
system as an evolution on a manifold. However, this manifold is unknown
at the outset and must be calculated when solving the system numerically.
But, already in the finite dimensional case, a calculation of the manifold (for
a description see e.g. [BM02, RR02]) would be connected with a significant
computational expense, in particular for systems of higher index. Further-
more, it would be necessary to investigate the influence of perturbations of
the manifold onto solutions, since we can not expect to calculate the manifold
exactly.

Although the coupled network-device systems are nonlinear, we are interested
in linear systems here. We consider the following new approach as a starting
point for a general treatment of such coupled systems. Existence proofs for
nonlinear differential equations are often based on the construction of suitable
fixed point mappings using the existence of solutions for linear differential
equation systems. Therefore, we consider unique solvability statements for
linear ADA systems as a substantial basis for a general approach treating
abstract differential algebraic systems.

We make the following assumptions.

(A1) The spaces V , Z and H are real Hilbert spaces. Z ⊆ H ⊆ Z∗ is an
evolution triple (see Appendix A.4).
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(A2) The mapping
D : V → Z

is linear, continuous and surjective. The mapping

A : Z∗ → V ∗

represents the dual mapping of D, that means,

〈Af, v〉
V

= 〈f,Dv〉
Z

for all v ∈ V.

The mapping
B(t) : V → V ∗

is linear, uniformly bounded and uniformly strongly monotone for all
t ∈ [t0, T ]. More precisely, there are constants c1, c2 > 0 such that

〈B(t)u, v〉V ≤ c1‖u‖ ‖v‖, 〈B(t)u, u〉V ≥ c2‖u‖
2

for all u, v ∈ V and t ∈ [t0, T ].

4.4 The solution space W 1
2,D(t0, T ; V, Z, H)

Let t0 < T < ∞. For evolution equations, the natural solution space is
given by the Sobolev space W 1

2 (t0, T ; V,H) (see Appendix A.4). For linear
ADAS of the form (4.26), we have to modify it, since we need the generalized
derivative of (Du)(t) which belongs to Z and not to V . Consequently, we
define

W 1
2,D(t0, T ; V, Z,H) := {u ∈ L2(t0, T ; V ) : (Du)′ ∈ L2(t0, T ; Z∗)}

where (Du)′ denotes the generalized derivative of Du, that means
∫ T

t0

ϕ′(t)Du(t)dt = −

∫ T

t0

ϕ(t)(Du)′(t)dt for all ϕ(t) ∈ C∞
0 (t0, T ).

Here, Du : (t0, T ) → Z is defined by (Du)(t) = Du(t) for all t ∈ (t0, T ).
Note that the space W 1

2,D(t0, T ; V, Z,H) represents also an extension of the
natural solution space

C1
D = {u ∈ C([t0, T ], Rn) : Du ∈ C1([t0, T ], Rm)}

for differential algebraic equations of the form

A[Du(t)]′ + Bu(t) = q(t)

with matrices A, B and D (see Appendix A.3).
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Proposition 4.14 The space W 1
2,D(t0, T ; V, Z,H) forms a real Banach space

with the norm

‖u‖W 1
2,D

:= ‖u‖L2(t0,T ;V ) + ‖(Du)′‖L2(t0,T ;Z∗).

Proof. Obviously, ‖·‖W 1
2,D

is a norm since ‖·‖L2(t0,T ;V ) and ‖·‖L2(t0,T ;Z∗) are

norms. It remains to show that W 1
2,D(t0, T ; V, Z,H) is complete. Let (un) be a

Cauchy sequence in W 1
2,D(t0, T ; V, Z,H). Since L2(t0, T ; V ) and L2(t0, T ; Z∗)

are Banach spaces, we find u ∈ L2(t0, T ; V ) and v ∈ L2(t0, T ; Z∗) with

un → u and (Dun)′ → v.

Since D : V → Z is continuous, we have

Dun → Du in L2(t0, T ; Z).

The continuous embedding Z ⊆ Z∗ yields the continuous embedding L2(t0, T ; Z) ⊆
L2(t0, T ; Z∗). Consequently,

Dun → Du in L2(t0, T ; Z∗).

Since L2(t0, T, Z∗) ⊆ L1(t0, T, Z∗), we get

Dun → Du and (Dun)′ → v in L1(t0, T ; Z∗). (4.27)

For ϕ ∈ C∞
0 (t0, T ), we have

∫ T

t0

ϕ′Dun dt = −

∫ T

t0

ϕ(Dun)′ dt.

(4.27) allows us to apply the limit n → ∞ which yields to

∫ T

t0

ϕ′Du dt = −

∫ T

t0

ϕv dt.

But this means v = (Du)′ and hence u ∈ W 1
2,D(t0, T ; V, Z,H).

2

Proposition 4.15 If u ∈ W 1
2,D(t0, T ; V, Z,H), then Du belongs to the clas-

sical Sobolev space

W 1
2 (t0, T ; Z,H) = {v ∈ L2(t0, T ; Z) : v′ ∈ L2(t0, T ; Z∗)}.
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Proof: Let u belong to W 1
2,D(t0, T ; V, Z,H). This implies u ∈ L2(t0, T ; V ).

Since D : V → Z is continuous, Du belongs to L2(t0, T ; Z) and the propo-
sition is proven.

2

The last proposition implies immediately two important properties of the
function Du if u ∈ W 1

2,D(t0, T ; V, Z,H). The first one is a simple conclusion
of the continuous embedding

W 1
2 (t0, T ; Z,H) ⊆ C([t0, T ], H).

Corollary 4.16 If u ∈ W 1
2,D(t0, T ; V, Z,H), then there exists a uniquely de-

termined continuous function z : [t0, T ] → H which coincides almost every-
where on [t0, T ] with the function Du. Furthermore,

max
t0≤t≤T

‖z(t)‖
H
≤ const‖Du‖W 1

2
.

As a consequence of the generalized integration by parts formula, we obtain
the next corollary.

Corollary 4.17 For all u, v ∈ W 1
2,D(t0, T ; V, Z,H) and arbitrary s, t with

t0 ≤ s ≤ t ≤ T , the following integration by parts formula holds:
(
Du(t)|Dv(t)

)

H
−

(
Du(s)|Dv(s)

)

H
=

∫ t

s

〈(Du)′(τ),Dv(τ)〉
Z

+ 〈(Dv)′(τ),Du(τ)〉
Z

dτ. (4.28)

Here, the values of Du and Dv are the values of the continuous functions zu,
zv : [t0, T ] → H in the sense of Corollary 4.16.

Remark 4.18 All statements and arguments of this section remain true if D
depends on t provided that D(·, t) : V → Z is uniformly Lipschitz continuous
for almost all t ∈ (t0, T ), i.e.

‖D(u, t) −D(v, t)‖Z ≤ c‖u − v‖V ∀u, v ∈ V, for almost all t ∈ (t0, T )

with a constant c > 0 being independent of t.

4.5 The Galerkin Method for ADA Systems

As explained in the section before, the natural solution space for ADA Sys-
tems of the form (4.26) is given by W 1

2,D(t0, T ; V, Z,H). Therefore, we con-
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sider the initial value problem

A[Du(t)]′ + B(t)u(t) = q(t) for almost all t ∈ (t0, T ), (4.29)

Du(t0) = z0 ∈ Z (4.30)

with u ∈ W 1
2,D(t0, T ; V, Z,H). We will need, additionally, the following as-

sumptions.

(A3) Let z0 ∈ Z and q ∈ L2(t0, T ; Z∗) be given.

(A4) {w1, w2, ...} is a basis in V and {z1, z2, ...} is a basis in Z such that, for
all n ∈ N,

∃mn ∈ N : {Dw1, ...,Dwn} ⊆ span{z1, ..., zmn
}.

Furthermore, (zn0) is a sequence from Z with

zn0 → z0 in Z as n → ∞,

where
zn0 ∈ span{Dw1, ...,Dwn} for all n.

In order to formulate the Galerkin method, we set

un(t) =
n∑

i=1

cin(t)wi.

Additionally, we use the formulation

〈A[Du(t)]′, v〉
V

+ 〈B(t)u(t), v〉
V

= 〈q(t), v〉
V

∀ v ∈ V (4.31)

which is equivalent to (4.29) for almost all t ∈ (t0, T ). Then, we obtain the
Galerkin equations if we replace u by un and v by wi:

〈A[Dun(t)]′, wi〉V + 〈B(t)un(t), wi〉V = 〈q(t), wi〉V, (4.32)

Dun(t0) = zn0, (4.33)

for all i = 1, ..., n. By assumption (A2) equation (4.32) reads as

〈[Dun(t)]′,Dwi〉Z + 〈B(t)un(t), wi〉V = 〈q(t), wi〉V. (4.34)

Regarding the continuous embedding H ⊆ V ∗, we may also write

([Dun(t)]′|Dwi)H + 〈B(t)un(t), wi〉V = 〈q(t), wi〉V.
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Consequently, the Galerkin equations are given by

(
n∑

j=1

[cjn(t)Dwj]
′|Dwi

)

H

+
n∑

j=1

〈B(t)wj, wi〉Vcjn(t) = 〈q(t), wi〉V, (4.35)

Dun(t0) = zn0, (4.36)

for all i = 1, ..., n. If we take into account assumption (A4), then we find
coefficients aik with i = 1, ..., n and k = 1, ...,mn such that

Dwi =
mn∑

k=1

aikzk ∀ i = 1, ..., n.

Note that the coefficients are simply given by aik = (Dwi|zk)H if the basis
{z1, z2, ...} is an orthonormal basis in Z.

Consequently, equation (4.35) is equivalent to

mn∑

k=1

(
n∑

j=1

[cjn(t)Dwj]
′|aikzk

)

H

+
n∑

j=1

〈B(t)wj, wi〉Vcjn(t) = 〈q(t), wi〉V

for all i = 1, ..., n. This can be rewritten as

mn∑

k=1

aik
d

dt

(
n∑

j=1

(Dwj|zk)Hcjn(t)

)

+
n∑

j=1

〈B(t)wj, wi〉Vcjn(t) = 〈q(t), wi〉V.

Furthermore, equation (4.36) is equivalent to

n∑

j=1

cjn(t0)(Dwj|zk)H =
n∑

j=1

αjn(Dwj|zk)H ∀ k = 1, ...,mn,

where zn0 =
∑n

j=1 αjnDwj. The existence of the coefficients αjn and the
second equivalence are ensured by Assumption (A4). Hence, the Galerkin
equations represent an initial value differential algebraic equation

A(Dcn(t))′ + B(t)cn(t) = r(t) (4.37)

Dcn(t0) = Dαn (4.38)

for the coefficients cnj(t) if we introduce the vector function cn(·) as

cn(t) = (cnj(t))j=1,...,n for all t ∈ [t0, T ]
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and the vector αn = (αjn(t))j=1,...,n. The matrices A, D and B(t) are given
by

A = (aik) i=1,...,n
k=1,...,mn

, D = (dkj)k=1,...,mn
j=1,...,n

, B(t) = (bij(t))i=1,...,n
j=1,...,n

with
dkj = (Dwj|zk)H and bij(t) = 〈B(t)wj, wi〉V

for i, j = 1, ..., n and k = 1, ...,mn. Finally, the vector function for the right
hand side reads as

r(t) = (rj(t))j=1,...,n

with rj(t) = 〈q(t), wj〉V for j = 1, ..., n.

Proposition 4.19 The differential algebraic equation (4.37) arising from
the Galerkin approach for the IVP (4.29)-(4.30) has a proper stated leading
term, that means

ker A ⊕ im D = R
mn .

Proof. We shall show first that the intersection of the spaces ker A and
im D is trivial. We assume y ∈ R

mn to belong to this intersection, that
means

mn∑

k=1

aikyk = 0 for all i = 1, ..., n.

Furthermore there exist pj ∈ R
n for j = 1, ..., n such that

yk =
n∑

j=1

(Dwj|zk)Hpj for all k = 1, ...,mn.

Multiplying the last equations by aik and summing over k = 1, ...,mn we get

n∑

j=1

(Dwj|
mn∑

k=1

aikzk)Hpj = 0 for all i = 1, ..., n.

This implies

(
n∑

j=1

pjDwj|Dwi)H = 0 for all i = 1, ..., n.

because of the definition of the coefficients aik. Multiplying this by pi and
building the sum over i = 1, ..., n we obtain

‖
n∑

j=1

pjDwj‖
2
H

= 0, which implies
n∑

j=1

pjDwj = 0.
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Consequently,

yk =
n∑

j=1

(pjDwj|zk)H = 0 for all k = 1, ...,mn.

It remains to show that the sum of the spaces kerA and im D spans the
whole space R

mn . For this, it is enough to verify that

dim ker A ≥ mn − dim im D.

Let d be the dimension of im D. If d = mn we are done. If d < mn, then
let, without loss of generality, the first d rows of D be linearly independent.
Then, we find for all k with d < k ≤ mn real values λk1, ..., λkd such that

dki =
k∑

j=1

λkjdji ∀ i = 1, ...,mn.

Regarding the definition of dki we may rewrite this equation as

(Dwi|zk −
k∑

j=1

λkjzj)H = 0 ∀ i = 1, ...,mn.

Using the definition of A we find

mn∑

l=1

ail(zl|zk −
k∑

j=1

λkjzj)H = 0 ∀ i = 1, ...,mn.

This implies Ayk = 0 for yk = (ykl)l=1,...,mn
with

ykl = (zl|zk −
k∑

j=1

λkjzj)Z ∀ l = 1, ...,mn.

Consequently, dim ker A ≥ mn − d holds if {yk; k = d + 1, ...,mn} is linearly
independent. We assume linear dependency, that means, we find µd+1, ..., µmn

such that
mn∑

k=d+1

µkyk = 0.

This implies

mn∑

k=d+1

µk(zl|zk −
k∑

j=1

λkjzj)H = 0 ∀ l = 1, ...,mn.
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Defining

ξkj :=







− λkj if 1 ≤ j ≤ d

1 if j = k

0 else

for all k = d + 1, ...,mn, the last equation reads as

(zl|
mn∑

k=d+1

µk

mn∑

j=1

ξkjzj)H = 0 ∀ l = 1, ...,mn.

This yields

(
mn∑

l=1

mn∑

k=d+1

µkξklzl|
mn∑

j=1

mn∑

k=d+1

µkξkjzj)H = 0

and hence
mn∑

j=1

mn∑

k=d+1

µkξkjzj = 0

Since {z1, ..., zmn
} is linearly independent, we get

mn∑

k=d+1

µkξkj = 0 ∀ j = 1, ...,mn.

Considering the definition of ξkj, we obtain that µj = 0 for j = d + 1, ...,mn,
that means {yk; k = d + 1, ...,mn} is linearly independent.

2

Proposition 4.20 For the leading term matrix functions of the differential
algebraic equation (4.37) holds

(i) (im A)⊥ = ker D,

(ii) AD is positive semidefinite,

(iii) B(t) is positive definite for all t ∈ [t0, T ].

Proof. Ad(i) Any vector y ∈ R
n belongs to ker D if and only if

n∑

j=1

(Dwj|zl)Hyj = 0 ∀ l = 1, ...,mn
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or, equivalently,
n∑

j=1

(
mn∑

k=1

ajkzk|zl)Hyj = 0 ∀ l = 1, ...,mn.

This is equivalent to
mn∑

k=1

n∑

j=1

yjajkzk = 0,

that means,
∑n

j=1 yjajk = 0 for all k = 1, ...,mn, since {zk; k = 1, ...,mn} is

linearly independent. But this means nothing else than y ∈ (ker A)⊥.

Ad(ii) For any y ∈ R
n we have

yTADy =
mn∑

k=1

n∑

i=1

n∑

j=1

aikdkjyiyj =
n∑

i=1

n∑

j=1

(Dwj|Dwi)Hyiyj

= (
n∑

j=1

yjDwj|
n∑

i=1

yiDwi)H = ‖
n∑

j=1

yjDwj‖
2
H
≥ 0.

Ad(iii) Let y 6= 0 be any vector in R
n. Then we get

yTB(t)y =
n∑

i=1

n∑

j=1

yi〈B(t)wj, wi〉Vyj = 〈B(t)(
n∑

j=1

yjwj),
n∑

i=1

yiwi〉V > 0

since B(t) is strongly monotone and w1, ..., wn are linearly independent.
2

Proposition 4.21 The differential algebraic equation (4.37) arising from
the Galerkin approach for the IVP (4.29)-(4.30) has at most index 1.

Proof. If AD is singular, then let Q be any projector onto kerAD. We
shall show that the matrix

G1 := AD + B(t)Q

is nonsingular. We assume y to belong to the null space of G1, i.e.

ADy + B(t)Qy = 0 (4.39)

Multiplying the equation by (Qy)T we get

(Qy)TB(t)Qy = 0

since ker QT = im A (see Proposition 4.20). The positive definiteness of B
yields Qy = 0 and, regarding (4.39), we have ADy = 0. But the latter
equation means nothing else than y = Qy and, finally, y = 0.

2
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4.6 Unique Solvability

In order to obtain unique solutions via the Galerkin method we shall need,
additionally, the following assumption.

(A5) The null space of D splits the space V . This implies the existence of
a projection operator Q : V → V with imQ = kerD. The operator
P : V → V is the complementary projection operator, that means,
P = I − Q where I is the identity operator on V . Furthermore, the
basis {w1, w2, ...} is chosen such that

wi ∈ imP for odd i, and wi ∈ imQ for even i.

This assumption shall guarantee that the dynamic part of the solution will
be approximated by linear combinations of the basis functions with odd i.
Correspondingly, the non-dynamic part of the solution will be approximated
by linear combinations of the basis functions with even i. In applications, it
should not be a problem to fulfill assumption (A5).

In the proof of the existence and uniqueness of solutions, we will need some
properties of the adjoint operator of the projection operator Q. Therefore,
we summarize them in the following lemma.

Lemma 4.22 Let V and Z be Banach spaces. Furthermore, let D be a
linear, continuous, and surjective operator D : V → Z.
If Q : V → V is a projection operator onto kerD, then the adjoint operator
Q∗ : V ∗ → V ∗ defined by

〈Q∗v̄, v〉
V

= 〈w,Qv〉
V

∀ v̄ ∈ V ∗, v ∈ V

is a projection operator along imD∗ for the adjoint operator D∗ : Z∗ → V ∗

defined by
〈D∗z̄, v〉

V
= 〈z̄,Dv〉

Z
∀ z̄ ∈ Z∗, v ∈ V.

Proof: (i) Q∗2 = Q. For all v̄ ∈ V ∗ and v ∈ V , we have

〈Q∗2v̄, v〉
V

= 〈Q∗v̄,Qv〉
V

= 〈v̄,Q2v〉
V

= 〈v̄,Qv〉
V

= 〈Q∗v̄, v〉
V
.

(ii) Continuity. Let v 6= 0 belong to V and v̄ ∈ V ∗. This implies

∣
∣
∣
∣

〈

Q∗v̄,
v

‖v‖

〉∣
∣
∣
∣
=

∣
∣
∣
∣

〈

v̄,
Qv

‖v‖

〉∣
∣
∣
∣
=

∣
∣
∣
∣

〈

v̄,
Qv

‖Qv‖

〉∣
∣
∣
∣

‖Qv‖

‖v‖
≤ const‖v̄‖V ∗
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since Q is continuous. But this means ‖Q∗v̄‖V ∗ ≤ const‖v̄‖V ∗ .

(iii) imD∗ ⊆ kerQ∗. For all z̄ ∈ Z∗, we get

〈Q∗(D∗z̄), v〉
V

= 〈D∗z̄,Qv〉
V

= 〈z̄,D(Qv)〉
Z

= 0.

(iv) kerQ∗ ⊆ imD∗. Let v̄ ∈ kerQ∗, i.e.,

0 = 〈Q∗v̄, v〉
V

= 〈v̄,Qv〉
V

(4.40)

for all v ∈ V . Since D is surjective, we find, for all z ∈ Z a v ∈ V such that
z = Dv. This allows us to define a functional z̄ ∈ Z∗ by

〈z̄, z〉
Z

:= 〈v̄, v〉
V

for any v ∈ V with z = Dv. The functional z̄ is well defined since, for any
v1, v2 ∈ V with

Dv1 = z = Dv2,

it follows v1 − v2 ∈ kerD = imQ and, consequently,

〈v̄, v1〉V = 〈v̄, v2〉V

if we regard (4.40). Finally, for all v ∈ V ,

〈D∗z̄, v〉
V

= 〈z̄,Dv〉
Z

= 〈v̄, v〉
V
,

which yields to v̄ = D∗z̄ ∈ imD∗.
2

Note that the surjectivity of D was needed for the relation kerQ∗ ⊆ imD∗

only.

Theorem 4.23 Let the assumptions (A1)-(A5) be satisfied. Then, the ADA
system (4.29)-(4.30) has exactly one solution u ∈ W 1

2,D(t0, T ; V, Z,H).

The following proof orients towards the existence proof for first-order lin-
ear evolution equations presented in [Zei90a]. The main differences are the
following.

1. We are looking for solutions u ∈ W 1
2,D(t0, T ; V, Z,H) instead of u ∈

W 1
2 (t0, T ; V,H).

2. The Galerkin equations represent a differential algebraic equation in-
stead of an explicit ordinary differential equation.
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3. Appropriate initial conditions are given only for Du(t0) instead of whole
u(t0).

4. Assumption (A5) is needed to ensure the existence of the generalized
derivative (Du)′.

Proof. For brevity we set W = W 1
2,D(t0, T ; V, Z,H).

Step 1: Uniqueness. We suppose u1 and u2 to be two solutions of the system
(4.29)-(4.30). Then, the difference u = u1 − u2 satisfies the initial value
problem

A[Du(t)]′ + B(t)u(t) = 0 for almost all t ∈ (t0, T ),

Du(t0) = 0

with u ∈ W . This yields

∫ T

t0

〈
A[Du(t)]′, u(t)

〉

V
dt +

∫ T

t0

〈
B(t)u(t), u(t)

〉

V
dt = 0.

Regarding Assumption (A1) and (A2), we have

〈
A(Du)′(t), u(t)

〉

V
=

(
(Du)′(t)|Du(t)

)

H
.

By the integration by parts formula (4.28) we get

1
2
‖Du(T )‖2

Z
− 1

2
‖Du(t0)‖

2
H

= −

∫ T

t0

〈
Bu(t), u(t)

〉

V
dt.

Since B(t) is uniformly strongly monotone, there is a constant c > 0 such
that

1
2
‖Du(T )‖2

Z
− 1

2
‖Du(t0)‖

2
Z
≤ − c

∫ T

t0

‖u(t)‖2
V

dt.

The initial condition Du(t0) = 0 implies

1
2
‖Du(T )‖2

Z
+ c

∫ T

t0

‖u(t)‖2
V

dt ≤ 0,

and, consequently, u(t) = 0 for almost all t ∈ (t0, T ).

Step 2: Existence proof via the Galerkin method.
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(I) Solution of the Galerkin equations. The Galerkin equations (4.37)-
(4.38) represent an initial value differential algebraic equation with in-
dex 1 (see Proposition 4.21). Since q ∈ L2(t0, T ; V ∗), the right hand
side r of the Galerkin equations belongs to L2(t0, T ; Rn). Applying
Theorem A.9, the Galerkin equations have a unique solution in

L2
D(t0, T ; Rn) = {u ∈ L2(t0, T ; Rn) : Du ∈ C([t0, T ], Rmn)}.

(II) A priori estimates for the Galerkin solution. Multiplying the Galerkin
equations (4.35) by cnj(t) and summing over j = 1, ..., n, we obtain

(
(Dun)′(t)|Dun(t)

)

H
+

〈
B(t)un(t), un(t)

〉

V
=

〈
q(t), un(t)

〉

V

Due to the product formula for real valued functions we get

d

dt

(
Dun(t)|Dun(t)

)

H
= 2

(
(Dun)′(t)|Dun(t)

)

H
.

This implies

d

dt
‖Dun(t)‖2

H
+ 2

〈
B(t)un(t), un(t)

〉

V
= 2

〈
q(t), un(t)

〉

V

Integration over t yields

‖Dun(T )‖2
H
− ‖Dun(t0)‖

2
H

+ 2

∫ T

t0

〈
B(t)un(t), un(t)

〉

V
dt = 2

∫ T

t0

〈
q(t), un(t)

〉

V
dt.

Since B(t) is strongly monotone with a constant C0 independent of t,
we get

‖Dun(T )‖2
H

+ 2C0

∫ T

t0

‖un(t)‖2
V

dt ≤

‖Dun(t0)‖
2
H

+ 2

∫ T

t0

〈
q(t), un(t)

〉

V
dt.

Using the classical inequality

2|xy| ≤ C−1
0 x2 + C0y

2,

and the assumption that q belongs to L2(t0, T ; V ∗), we find

‖Dun(T )‖2
H

+ 2C0

∫ T

t0

‖un(t)‖2
V

dt ≤

‖Dun(t0)‖
2
H

+ C−1
0

∫ T

t0

‖q‖2
V

∗ dt + C0

∫ T

t0

‖un(t)‖2
V

dt.
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Consequently, there is a constant C such that

∫ T

t0

‖un(t)‖2
V

dt ≤ C

(

‖Dun(t0)‖
2
H

+

∫ T

t0

‖q‖2
V

∗ dt

)

. (4.41)

(III) Weak convergence of the Galerkin method in L2(t0, T ; V ). Because of
Dun(t0) = zn0 → z0 in Z as n → ∞, the a priori estimate (4.41) yields
the boundedness of the sequence (un) in the Hilbert space L2(t0, T ; V ).
Therefore there is a weakly convergent subsequence (un′) with

un′ ⇀ u in L2(t0, T ; V ) as n → ∞. (4.42)

The goal is now to show that u belongs to W and that u is a solution of
the original equation (4.29)-(4.30). If this done, then we know because
of uniqueness (see Step 1) that all weakly convergent subsequences (un′)
have the same limit u and thus

un ⇀ u in L2(t0, T ; V ) as n → ∞.

(III-1) We shall show the key equation

−
(
z0|Dv

)

H
ϕ(t0) −

∫ T

t0

(
Du(t)|Dv

)

H
ϕ′(t) dt

+

∫ T

t0

〈
B(t)u(t), v

〉

V
ϕ(t) dt =

∫ T

t0

〈
q(t), v

〉

V
ϕ(t) dt (4.43)

for all v ∈ V and real functions

ϕ ∈ C1[t0, T ] with ϕ(T ) = 0. (4.44)

Let ϕ be as in (4.44). We multiply the Galerkin equations (4.35) by ϕ
and use the integration by parts formula (4.28) in order to get

−
(
z0|Dwi

)

H
ϕ(t0) −

∫ T

t0

(
Dun(t)|Dwi

)

H
ϕ′(t) dt

+

∫ T

t0

〈
B(t)un(t), wi

〉

V
ϕ(t) dt =

∫ T

t0

〈
q(t), wi

〉

V
ϕ(t) dt (4.45)

for all i = 1, ..., n. In order to be able to apply the weak limit, we shall
show that the integral terms on the left-hand side are linear continuous
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functionals on the space L2(t0, T ; V ). Using the Hölder inequality and
the continuity of D, we get

∣
∣
∣
∣

∫ T

t0

(
Dun(t)|Dwi

)

H
ϕ′(t) dt

∣
∣
∣
∣
≤

∫ T

t0

‖Dun(t)‖
H
‖Dwi‖H|ϕ

′(t)| dt

≤ C1‖wi‖V

(∫ T

t0

‖un(t)‖2
V

dt

) 1

2

= C1‖wi‖V‖un‖L2(t0,T ;V ) (4.46)

for all i = 1, ..., n. Since B(t) is bounded with a constant independent
of t, we find

∣
∣
∣
∣

∫ T

t0

〈
B(t)un(t), wi

〉

V
ϕ(t) dt

∣
∣
∣
∣

≤ C2

∫ T

t0

‖un(t)‖
V
‖wi‖V|ϕ(t)| dt

≤ C3‖wi‖V‖un‖L2(t0,T ;V ) (4.47)

for all i = 1, ..., n. Applying now the weak limit (4.42) to equation
(4.45), we obtain

−
(
z0|Dwi

)

H
ϕ(t0) −

∫ T

t0

(
Du(t)|Dwi

)

H
ϕ′(t) dt

+

∫ T

t0

〈
B(t)u(t), wi

〉

V
ϕ(t) dt =

∫ T

t0

〈
q(t), wi

〉

V
ϕ(t) dt(4.48)

for all i = 1, ..., n. By assumption (A4), there exists a sequence (vn)
with

vn → v in V as n → ∞,

where each vn is a finite linear combination of certain basis elements
wi. Regarding the continuity of D, the inequalities (4.46), (4.47), and
q ∈ L2(t0, T ; V ∗), we obtain that equation (4.48) is also satisfied if we
replace wi by v, that means the key equation (4.43) is satisfied.

III-2 Proof that u belongs to W 1
2,D(t0, T ; V, Z,H). Considering Assumption

(A5), the Galerkin equations (4.32) with basis elements with even i
imply that

〈q(t) − B(t)un(t), wi〉V = 〈A[Dun(t)]′, wi〉V
= 〈[Dun(t)]′,Dwi〉Z = 0 (4.49)

for all n = 1, 2, ... and almost all t ∈ (t0, T ). Recall that wi ∈ imQ =
kerD for even i. Due to (4.47), we may apply again the weak limit,
that means

∫ T

t0

〈q(t), wi〉Vϕ(t) dt −

∫ T

t0

〈B(t)u(t), wi〉Vϕ(t) dt = 0
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for all ϕ ∈ C∞
0 (t0, T ). Applying the variational lemma, we get

〈q(t), wi〉V − 〈B(t)u(t), wi〉V = 0

for almost all t ∈ (t0, T ). For any v ∈ imQ, we find a sequence (vn)
with

vn → v in V as n → ∞

where each vn is a linear combination of the basis elements wi with
even i. Consequently,

〈q(t), v〉
V
− 〈B(t)u(t), v〉

V
= 0 (4.50)

for all v ∈ im Q. This allows us to define a functional z̄(t) ∈ Z∗ such
that

〈z̄(t), z〉
Z

= 〈q(t) − B(t)u(t), v〉
V

(4.51)

for almost all t ∈ (t0, T ) and for all z ∈ Z with z = Dv for some
v ∈ V . Since D is surjective, the functional is defined for all z ∈ Z.
Furthermore, z̄(t) is well defined since

〈z̄(t),Dv1〉Z = 〈z̄(t),Dv2〉Z

for any v1, v2 ∈ V with Dv1 = Dv2. This is a conclusion from the fact
that v1 − v2 belongs to imQ and (4.50). We shall show that z̄ belongs
to L2(t0, T ; Z∗). We have

‖z̄(t)‖
Z
∗ = sup

‖z‖
Z
≤1

∣
∣〈z̄(t), z〉

Z

∣
∣ = sup

‖Dv‖
Z
≤1, v∈kerQ

∣
∣〈q(t) − B(t)u(t), v〉

V

∣
∣

≤ sup
‖Dv‖

Z
≤1, v∈kerQ

‖q(t) − B(t)u(t)‖
V

∗‖v‖
V
.

Note that D is bijective from kerQ to Z. Using the open mapping
theorem and regarding that D is also linear and continuous, we find a
constant C ≥ 0 such that

‖v‖
V
≤ C‖Dv‖

Z
for all v ∈ kerQ.

This implies
‖z̄(t)‖

Z
∗ ≤ C‖q(t) − B(t)u(t)‖

V
∗ (4.52)

for almost all t ∈ (t0, T ). Since q ∈ L2(t0, T ; V ∗), u ∈ L2(t0, T ; V ), and
B(t) is uniformly bounded, we obtain z̄ ∈ L2(t0, T ; Z∗). Using the key
equation (4.43) and (4.51), we arrive at

−

∫ T

t0

(
Du(t)|Dv

)

H
ϕ′(t) =

∫ T

t0

〈
z̄(t),Dv

〉

V
ϕ(t) dt
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for all v ∈ V and ϕ ∈ C∞
0 (t0, T ). Since D is surjective, we have

−

∫ T

t0

〈Du(t), z〉
Z
ϕ′(t) =

∫ T

t0

〈z̄(t), z〉
Z
ϕ(t) dt

for all z ∈ Z. This is equivalent to

〈

−

∫ T

t0

Du(t)ϕ′(t) −

∫ T

t0

z̄(t)ϕ(t) dt, z

〉

Z

= 0 ∀z ∈ Z.

since ϕ′Du and ϕz belong to L2(t0, T ; Z∗) for all ϕ ∈ C∞
0 (t0, T ). But

this means that

−

∫ T

t0

Du(t)ϕ′(t) =

∫ T

t0

z̄(t)ϕ(t) dt,

and, finally, Du has the generalized derivative z̄ ∈ L2(t0, T ; Z∗). Hence,
u belongs to W 1

2,D(t0, T ; V, Z,H).

III-3 Proof that u fulfills (4.29). Since z̄ = (Du)′, we have, by (4.51),

〈(Du)′(t),Dv〉
Z

= 〈q(t) − B(t)u(t), v〉
V

(4.53)

for all v ∈ V and almost all t ∈ (t0, T ). By Assumption (A2), we get

〈A(Du)′(t), v〉
V

= 〈q(t) − B(t)u(t), v〉
V
.

But this means that (4.29) is satisfied.

III-4 Proof that u fulfills (4.30). Since u ∈ W 1
2,D(t0, T ; V, Z,H), we can apply

the integration by parts formula (4.28). This yields

(Du(T ), ϕ(T )Dv)
H
− (Du(t0), ϕ(t0)Dv)

H
=

∫ T

t0

〈(Du)′(t), ϕ(t)Dv〉
Z

+ (Du(t)|ϕ′(t)Dv)
H

dt

for all ϕ ∈ C1[t0, T ] and v ∈ V . In particular, if ϕ(t0) = 1 and
ϕ(T ) = 0, then equation (4.43) along with (4.53) yields

(Du(t0) − z0|Dv)
H

= 0 for all v ∈ V.

Since D is surjective and Z is dense in H, we get Du(t0) = z0.

2
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4.7 Continuous Dependence on the Data

Theorem 4.24 Let the assumptions (A1)-(A5) be satisfied. Then, the ADA
system (4.29)-(4.30) has at most index 1, that means, the map G1(t) : V →
V ∗ defined as

〈G1(t)u, v〉
V

= 〈A(Du), v〉
V

+ 〈B(t)Qu, v〉
V

for all v ∈ V

is injective and densely solvable for all u ∈ V . The system has index 0 if and
only if D is injective.

Remark 4.25 Here, Du is considered as the unique element of Z∗ satisfying

〈Du, z〉Z = (Du|z)H ∀z ∈ Z.

Proof. Step 1. Injectivity of G1(t). Let u belong to the null space of G1(t).
This implies

〈A(Du), v〉
V

+ 〈B(t)Qu, v〉
V

= 0 for all v ∈ V.

Due to Assumption (A2) we have

〈Du,Dv〉
Z

+ 〈B(t)Qu, v〉
V

= 0 for all v ∈ V. (4.54)

In particular, for v = Qu, we get

〈B(t)Qu,Qu〉
V

= 0.

Since B(t) is strictly monotone, it implies Qu = 0. This yields Du = 0 if we
use v := u in (4.54). Consequently, u = Qu = 0.

Step 2. imG1(t) = V ∗. Since G1(t) is linear, it is sufficient to show that
imG1(t) is closed and

(imG1(t))
⊥ = {v ∈ V : 〈G1(t)u, v〉

V
= 0 ∀u ∈ V } = {0}.

(I) imG1(t) is closed. Let (vn) be a Cauchy sequence in imG1(t) ⊆ V ∗.
Since A, D, B(t), and Q are linear and continuous, the map G1(t) is
also linear and continuous. From step 1 we know that G1(t) is injective.
Hence, G1(t) is bijective from V → imG1(t) and the inverse G−1

1 (t) :
imG1(t) → V is continuous. This implies that (G−1

1 (t)vn) is a Cauchy
sequence in the Banach space V . Thus, (G−1

1 (t)vn) converges in V . We
denote its limit by u. Using the continuity of G1(t), we get

vn → G1(t)u ∈ imG1(t),

that means, imG1(t) is closed.
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(II) (imG1(t))
⊥ = {0}. Let v belong to (imG1(t))

⊥. This yields

〈A(Du) + B(t)Qu, v〉
V

= 0 ∀u ∈ V.

It implies
〈A(Du), v〉

V
= 0 ∀u ∈ imP .

Since D is surjective, we get

〈Az, v〉
V

= 0 ∀z ∈ Z.

Due to Assumption (A1) and (A2), we have

(z|Dv)
H

= 0 ∀z ∈ Z.

It implies Dv = 0 if we choose z = Dv. Consequently, v ∈ imQ and

0 = 〈B(t)Qu, v〉
V

= 〈B(t)Qu,Qv〉
V

∀u ∈ V.

Choosing u = v, we arrive at

0 = 〈B(t)Qv,Qv〉
V
≥ C‖Qv‖2

V
,

since B(t) is strongly monotone. Finally, we have

v = Qv = 0.

Step 3. If D is injective, then Q is the zero mapping and G = AD is bijective
due to step 1 and step 2. Conversely, injectivity of AD implies injectivity of
D. Consequently, (4.29)-(4.30) has index 0 if and only if D is injective.

2

From the theory of DAEs we know that index-1 systems have solutions which
depend continuously on the data. The following theorem shows that this is
also the case for the solution of the index-1 ADA system (4.29)-(4.30).

Theorem 4.26 Let the assumptions (A1)-(A5) be satisfied. Furthermore,
let u ∈ W 1

2,D(t0, T ; V, Z,H) be the unique solution of the ADA system (4.29)-
(4.30). Then, the map

(z0, q) 7→ u

is linear and continuous from Z × L2(t0, T ; V ∗) to W 1
2,D(t0, T ; V, Z,H), i.e.,

there is a constant C > 0 such that

‖u‖W 1
2,D

≤ C(‖z0‖H + ‖q‖L2(t0,T ;V ∗)),

for all z0 ∈ Z and b ∈ L2(t0, T ; V ∗).
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Proof. In the proof of Theorem 4.23 we have seen that

un ⇀ u in L2(t0, T ; V ) as n → ∞.

From the Banach-Steinhaus theorem it follows that

‖u‖L2(t0,T ;V ) ≤ lim
n→∞

‖un‖L2(t0,T ;V ).

Using the a priori estimate (4.41), the continuity of D and Assumption (A4),
we find a constant C1 ≥ 0 such that

‖u‖L2(t0,T ;V ) ≤ C1

(
‖z0‖H + ‖q‖L2(t0,T ;V∗)

)
(4.55)

Using inequality (4.52), we obtain

‖(Du)′‖L2(t0,T ;Z∗) ≤ C2

(
‖u‖L2(t0,T ;V ) + ‖q‖L2(t0,T ;V ∗)

)

if we regard that z̄ = (Du)′ in the proof of theorem 4.23. Together with
(4.55), it implies the assertion with the constant C = C1C2 + C1 + C2 > 0.

2

4.8 Strong Convergence of the Galerkin Method

Theorem 4.27 Let the assumptions (A1)-(A5) be satisfied. Then, for all
n = 1, 2, ..., the Galerkin equations (4.37)-(4.38) have exactly one solution

un ∈ W 1
2,D(t0, T ; V, Z,H).

The sequence (un) converges as n → ∞ to the solution u of (4.29)-(4.30) in
the following sense:

un → u in L2(t0, T ; V ) and max
t0≤t≤T

‖Dun(t) −Du(t)‖
H
→ 0.

Proof. In the proof of Theorem 4.23, the Galerkin equations (4.37)-(4.38)
are shown to have a unique solution un ∈ W 1

2,D(t0, T ; V, Z,H). Further-
more, it was shown that the unique solution u of (4.29)-(4.30) belongs to
W 1

2,D(t0, T ; V, Z,H).

Step 1. We shall show that max
t0≤t≤T

‖Dun(t) −Du(t)‖
H
→ 0. Since

W 1
2 (t0, T ; V,H) ⊆ C([t0, T ], H),
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we get Du ∈ C([t0, T ], H) and Dun ∈ C([t0, T ], H). We introduce

Hn = span {Dw1, ...,Dwn} ⊆ Z ⊆ H.

Due to Assumption (A5),

Hn = span {Dwi, 1 ≤ i ≤ n, i odd}.

Since the set of all polynomials p : [t0, T ] → Z is dense in W 1
2 (t0, T ; Z,H)

we find, for u ∈ W 1
2,D(t0, T ; V, Z,H) and each ε > 0, a polynomial

p(t) =
∑

i

tiai

with coefficients ai ∈ Z and

‖Du − p‖W 1
2
(t0,T ;Z,H) =

(∫ T

t0

‖Du(t) − p(t)‖2
Z

dt
) 1

2

+
(∫ T

t0

‖(Du)′(t) − p′(t)‖2
Z
∗ dt

) 1

2

≤ ε.

Due to the fact that ∪
n
Hn is dense in Z, we obtain that the set of all polyno-

mials with coefficients in ∪
n
Hn is dense in W 1

2 (t0, T ; Z,H). Thus there exists

a sequence (pn) of polynomials

pn : [t0, T ] → Hn

with

pn → Du in W 1
2 (t0, T ; Z,H) as n → ∞.

The continuity of the embedding W 1
2 (t0, T ; Z,H) ⊆ C([t0, T ]), H) implies

max
t0≤t≤T

‖Du(t) − pn(t)‖
H
≤ const ‖Du − pn‖W 1

2
(t0,T ;Z,H) → 0. (4.56)

Since

max
t0≤t≤T

‖Dun(t)−Du(t)‖
H
≤ max

t0≤t≤T
‖Dun(t)−pn(t)‖

H
+ max

t0≤t≤T
‖Du(t)−pn(t)‖

H

it is enough to show that

max
t0≤t≤T

‖Dun(t) − pn(t)‖
H
→ 0 as n → ∞. (4.57)
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Regarding Dun(t0) = zn0 → z0 in Z as n → ∞, the inequality (4.56) yields

‖Dun(t0) − pn(t0)‖H ≤ ‖Dun(t0) −Du(t0)‖H + ‖Du(t0) − pn(t0)‖H
= ‖zn0 − z0‖H + ‖Du(t0) − pn(t0)‖H
→ 0 as n → ∞. (4.58)

Here we have used the continuity of the embedding Z ⊆ H. Since pn(t)
belongs to Hn for all t ∈ [t0, T ], we find coefficients βin(t) such that

pn(t) =
n∑

i=1

βin(t)Dwi.

Introducing

vn(t) =
n∑

i=1

βin(t)wi.

we have pn = Dvn. From the Galerkin equations (4.34) we get

〈(Dun)′,Dun − pn〉Z = 〈q − B(t)un, un − vn〉V.

In the proof of Theorem 4.23 we have seen that the generalized derivative
(Du)′ satisfies (4.51) with z̄ = (Du)′. This implies

〈(Dun)′,Dun − pn〉Z = 〈(Du)′,Dun − pn〉Z + 〈B(t)u − B(t)un, un − vn〉V.

Since B(t) is strongly monotone, we have

〈B(t)u − B(t)un, u − un〉V ≥ 0

and, consequently,

〈(Dun)′,Dun−pn〉Z ≤ 〈(Du)′,Dun−pn〉Z + 〈B(t)u−B(t)un, u−vn〉V. (4.59)

The equation (4.49) yields

〈q − B(t)un, v〉
V

= 0 ∀ v ∈ imQ.

Together with (4.50) it implies

〈B(t)u − B(t)un, v〉
V

= 0 ∀ v ∈ imQ.

Using this equation in (4.59), we get

〈(Dun)′,Dun − pn〉Z ≤ 〈(Du)′,Dun − pn〉Z + 〈B(t)u − B(t)un,P(u − vn)〉
V
.

(4.60)
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If we apply the integration by parts formula (4.28), we obtain

1
2
‖Dun(t) − pn(t)‖2

H
− 1

2
‖Dun(t0) − pn(t0)‖

2
H

=

∫ t

t0

〈(Dun)′(s) − p′n(s),Dun(s) − pn(s)〉
Z

ds

≤

∫ t

t0

〈(Du)′(s) − p′n(s),Dun(s) − pn(s)〉
Z

ds

+

∫ t

t0

〈B(s)u(s) − B(s)un(s),P(u(s) − vn(s))〉
V

ds

≤ ‖(Du)′ − p′n‖L2(t0,T ;Z∗)‖Dun − pn‖L2(t0,T ;Z)

+ ‖Bu − Bun‖L2(t0,T ;V ∗)‖P(u − vn)‖L2(t0,T ;V ) (4.61)

Since D|im P : imP → Z is linear, bijective and continuous, its inverse
D|−1

im P : Z → imP is continuous. Hence, we find a constant C > 0 such that

‖P(u − vn)‖L2(t0,T ;V ) ≤ C ‖Du − pn‖L2(t0,T ;Z). (4.62)

The a priori estimate (4.41) shows that (Dun) is bounded in L2(t0, T ; Z).
From Theorem 4.23 we know that u ∈ L2(t0, T ; V ). Since D is continuous,
we have Du ∈ L2(t0, T ; Z). Therefore, (pn) converges in L2(t0, T ; Z). In
particular, (pn) is bounded in L2(t0, T ; Z). The uniform continuity of B(t)
implies Bu ∈ L2(t0, T ; V ∗) and the boundedness of (Bun) in L2(t0, T ; V ∗).
Thus, we obtain from (4.61) and (4.62) that

1
2
‖Dun(t) − pn(t)‖2

H
− 1

2
‖Dun(t0) − pn(t0)‖

2
H

≤ C1‖Du − pn‖W 1
2
(t0,T ;Z,V ) → 0 as n → ∞.

Regarding (4.58), the estimation (4.57) is proven.

Step 2. Strong convergence of (un) in L2(t0, T ; V ). From Theorem 4.23 we
know that

un ⇀ u in L2(t0, T ; V ) as n → ∞.

Since B is linear and uniformly continuous, we get

Bun ⇀ Bu in L2(t0, T ; V ∗) as n → ∞

and, hence,

∫ T

t0

〈Bun, u〉V →

∫ T

t0

〈Bu, u〉
V

as n → ∞. (4.63)
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Furthermore, the assumption q ∈ L2(t0, T, V ∗) yields

∫ T

t0

〈q, un〉V →

∫ T

t0

〈q, u〉
V

as n → ∞. (4.64)

From the integration by parts formula (4.28) , we have

1
2
‖(Du(T ) −Dun(T )‖2

H
− 1

2
‖(Du(t0) −Dun(t0)‖

2
H

=
∫ T

t0

〈(Du)′(t) − (Dun)′(t),Du(t) −Dun(t)〉
Z

dt

and
(
Dun(T )|Du(T )

)

H
−

(
Dun(t0)|Du(t0)

)

H
=

∫ T

t0

〈(Dun)′(t),Du(t)〉
Z

+ 〈(Du)′(t),Dun(t)〉
Z

dt.

Using again (4.51) for the generalized derivative (Du)′ = z̄, we obtain

1
2
‖(Du(T ) −Dun(T )‖2

H
− 1

2
‖(Du(t0) −Dun(t0)‖

2
H

=
∫ T

t0

〈q(t) − B(t)u(t), u(t) − un(t)〉
V
− 〈(Dun)′(t),Du(t) −Dun(t)〉

Z
dt(4.65)

as well as
(
Dun(T )|Du(T )

)

H
−

(
Dun(t0)|Du(t0)

)

H
=

∫ T

t0

〈(Dun)′(t),Du(t)〉
Z

+ 〈(q(t) − B(t)u(t), un(t)〉
V

dt. (4.66)

From the Galerkin equations (4.34) we get

〈(Dun)′(t),Dun(t)〉
Z

+ 〈B(t)un(t), un(t)〉
V

= 〈q(t), un(t)〉
V
. (4.67)

The strong monotonicity of B(t) implies

C ‖u − un‖
2
L2(t0,T ;V ) ≤

∫ T

t0

〈B(t)u(t) − B(t)un(t), u(t) − un(t)〉
V
dt,

where C is a positive constant. Applying (4.65), we obtain

C ‖u − un‖
2
L2(t0,T ;V ) ≤

∫ T

t0

〈q(t) − B(t)un(t), u(t) − un(t)〉
V
dt

−

∫ T

t0

〈(Dun)′(t),Du(t) −Dun(t)〉
Z
dt + 1

2
‖Du(t0) −Dun(t0)‖

2
H .



4.8 Strong Convergence of the Galerkin Method 111

Regarding (4.67), it yields

C ‖u − un‖
2
L2(t0,T ;V ) ≤

∫ T

t0

〈q(t) − B(t)un(t), u(t) − un(t)〉
V
dt

−

∫ T

t0

〈(Dun)′(t),Du(t)〉
Z
dt + 1

2
‖Du(t0) −Dun(t0)‖

2
H .

Using (4.66), we get

C ‖u − un‖
2
L2(t0,T ;V ) ≤

∫ T

t0

〈q(t) − B(t)un(t), u(t)〉
V
dt

+

∫ T

t0

〈q(t) − B(t)u(t), un(t)〉
V
dt − (Dun(T ),Du(T ))H

+ (Dun(t0),Du(t0))H + 1
2
‖Du(t0) −Dun(t0)‖

2
H . (4.68)

If we apply (4.63) and (4.64), we see that the right hand side of inequality
(4.68) converges to

2

∫ T

t0

〈q(t) − B(t)u(t), u(t)〉
V
dt − (Du(T ),Du(T ))H + (Du(t0),Du(t0))H .

(4.69)
as n → ∞. Note that we have already proven in step 1 that

‖Du(t0) −Dun(t0)‖H → 0 as n → ∞.

Applying once more the integration by parts formula (4.28) and regarding
(4.51) for the generalized derivative (Du)′ = z̄, we get

(Du(T ),Du(T ))H − (Du(t0),Du(t0))H =

2

∫ T

t0

〈(Du)′(t),Du(t)〉
Z
dt = 2

∫ T

t0

〈q(t) − B(t)u(t), u(t)〉
V
dt. (4.70)

Summarizing (4.68)-(4.70), we obtain

‖u − un‖
2
L2(t0,T ;V ) → 0 as n → ∞

which implies the assertion.
2
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Summary and perspectives

The further miniaturization of optic and electronic components demands a
refined network analysis describing certain semiconductor elements by con-
tributed models. Using the instationary drift-diffusion model, the device
equations represent a system of elliptic and parabolic differential equations.
The network is described by a differential-algebraic system. Both systems
are mutually coupled via boundary conditions and integral relations.

The coupled system can be analyzed as an abstract differential algebraic
system in infinite-dimensional Hilbert spaces. For the one-dimensional case
(with respect to space), network topological criteria for the index of the
coupled system are described. Furthermore it is shown that the index does
not exceed 2. This corresponds exactly to the results for networks with
compact models instead of distributed models. It is still an open question
whether the results remain true for a higher-dimensional case.

Finally, a Galerkin approach for handling linear ADASs with monotone op-
erators is proposed. It is shown to provide solutions that converge to the
unique solution of the abstract differential-algebraic system. Furthermore,
the solution is proven to depend continuously on the data. The most in-
teresting point of the Galerkin approach for ADASs is the choice of basis
functions. Choosing the basis functions properly (in certain subspaces), the
Galerkin solution is enforced to satisfy the constraints of the system.

It remains to answer the problem whether the nonlinear coupled system has
a unique solution and how to solve it numerically. We consider the pre-
sented Galerkin approach for linear ADASs as a starting point for an excit-
ing research about the numerical treatment of linear and nonlinear abstract
differential-algebraic equations in general. Thus, we expect interesting re-
sults not only for coupled circuit and device systems but also for coupled
systems of DAEs and PDEs in other application fields.
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Appendix A

Basics

In this chapter, we collect basic definitions and results from different math-
ematical fields used in the Chapters before. It is devoted to readers who are
not familiar with one or another field.

A.1 Graph Theory

We start with basic definitions.

1. Graph. A graph is a set of branches. If all branches are equipped with
an orientation, then the graph is called a directed graph. The ends of
the branches are called nodes.

2. Path. A set of branches {b1, b2, ..., bn} of a graph G is called a path be-
tween two nodes j and k, if the branches have the following properties.

(i) Successive branches bi and bi+1 have always one common node.

(ii) Each node belongs to maximal two branches of the set.

(iii) The nodes j and k belong to exactly one (usually not the same)
branch of the set.

Example. In Figure A.1, the set {d, h, i, f, b} is a path. The sets
{e, f, j, g} and {e, f, g, h, i, c} do not represent paths.

3. Connected graph. A graph is called a connected graph, if there exists
at least one path between any two nodes of the graph.
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Figure A.1: Example circuit with 6 nodes and 10 branches

4. Loop. A subgraph Gl of a connected graph G is called a loop, if Gl is
connected and each node of Gl connects exactly two branches of Gl.

Example. In Figure A.1, the set {a, b, c, d} is a loop. However, the
set {a, e, f, g, j} does not represent a loop.

5. Tree. A subgraph Gt of a connected graph G is called a tree, if

(i) Gt is connected,

(ii) Gt contains all nodes of G,

(iii) Gt has no loops.

Example. In Figure A.1, the set {a, e, d, g, i} is a tree. The sets
{a, e, h, c} and {a, b, c, d, g, e} are not trees.

Note that, for each connected graph, one can construct a tree (see e.g.
[CDK87]). Furthermore, each tree of a connected graph consists of
exactly n − 1 branches for n being the number of nodes.

6. Cutset. A set of branches Gc of a connected graph is called a cutset if

(i) removing all branches of Gc from G leads to an unconnected graph,

(ii) adding, afterwards, any branch of Gc leads again to a connected
graph.

Example. In Figure A.1, the set {a, e, d} is a cutset. The sets
{e, h, g, f, b} and {c, d} are not cutsets.

7. Incidence matrix. Let a directed graph G with n nodes and b branches
be given. The incidence matrix Aa ∈ R

n×b is defined as Aa = (aij) with

aij =







1 if the branch j leaves the node i,

−1 if the branch j enters the node i,

0 else.
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The rows of the incidence matrix Aa of a connected graph are linear depen-
dent. More precisely, the sum of all rows of this matrix equals zero. This
is caused by the fact that each column contains exactly one 1 and one −1.
All other entries of Aa are zero. This becomes clear if one regards that each
column corresponds to exactly one branch, and each branch leaves and en-
ters exactly one node, respectively. Consequently, one row of the incidence
matrix is needless for the description of the network.

If one erases one row of Aa, then we obtain the so called reduced incidence
matrix A. For electrical networks, one usually neglects the row corresponding
to the mass node.

In literature, the reduced incidence matrix A is often called only incidence
matrix A.

Theorem A.1 The (reduced) incidence matrix A of a connected graph with
n nodes has n − 1 linear independent rows and, hence, full row rank.

Proof. Let, without loss of generality, the mass node be the node with
number n. Furthermore, let ak denote the k-th row of the (reduced) inci-
dence matrix A for k = 1, ..., n − 1. We assume that the rows ak are linear
dependent. The, we find coefficients λ1, λ2, ..., λn−1 such that

n−1∑

k=1

λkak = 0,

We numerate the nodes such that λk 6= 0 for all 1 ≤ k ≤ n0 and λk = 0 for
all n0 + 1 ≤ k ≤ n − 1. Because of the linear dependency, we have n0 ≥ 1.
This yields to

n0∑

k=1

λkak = 0 und A =

(
Au

Al

)

=











a1

. . .
an0

an0+1

. . .
an−1











.

Au has at least one column with not only zero entries. Otherwise the nodes
{1, ..., n0} and the nodes {n0 + 1, ..., n} would not be connected. Now we
permute the columns of Au such that the first b0 (b0 ≥ 1) columns contain
at least one 1 or one −1 and all other columns have zero entries only. This



118 Basics

implies

Au =
(
Aul | Aur

)
=

(
∗ | 0

)
,

︸︷︷︸ ︸︷︷︸

b0 b − b0

where b is the number of branches of the network and the number of columns
of A, respectively. Since each column of Aul contains maximal one +1 and
maximal one −1, and

k0∑

k=1

λkakj = 0

holds for all j = 1, ..., b, each column of Aul contains exactly one +1 and
exactly one −1. This yields to

A =

(
∗ 0
0 ∗

)
n0

n − 1 − n0
,

i.e., the nodes {1, ..., n0} and {n0 + 1, ..., n} are not connected. This contra-
dicts the assumption of a connected graph.

¤

Theorem A.2 A subset Gl of a connected graph G with l branches has loops
if and only if the columns of the incidence matrix A corresponding to these l
branches are linear dependent.

Proof.

(⇒) Let, without loss of generality, b1, ..., br be branches of Gl that form
a loop. Let a1, ..., ar be the columns of A corresponding to these
branches. We introduce

cj =

{

1 if the branch j has the same orientation as the loop

−1 if the branch j has the opposite orientation of the loop

for all j = 1, ..., r. Since each node of Gl connects exactly two nodes of
Gl, each row of the matrix

(
c1a1 c2a2 ... crar

)

contains exactly one 1 and exactly one −1. This implies

r∑

i=1

ciai = 0,

that means, the columns a1, ..., ar are linear dependent.
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(⇐) Let the subgraph Gl has l branches. Let, without loss of generality,
the first l columns of A correspond to these branches. Due to our
assumption, these columns are linear dependent. If Gl is not connected
itself, then Gl consists of finite many connected, disjunct subgraphs Gli

(i = 1, ..., r). The subgraphs may be sorted such that

Aa =








A1 0 . . . 0 ∗
0 A2 . . . 0 ∗
...

...
. . .

... ∗
0 0 . . . Ar ∗








.

Gl1 Gl2 . . . Glr

Then we find at least one i0 ∈ {1, ..., r} such that the columns of Ali0 are
linear dependent. Let k be the number of nodes of Gli0 . If Gli0 would
not contain a loop, then Gli0 would be a tree with k−1 branches. Since
Ali0 represents an incidence matrix for Gli0 , k−1 rows of Ali0 would be
linear independent. But this would mean that also all k − 1 columns
of Ali0 are linear independent. This contradicts the assumption. It
follows that Gli0 contains at least one loop and, hence, Gl contains a
loop.

¤

Theorem A.3 Let A be the (reduced) incidence matrix of a connected graph
with n nodes. Then, n − 1 columns of A are linear independent if and only
if the branches of these columns form a tree.

Corollary A.4 If A will be partitioned into A := (At, Ar) such that the
columns of At correspond to the rows of the tree, then At is nonsingular.

Proof.

(⇒) Let As ∈ R
(n−1)×(n−1) be a nonsingular quadratic sub-matrix of A.

Then, As belongs to a subgraph Gs of G consisting of n nodes and n−1
branches. Since the columns of As are linear independent, Theorem
A.2 implies that Gs does not contain loops. Consequently, Gs is also
connected and, finally, a tree.

(⇐) Let the matrix of all branches belonging to the tree be denoted by At.
Then, At is the reduced incidence matrix of a connected subgraph with
n − 1 branches. From Theorem A.1, it follows that At is nonsingular.

¤

For more information about network graphs, we refer to [CDK87, CL75].
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A.2 Properties of Projectors

Here, we shall summarize important properties of projectors. We begin with
some definitions [Zei86]. Let X be a Banach space and V , W be linear
subspaces of X.

1. A linear continuous operator P : X → X is called a projector or
projection operator if P 2 = P .

2. A projector P projects onto a linear subspace V of X if im P = V .

3. A projector P projects along a linear subspace V of X if ker Q = V .

4. The sum X = V ⊕W is called a direct sum if, for all x ∈ X, there exist
exactly one v ∈ V and exactly one w ∈ W such that x = v + w.

5. The direct sum X = V ⊕ W is called a topological direct sum if the
operators P and Q defined as

Px = v and Qx = w for x = v + w, v ∈ V, w ∈ W

are continuous, that is, projection operators.

Thus, we have the following properties.

1. Let P : X → X be a projector and I : X → X be the identity map.
Then, Q := I − P is also a projector. If P projects onto V , then Q
projects along V . If P projects along V , then Q projects onto V . This
is a simple conclusion of the fact that

im P = ker Q and ker P = im Q.

2. If V and W are linear subspaces of X such that

V ⊕ W = X,

is a topological direct sum then there is a projector Q : X → X such
that

im Q = V and ker Q = W.

3. The sum X = V ⊕ W is a topological direct sum if and only if it is
a direct sum and V , W are closed in X. Thus, each projector has a
closed nullspace and a closed image space.
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4. As a consequence of 2. and 3., we have for the finite-dimensional space
X = R

m that there is always a projector Q : R
m → R

m such that

im Q = V and ker Q = W.

if R
m = V ⊕ W .

A.3 Index and Solvability of DAEs

A.3.1 Linear DAEs

In correspondence to the type of equations arising from circuit and device
simulation, we shall consider DAEs with a so called properly stated leading
term (see [Mär02a, Mär02b, Mär02c])

A(t)(D(t)x(t))′ + B(t)x(t) = q(t), (A.1)

where

A ∈ C([t0, T ], L(Rm, Rn)), D ∈ C([t0, T ], L(Rn, Rm)),

B ∈ C([t0, T ], L(Rn, Rn)), q(t) ∈ R
n

and t ∈ [t0, T ] with t0 < T in R.

Definition A.5
The leading term of (A.1) is stated properly if the coefficients A(t) and D(t)
are well matched in the sense that

ker A(t) ⊕ im D(t) = R
m ∀ t ∈ [t0, T ]

and there is a continuously differentiable projector function

R : [t0, T ] → L(Rm, Rm)

such that im R(t) = im D(t) and ker R(t) = ker A(t) for all t ∈ [t0, T ].

Remark A.6 If a DAE has a properly stated leading term, then we have

im A(t)D(t) = im A(t)R(t) = im A(t)

and
ker A(t)D(t) = ker R(t)D(t) = ker D(t).
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Formulating DAEs in such a form provides advantages for the numerical inte-
gration. In this case, the discretization and the decoupling into the dynamic
and non-dynamic parts commute if imD(t) and certain subspaces of it (de-
pending on the index of the DAE) do not vary with t (see [HMTa, HMTb]).
This implies that methods for ordinary differential equations remain there
stability properties if applied to DAEs with properly stated leading term.
Effects that implicit methods behave like explicit ones if applied to DAEs
(cf. [AP91]) can be avoided.

The following index definition (see [Mär02c]) for DAEs of the form (A.1) gen-
eralizes the so-called global index proposed in [GP84] as well as the tractabil-
ity index (see e.g. [Mär92]). Regarding the Galerkin equations from Chapter
4, we need solutions with only week smoothness assumptions. Consequently,
other index notions related to derivative array systems and reduction tech-
niques (e.g. [Cam87, KM94, RR96]) are not well suited for our considerations.

Definition A.7
An equation (A.1) with properly stated leading term has the index µ, if
there is a continuous matrix function sequence Gi and a continuous projector
function sequence Qi such that

(i) Qi(t) is a projector onto kerGi(t) for all t ∈ [t0, T ],

(ii) Gi(t) has constant rank ri > 0 on [t0, T ],

(iii) rµ−1 < rµ = n,

(iv) Qi(t)Qj(t) = 0 for j = 0, ..., i − 1, i > 0, t ∈ [t0, T ], and

(v) DP0...PiD
− ∈ C1([t0, T ], L(Rm, Rm))

where

Gi+1 = Gi + BiQi, G0 = AD,

Bi+1 = BiPi − Gi+1D
−(DP0...PiD

−)′DP0...Pi, B0 = B,

Pi = I − Qi,

and D− denotes the reflexive generalized inverse of D such that

D−DD− = D−, DD−D = D, DD− = R, D−D = P0.
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Obviously, the natural solution space for (A.1) is given by

C1
D([t0, T ], Rn) := {x ∈ C([t0, T ], Rn) : Dx ∈ C1([t0, T ], Rm)}.

Indeed the following theorem holds for initial value problems of index 1 (see
[Mär02c])

A(t)(D(t)x(t))′ + B(t)x(t) = q(t), (A.2)

D(t0)x0 = z0 ∈ im D(t0). (A.3)

Theorem A.8 If q ∈ C([t0, T ], Rn), then the index-1 IVP (A.2)-(A.3) has
a unique solution x ∈ C1

D([t0, T ], Rn). Furthermore, the solution depends
continuously on the data. More precisely, there is a constant C > 0 such
that

max
t0≤t≤T

‖x(t)‖ + max
t0≤t≤T

‖(Dx)′(t)‖ ≤ C
(
‖z0‖ + max

t0≤t≤T
‖q(t)‖

)
.

However, the Galerkin equations obtained in Chapter 4 have right hand sides
q that belong to L2(t0, T ; Rn) only. Therefore, we need to generalize Theorem
A.8 as follows

Theorem A.9 If q ∈ L2(t0, T ; Rn), then the index-1 IVP (A.2)-(A.3) has a
unique solution x in

L2
D(t0, T ; Rn) := {x ∈ L2(t0, T ; Rn) : Dx ∈ C([t0, T ], Rm)}.

The equation (A.2) holds for almost all t ∈ [t0, T ]. Furthermore, Dx is
differentiable for almost all t ∈ [t0, T ] and there is a constant C > 0 such
that

‖x‖L2(t0,T ;Rn) + ‖Dx‖C([t0,T ],Rm) + ‖(Dx)′‖L2(t0,T ;Rm)

≤ C
(
‖z0‖ + ‖q‖L2(t0,T ;Rn

)
.

For continuous solutions, the right hand side belonging to the non-dynamical
part has to be continuous. The next theorem describes this more precisely.

Theorem A.10 If q ∈ L2(t0, T ; Rn) and Q0G
−1
1 q ∈ C([t0, T ]; Rn), then the

solution x of the index-1 IVP (A.2)-(A.3) belongs to C([t0, T ]; Rn) and we
find a constant C > 0 such that

‖x‖C([t0,T ],Rn) + ‖(Dx)′‖L2(t0,T ;Rm)

≤ C
(
‖z0‖ + ‖q‖L2(t0,T ;Rn) + ‖Q0G

−1
1 q‖C([t0,T ],Rn)

)
.
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Proof of Theorems A.9 and A.10: The proof is straightforward. We
simply have to combine standard techniques from DAE and Volterra operator
theory. Due to the index-1 assumption, the matrix

G1(t) = A(t)D(t) + B(t)Q0(t)

is nonsingular for all t ∈ [t0, T ]. Recall that Q0(t) is a projector onto
ker A(t)D(t). Multiplying (A.2) by D(t)G−1(t) and Q0(t)G

−1(t), respec-
tively, we obtain the system

(Dx)′(t) − R′(t)(Dx)(t) + (DG−1
1 BD−)(t)(Dx)(t) = (DG−1

1 r)(t), (A.4)

(Q0x)(t) + (Q0G
−1
1 BD−)(t)(Dx)(t) = (Q0G

−1
1 r)(t),(A.5)

which is equivalent to (A.2). Here, we have used the properties

(DG−1
1 A)(t) = R(t), (G−1

1 BQ0)(t) = Q0(t)

for all t ∈ [t0, T ]. Recall that R(t) = D(t)D−(t) is a continuously differen-
tiable projector onto imD(t) along ker A(t) and D−(t) is a generalized inverse
that satisfies D−(t)D(t) = P0(t).
For z := Dx, equation (A.4) together with (A.3) represents an ordinary
initial value problem of the form

z′(t) = Â(t)z(t) + b(t), z(t0) = z0 (A.6)

with Â ∈ C([t0, T ], L(Rm, Rm)) and b ∈ L2(t0, T ; Rm). Since Â is linear and
continuous, the map

x 7→ Â(t)x

is Lipschitz continuous as map from L2(t0, T ; Rm) into L2(t0, T ; Rm) with a
Lipschitz constant that is independent of t. Consequently (see e.g. [GGZ74],
pp. 166-167), the IVP (A.6) has a unique solution z ∈ C([t0, T ], Rm) with
z′ ∈ L2(t0, T ; Rm). The solution z satisfies (A.6) for almost all t ∈ [t0, T ] and
it is differentiable for almost all t ∈ [t0, T ]. Furthermore, there is a constant
C1 > 0 such that

‖z‖C([t0,T ],Rm) + ‖z′‖L2(t0,T ;Rm) ≤ C1

(
‖z0‖ + ‖b‖L2(t0,T ;Rm)

)
. (A.7)

In [GGZ74], this was proven not only for maps into the finite-dimensional
space R

m but also for maps into any Banach space. In the finite-dimensional
case, the unique solvability of (A.6) and the validity of the estimation (A.7)
follow also from the theorem of Carathéodory (see e.g. [Zei90b], [Kam60]),
an a priori estimate and the generalized Gronwall lemma (see e.g. [Zei86]).
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For convenience reasons, we omit an extended explanation of the second way.
Multiplying (A.4) by I − R(t), we obtain that

((I − R)z)′(t) = − R′(t)((I − R)z)(t)

for the solution z and almost all t ∈ [t0, T ]. Since z0 belongs to im D(t0), we
get

((I − R)z)(t0) = 0.

Using again the unique solvability, we obtain that

((I − R)z)(t) = 0 for almost all t ∈ [t0, T ]. (A.8)

Regarding (A.5), we see that all solutions of (A.2)-(A.3) are given by

x(t) = D−(t)z(t) − (Q0G
−1
1 BD−)(t)z(t) + (Q0G

−1
1 r)(t), (A.9)

where z is the unique solution of (A.6). Obviously, Dx = z belongs to
C([t0, T ], Rm). Since D, R and P0 are continuous on [t0, T ], the generalized
inverse D− is continuous. It implies x ∈ L2(t0, T ; Rn) since r ∈ L2(t0, T ; Rn).
Recall that G1 is continuous due to the index-1 assumption. If, addition-
ally, Q0G

−1r is continuous on [t0, T ], then the whole solution x belongs to
C([t0, T ], Rn). The estimations of the Theorems A.9 and A.10 are a simple
conclusion of the solution representation (A.9) and the estimation (A.7).

2

Remark A.11 Similar L2-results for DAEs of the form

A(t)x′(t) + B(t)x(t) = q(t)

are given in [Han89].

A.3.2 Nonlinear DAEs

Regarding the form of the network equations (1.17)-(1.19), we consider quasi-
linear DAEs

A
d

dt
d(x(t), t) + b(x(t), t) = 0 (A.10)

with continuous matrix functions

b(x, t) : Ω × [t0, T ] → R
n, d(x, t) : Ω × [t0, T ] → R

m

and Ω ∈ R
m is an open, connected domain. The partial derivatives bx, dx,

dt, dxt and dxx are assumed to exist and to be continuous. Having positive
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definite capacitance and inductance matrices for network equation systems in
mind, we only need to consider DAEs with a constant nullspace kerAD(x, t)
for D(x, t) := dx(x, t). Additionally, we may assume the leading term to be
properly stated, i.e., the decomposition

ker A ⊕ im D(x, t) = R
m for all x ∈ Ω, t ∈ [t0, T ]

is valid and im D(x, t) is constant. Obviously, we have again

im AD(x, t) = im AR = im A

and
ker AD(x, t) = ker RD(x, t) = ker D(x, t)

for the projector R onto im D(x, t) along ker A.

Remark A.12 If one uses

d(x, t) :=

(
qC(AT

Ce, t)
φL(jL, t)

)

for the network equations (1.17)-(1.19), then the image space im D(x, t) does
not need to be constant. However, the formulation with

d(x, t) :=

(
P̄CqC(AT

Ce, t)
φL(jL, t)

)

, A :=





AC 0
0 I
0 0





yields a DAE of the form (A.10) with a properly stated leading term for any
projector P̄C along the nullspace ker AC .

A computation of such a projector P̄C is not necessary in practice but it
simplifies the analysis significantly.

The natural solution space for DAEs of the form (A.10) is given by

C1
d([t0, T ], Rn) := {x(·) ∈ C([t0, T ], Rn) : d(x(·), ·) ∈ C1([t0, T ], Rm)}.

Remark A.13 If P0 is any constant projector along the constant nullspace
ker AD(x, t), then the natural solution space can be formulated, equivalently,
as (see [Mär02b])

C1
d([t0, T ], Rn) = {x ∈ C([t0, T ], Rn) : P0x ∈ C1([t0, T ], Rn)}.

This follows, via the implicit function theorem, from the facts that AD(x, t)
maps im P0 bijectively onto im A and ker AD(x, t) = ker D(x, t).
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Definition A.14
The DAE (A.10) with a properly stated leading term has index µ [Mär02b],
if there is a continuous matrix function sequence Gi(x

i−1, ..., x1, x, t) and a
continuous projector function sequence Qi(x

i−1, ..., x1, x, t) such that, for all
xi−1, ..., x1 ∈ R

n, x ∈ Ω, t ∈ [t0, T ]:

(i) Qi(x
i−1, ..., x1, x, t) is a projector onto kerGi(x

i−1, ..., x1, x, t),

(ii) Gi(x
i−1, ..., x1, x, t) has constant rank ri > 0,

(iii) rµ−1 < rµ = n,

(iv) Qi(x
i−1, ..., x1, x, t)Qj(x

j−1, ..., x1, x, t) = 0 for j = 0, ..., i − 1, i > 0,

(v) DP0...PiD
− is continuously differentiable,

where

G0(x,t) = AD(x,t),

Gi+1(xi,...,x1,x,t) = Gi(x
i−1,...,x1,x,t) + Bi(x

i,...,x1,x,t)Qi(x
i−1,...,x1,x,t),

B0(x,t) = ∂b(x,t)
∂x

,

Bi+1(xi+1,...,x1,x,t) = Bi(x
i,...,x1,x,t)Pi(x

i−1,...,x1,x,t)

− Gi+1D
−Diffi+1(xi+1,...,x1,x,t)(DP0...Pi)(xi−1,...,x1,x,t),

Diff1(x1,x,t) = ∂(DP0P1D−)(x,t)
∂x

x1 + ∂(DP0P1D−)(x,t)
∂t

,

Diffi+1(xi+1,...,x1,x,t) =
i∑

j=1

∂(DP0...Pi+1D−)(xi,...,x1,x,t)
∂xj

xj+1

+ ∂(DP0...Pi+1D−)(xi,...,x1,x,t)
∂x

x1 + ∂(DP0...Pi+1D−)(xi,...,x1,x,t)
∂t

,

Pi(x
i−1,...,x1,x,t) = I − Qi(x

i−1,...,x1,x,t),

and D−(x, t) denotes the reflexive generalized inverse of D(x, t) such that

D−D− = D−, DD−D = D, DD− = R, D−D = P0.

This index definition is closely related to the index of linearizations of DAEs
of the form (A.10). Let x∗ belong to the natural solution space C1

d([t0, T ], Rn)
with x(t) ∈ Ω for all t ∈ [t0, T ]. Then, the linearization of (A.10) along x∗ is
given by

A
d

dt
(D∗(t)x(t)) + B∗(t)x(t) = q(t) (A.11)
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with
D∗(t) := D(x∗(t), t) and B∗(t) := ∂

∂x
b(x∗(t), t).

Theorem A.15 [Mär02b] Assume the DAE (A.10) to have index µ and x∗

to belong to Cµ−1([t0, T ], Rn) with x(t) ∈ Ω for all t ∈ [t0, T ]. Then, the
linearized DAE (A.11) has also index µ. Furthermore, the characteristic
values r∗i of the linearization equal the characteristic values ri of (A.10).

The next theorem shows that index-1 DAEs of the form (A.10) completed
by consistent initial conditions are uniquely solvable provided that d(x, t) is
linear in x. Furthermore, the solution depends continuously on perturbations
of the right hand side and the initial data.

Theorem A.16 [HM] Let the DAE (A.10) have the index 1 and d(x, t) =
D(t)x(t) be given.

(i) Through each x0 in {x ∈ D(t0) : b(x, t) ∈ im A} passes exactly one
solution of (A.10).

(ii) For a solution in C1
D([t0, T ], Rn), all perturbed IVPs

A
d

dt
D(t)x(t) + b(x(t), t) = q(t), D(t0)(x(t0) − x0) = 0, (A.12)

x0 ∈ R
n, q ∈ C([t0, T ], Rn), are uniquely solvable on C1

D([t0, T ], Rn)
supposed the perturbations |D(t0)(x∗(t0)−x0)| and ‖q‖∞ are sufficiently
small.

(iii) For the solution x of (A.12) it holds that

‖x − x∗‖∞ ≤ const(|D(t0)(x∗(t0) − x(t0)| + ‖q‖∞)

Remark A.17 Theorem A.16 was also shown for more general leading func-
tions A depending on x and t in [HM].

Remark A.18 The matrix G2(x
1, x, t) is nonsingular if and only if the ma-

trix
Ḡ2(x, t) := G1(x, t) + B0(x, t)P0(x, t)Q1(x, t)

is nonsingular since

G2(x
1, x, t) = Ḡ2(x, t)[I − (P1D

−)(x, t)Diff1(x
1, x, t)(DP0Q1)(x, t)]

and I−P1(x, t)MQ1(x, t) is nonsingular with the inverse I+P1(x, t)MQ1(x, t)
for any matrix M with appropriate matrix dimensions. Obviously, the com-
putation of Ḡ2 is easier than that one of G2. Therefore, we have used Ḡ2 for
the index determination of the network equation systems in Chapter 1.
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A.4 Basics for Evolution Equations

This section summarizes basic spaces and their properties for the treatment
of evolution equations (see e.g. [Zei90a]).

1. Dual space. Let V be a real Banach space. Then, V ∗ denotes the
set of all linear continuous functionals on V , i.e., the set of all linear
continuous maps f : V → R. Furthermore,

〈f, v〉 := f(v) for all v ∈ V

and
‖f‖V ∗ := sup

‖v‖
V
≤1

|〈f, v〉|.

This way, V ∗ becomes a real Banach space. It is called the dual space
to V .

2. Reflexive Banach space. Let V be a real Banach space. Then, V is
called reflexive if V = V ∗∗.

3. Evolution triple. The spaces V ⊆ H ⊆ V ∗ are called an evolution triple
if

(i) V is a real, separable, and reflexive Banach space,

(ii) H is a real, separable Hilbert space,

(iii) The embedding V ⊆ H is continuous, i.e.,

‖v‖
H
≤ const‖v‖

V
for all v ∈ V,

and V is dense in H.

Below, Proposition A.20 explains how the inclusion H ⊆ V ∗ is to be
understood.

4. The Lebesgue space Lp(t0, T ; V ) of vector-valued functions. Let V be
a Banach space, 1 < p < ∞, and t0 < T < ∞. The space Lp(t0, T ; V )
consists of all measurable functions v : (t0, T ) → V for which

‖v‖p :=

(∫ T

t0

‖v(t)‖p
V

dt

) 1

p

< ∞.

The dual space of Lp(t0, T ; V ) is given by Lq(t0, T ; V ∗) where p−1 +
q−1 = 1.
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5. Generalized Derivatives. Let X and Y be Banach spaces. Furthermore,
let u ∈ L1(t0, T ; X) and w ∈ L1(t0, T ; Y ). Then, the function w is called
the generalized derivative of the function u on (t0, T ) if

∫ T

t0

ϕ′(t)u(t) dt = −

∫ T

t0

ϕ(t)w(t) dt for all ϕ ∈ C∞
0 (t0, T ).

The last equation includes the requirement that the integrals on both
sides belong to X ∩ Y .

6. The Sobolev space W 1
2 (t0, T ; V,H). Let V ⊆ H ⊆ V ∗ be an evolution

triple and t0 < T < ∞. Then, the Sobolev space

W 1
2 (t0, T ; V,H) := {u ∈ L2(t0, T ; V ) : u′ ∈ L2(t0, T ; V ∗)}

forms a Banach space with the norm

‖u‖W 1
2

= ‖u‖L2(t0,T ;V ) + ‖u′‖L2(t0,T ;V ∗).

The following proposition is a consequence of Riesz theorem.

Proposition A.19 Let H be a Hilbert space. Then for each u ∈ H, there is
a unique linear continuous functional Ju on V with

〈Ju, v〉 = (u|v) for all u, v ∈ V,

where (·|·) denotes the scalar product of H. The operator J : V → V ∗ is
linear, bijective, and norm isomorphic, i.e.,

‖Ju‖V ∗ = ‖u‖
V

for all u ∈ V.

Therefore, one can identify Ju with u for all u ∈ V . This way we get H = H∗

and
〈u, v〉 = (u|v) for all u, v ∈ V.

The next proposition explains how the relation H ⊆ V ∗ has to be understood.

Proposition A.20 Let V ⊆ H ⊆ V ∗ be an evolution triple. Then, the
following is satisfied

(i) To each u ∈ H, there corresponds a linear continuous functional ū ∈ V ∗

with
〈ū, v〉

V
= (u|v)

H
for all v ∈ V.
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(ii) The mapping u 7→ ū from H into V ∗ is linear, injective, and continu-
ous.

Proof: Ad(i) Let u ∈ H. Then:

|(u|v)
H
| ≤ ‖u‖

H
‖v‖

H
≤ const‖u‖

H
‖v‖

V

is fulfilled for all v ∈ V . Therefore, there exists a ū ∈ V ∗ with

〈ū, v〉
V

= (u|v)
H

and ‖ū‖V ∗ ≤ const‖u‖
H
.

Ad(ii) The mapping u 7→ ū is obviously linear and continuous. In order to
show injectivity, we assume that ū = 0. This implies

(u|v)
H

= 0 for all v ∈ V.

Since V is dense in H, we get u = 0.
2

This allows us to identify ū with u such that

〈u, v〉
V

= (u|v)
H

for all u ∈ H, v ∈ V,

‖u‖V ∗ ≤ const‖u‖
H

for all u ∈ H.

In this sense, the relation H ⊆ V ∗ is to be understood. Obviously, this
embedding is continuous.
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Appendix B

Notations

B.1 Symbols

N set of natural numbers
R set of real numbers
C capacitance
D diffusivity
D electric displacement
E electric field
J current density
L inductance
N doping concentration
N+

D donor concentration
N−

A acceptor concentration
R 1. resistance (network element)

2. generation/recombination rate (drift-diffusion model)
T 1. temperature

2. end of a time interval
V electrostatic potential
Vbi built-in potential
e nodal potential
j current
n electron density
ni intrinsic density
p hole density
q charge
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t time
x position variable
Ω domain
ε permittivity
µ permeability/mobility
ν outer unit normal vector
̺ charge density
σ surface charge
φ flux
φB barrier height
∀ for all
∃ it exists

B.2 General Notations

x ∈ S x is an element of the set S
x /∈ S x is not an element of S
S ⊆ X S is contained in X
X × Y product set, = {(x, y) : x ∈ X, y ∈ Y }
X ⊕ Y direct sum of X and Y
L(X,Y ) space of linear continuous operators from X into Y
C(X,Y ) space of continuous operators from X into Y
Ck(X,Y ) space of k-times Frèchet-differentiable functions from

X into Y
dim X dimension of a linear space X
rankA rank of a linear operator A, rankA = dim im A
AT transpose of a matrix A
f : X → Y mapping from X into Y
im f image of f , im f = {f(x) : x ∈ X}
ker f kernel of f , ker f = {x : f(x) = 0}
f injective ker f = {0}
f surjective im f = Y
f bijective f is injective and surjective
∂xf partial derivative of f in direction of x
∇f = grad f gradient of f , grad f = (∂x1

f, ..., ∂xn
f)

div f divergence of f , div f = ∂x1
f1 + ... + ∂xn

fn

∆f Laplace operator, ∆f = div grad f
〈f, x〉 value of the linear functional f at the point x
(x|y) scalar product of x and y in a Hilbert space
x · y scalar product in R

m
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Ω nonempty open bounded set in R
N

∂Ω boundary of Ω
Ω̄, cl(Ω) closure of Ω, Ω̄ = Ω ∪ ∂Ω
C∞(Ω) space of infinitely continuously differentiable functions

u : Ω → R

C∞
0 (Ω) space of all functions u ∈ C∞(Ω) with compact sup-

port in Ω
Lp(Ω) Lebesgue space of all measurable functions u : Ω → R

with ‖u‖p =
(∫

Ω
|u|p dx

)1/p
< ∞

H1(Ω) Sobolev space of all measurable functions u : Ω → R,
for which the generalized derivatives ∂iu (i = 1, ..., N)

exist and ‖u‖1,2 =
(∫

Ω
(|u|2 +

∑N
i=1 |∂iu|

2) dx
)1/2

< ∞

H1
0 (Ω) closure of C∞

0 (Ω) in H1(Ω)
H(div ; Ω) space of all measurable functions u : Ω → R

k, for
which u ∈ L2(Ω)k and div u ∈ L2(Ω)

H2(Ω) Sobolev space of all measurable functions u : Ω → R,
for which the generalized derivatives Dαu (|α| ≤ 2)

exist and ‖u‖2,2 =

(

∫

Ω

(
∑

|α|≤2

|Dαu|2) dx

)1/2

< ∞

X∗ dual space of X
f ∗ dual mapping of f
xn → x convergence of xn to x
xn ⇀ x weak convergence of xn to x

B.3 Physical constants

Boltzmann constant k 1.38066 · 10−23 J/K
Elementary charge q 1.60218 · 10−19 C

Thermal voltage at 300 K kT
q

0.0259 V

Permeability in vacuum µ0 1.25663 · 10−8 H/cm
Permittivity in vacuum ε0 8.85418 · 10−14 F/cm
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[Est00] D. Estévez Schwarz. Consistent initialization for index-2 differen-
tial algebraic equations and its application to circuit simulation.
PhD thesis, Humboldt-Univ. Berlin, 2000.
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abstract differential algebraic sys-
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ADAS, see abstract differential al-
gebraic system

applied potential, 48, 50

BDF methods, 14, 29–31
built-in potential, 40, 50

capacitor, 8
carrier diffusivities, 35
charge conservation, 51–52
charge density, 37
concentration

acceptor, 38
donor, 38
doping, 38–40
electron, 37, 38, 40
hole, 37, 38, 40
intrinsic, 40

connected graph, 115
contacts, 39

metal-semiconductor, 39

Ohmic, 39–40
Schottky, 39–41
semiconductor-insulator, 39, 41

continuity equations, 36–37
coupled system, 56

classical form, 57–58
generalized form, 58–63

current densities, 38
current density, 37
current source, 8
cutset, 116

LI-cutset, 16, 17, 73

diffusion current, 35
diffusivities, see carrier diffusivities
diode, 42, 45, 50
direct sum, 120
doping concentration, see concen-

tration
drift current, 35
drift diffusion equations, 33–39
dual space, 129

electric displacement, 37
electric field, 35, 37
electron density, see concentration,

electron
evolution triple, 129

Galerkin method, 89–92
generalized derivative, 87, 130
generation rate, 36
graph, 115
graph theory, 115–119
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hole density, see concentration, hole
homogenization, 54–56

incidence matrix, 10, 12, 116–119
index

for ADASs, 72–73
for DAEs, 121–123

index criteria, 18, 73–85
inductor, 8
integration by parts formula, 89

Kirchhoff’s current law, 9, 10
Kirchhoff’s voltage law, 9, 11

loop, 116
CV -loop, 16, 17
CV S-loop, 73

mass node, 117
MNA, see modified nodal analysis
mobilities, 35
modified nodal analysis, 5, 11–14
MOSFET, 7, 42–44, 47
multi-port, 6
multi-terminal, 6

node potentials, 6

path, 115
permittivity, 37
Poisson equation, 37–38
projection operator, see projector
projector, 120–121

along, 120
onto, 120

properly stated leading term, 121

recombination rate, 36
reflexive Banach space, 129
resistor, 7

topological direct sum, 120
tree, 116

tunneling, 40

voltage source, 8


