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ABSTRACT 

A t-covering array is a set of k binary vectors of length n with the property that, in any t coor- 
dinate positions, all 2t possibilities occur at least once. Such arrays are used for example in 
circuit testing, and one wishes to minimize k for given values of n and t. The case t = 2 was 
solved by Rknyi, Katona, and Kleitman and Spencer. The present article is concerned with the 
case t = 3, where important (but unpublished) contributions were made by Busschbach and 
Roux in the 1980s. One of the principal constructions makes use of intersecting codes (linear 
codes with the property that any two nonzero codewords meet). This article studies the proper- 
ties of 3-covering arrays and intersecting codes, and gives a table of the best 3-covering arrays 
presently known. For large n the minimal k satisfies 3.21256 < k /  log n < 7.56444. 01993 
John Wiley & Sons, Inc. 

1. INTRODUCTION 

Before shipping those new machines off to your customers, you want to run some final 
tests. There are 16 switches on the back of each machine that have to be set, each with 
two positions. Since there are 216 = 65536 possible combinations, you can’t test them 
all. Instead, you would like to find a small number of test settings for the 16 switches 
such that every subset of 3 switches gets exercised in all 23 possible ways. In other 
words, you would like a minimal set of binary vectors of length 16 with the property 
that the projection onto any three coordinates includes all 23 possibilities. How many 
test vectors do you need? The answer is not more than 17: you could for example use 
the vectors 

0000000000000000 
(1) (0000101101110111) 

where the parentheses indicate that all 16 cyclic shifts of this vector are to be used. 
The is a 3-covering array. It is not known if 17 is minimal (the best lower bound is 14). 
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More generally, a t-covering array with alphabet size q, length n, and size k con- 
sists of k vectors of length n with entries from {0,1,. . . , q - 1) with the property that 
the projection onto any t coordinates contains all qt possibilities. Other names are 
t-surjective array, or (for the transposed array) a qualitatively t-independent family of 
vectors. The problem, apparently first studied by RCnyi 1481, is to minimize k for 
given values of q, t, n, or equivalently to maximize n for given values of q, t, k. As the 
bibliography shows, there is an extensive body of literature related to this problem. 

In the case t = q = 2 the problem was completely solved by RCnyi [48] (for k even) 
and independently by Katona [30] and Kleitman and Spencer 1341 (for all k). The 
answer is that for any k, the maximal length of a binary 2-covering array of size k is 

Such an array may be constructed as follows. The names of the symbols in any column 
of the array may be permuted, so we may assume the first row is the zero vector 0. The 
columns of the remaining k - 1 rows are then taken to be the characteristic vectors of 
all [$]-subsets of a ( I c  - 1)-set. The proof that this is optimal uses Sperner’s lemma 
1531, [26], [31] (if k is even) and the Erdos-Ko-Rado theorem [21] (if k is odd). 

For large n, (2) implies that the minimal k satisfies 

1 k = logn + - loglogn... 
2 (3) 

(all logs are to base 2). 
In the case t = 2, q > 2, the rate of growth of k with n was recently determined 

by Gargano, Korner, and Vaccaro [24, 251, who show that for large n the minimal k 
satisfies 

(4) 
Q k = - logn(1 + o(1)). 
2 

However, they do not give an explicit construction of 2-covering arrays that achieve 
(4), and not much seems to be known about exact values of k for small n. 

For example, let us briefly discuss the case t = 2, q = 3 (the “ternary Spernery” 
problem). In an earlier article Gargano, Korner, and Vaccaro [23] gave an explicit 
construction achieving k = 2.07 log n( 1 + o( 1)). Other constructions were given by 
Poljak, Pultr, and Rod1 [46] and Poljak and Tuza [47]. For n = 2,3,4 the codewords 
of the tetracode ([17], p. 81) show that the minimal k is 9. For n = 5, Ostergdrd 
[45] showed that k 5 11, and Applegate [2] recently used integer programming to 
show that k = 11. Applegate’s solution may be transformed to read 0, f(01112). For 
n = 6 Cook [18] also used integer programming to show that k 5 12. His solution 
may be written as 0(01221), 111000,100110,120201,102022,202202,210011,221120. 
For slightly larger values of n reasonably good arrays can be formed by taking three 
copies of the array that solves the q = t = 2 problem [see (2)], removing the 0 row 
from each, then writing one copy in terms of 0s and 1, one copy in terms of 1s and 2s, 
and one copy in terms of 2s and 0s. This produces an array of size k = 3a and length 

n = (  ,+,). (5) 
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(A similar but slightly less efficient construction was given in [47].) In summary, for 
t = 2, q = 3 the smallest known values of k for given values of n are 

7 ~ :  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .  
k :  9 9 9 11 12 15 15 15 15 15 15 18 18 18 18 21 21 . . . .  
The values for n 5 5 are optimal, while it seems likely that those for n 2 8 can be 
improved. It would be nice to have a more extensive table. (The entries for n = 12 
and 16 are very recent discoveries of C. L. Mallows [41].) 

Applegate’s integer programming formulation [2] is worth recording, since it can 
be applied to the general problem of finding a t-covering array of minimal size. Let V 
be the set of all qn possible vectors that can be used in the array, let S be the set of all 
(y)t-tuples of coordinates, and let P be the set of all qt q-ary vectors of length t. A t- 
covering array D C V is specified by setting xu = 1 if w E D ,  x, = 0 if w 6 D. Then 
finding a minimal array is equivalent to the integer program: choose x, E (0,l)  for 
w E V so as to 

minimize k = x, 
VEV 

subject to the constraints 

C x, 2 I for all s E S, p E P, (7) 

where the sum in (7) is over all w E V such that the projection of v onto s is p. 
The main purpose of the present article is to study the case t = 3, q = 2. Important 

results were obtained by Busschbach in an unpublished technical report in 1984 [8], 
and by Row in an unpublished thesis in 1987 {SO]. However, as we shall see, their 
results can be somewhat improved. The main results of this article are contained in 
Theorem 5 and Table I11 in Section 3. 

One of the best constructions for 3-covering arrays (due to Busschbach [8]) makes 
use of “intersecting codes,” and Section 2 is devoted to these codes. 

The cases t 2 4 (and q 2 2) will not be discussed here. Some results on t,hese prob- 
lems can be found in [l], [8], [ll],  [13], [29], [34], [47], [50], [51], [54-561. Applications 
of these covering arrays and related structures to circuit testing, digital communica- 
tion, network design, etc., are discussed in [4], [8], [12], [15], [19], [44], [51], [52], [54], 
[55]. The survey article by Korner and Lucertini [35] gives an overview of these and 
several related problems. Honkala [28] uses t-covering arrays in the construction of 
codes with small covering radius. Sherwood [52] describes a computer program CATS 
(“Constrained Array Test System”), which attempts to find small covering arrays for 
a large class of problems, including ones in which the alphabet size q varies from co- 
ordinate to coordinate. Seroussi and Bshouty [51] show that a generalized version of 
the problem of finding a minimal t-covering array is NP-complete. 

2. INTERSECTING CODES 

A linear code C of length N, dimension K, and minimal Hamming distance D, i.e., 
an [ N ,  K, D] code, over a field of order Q is called intersecting (or linked) if any two 
nonzero codewords have at least one coordinate where they are both nonzero. Such 
codes have been studied by several authors [14], [32], [38], [43], [49]. Given K, the 
problem is to determine ~ Q ( K ) ,  the minimal length N of any [ N ,  K ,  D] intersecting 
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code. In view of Theorem 2(i), finding f 2 ( K )  may be regarded as a "linear Sperner" 
problem. 

The main properties of intersecting codes are the following. D,, denotes the 
maximal distance between codewords. Most of the results assembled in Theorems 1 
and 2 are elementary. 

Theorem 1. (i)  If C is intersecting then D 2 K [38]. (ii) If D,, < 2 0  then C is 
intersecting [14]. (iii) If C is an [ N ,  K,  D] intersecting code with generator matrix [All 
then 

" 1  [ A  00 . . .  0 11 . . .  1 00 . . .  0 1 
I I 

generates an [N + K + 1, K + 1, K + 11 intersecting code [ 141. (iv) The direct product ( [40], 
p. 568) of [Nl , Kl , Dl] and [Nz ,  K2, D2] intersecting codes-is an [NI N2, K1 K z ,  D1 Dz] 
intersecting code [14]. ( v )  If N = 2K - 1 then an [N,  K ,  D]  code ([40] , p. 317) is inter- 
secting (since D =(N + l)/2). Such codes exist if N 5 Q + 1 ([40], p. 323). 

Proof of(i). Let u1 = 11 . . . l o .  . . 0 E C have weight D, and choose a basis ul, u2, . . . , 
u~ for C in which u2,. . . , U K  begin with a 0. Since each of uz, . . . , UK must intersect 
u1,K- 15 D -  1. 

Theorem 2. Let C be a binaiy intersecting code. ( i )  For any two nonzero codewords u 
and v there is a coordinate where u is 0 and v is 1[8]. (ii) D,,, 5 N - K + 1 [6]. (iii) 
N 2 3(K - 1)[6]. 

Proofof (iii). Let u be a minimal weight codeword, and choose another word u that has 
at least K - 1 0s in the support of u. This is possible since D 2 K. Then N - K + 1 2 
wt(u + u) 2 2 0  - 2(D - K + 1). 

The application to the construction of 3-covering arrays given in the next section is 
based on the following property. 

Theorem 3. Let u, v, w be distinct codewords of an intersecting code. Then either (i) 
there is a coordinate where u, v, w are distinct, or (ii) there is a coordinate where u and v 
agree and w is different, another coordinate where v and w agree and u is  different, and a 
third coordinate where w and u agree and v is different. 

Of course possibility (i) cannot occur for binary codes. 

Proof: We will show that 0, x = u - u, y = w - u have the stated property. Then 
u, v, w do also. Either there is a coordinate i such that xi # 0, yi # 0, yi # xi [and 
(i) holds], or, for all i, xi # 0 + yi = 0 or yi = xi. In the latter case there must be a 
coordinate j such that x~j = 0, y~ j  # 0 (or else x - y, y do not intersect), a coordinate 
k such that xk # 0, Y k  = 0 (or else y - x, x do not intersect), and a coordinate I such 
that 21 # 0, y1 = x1 (or else x, y do not intersect); and (ii) holds. 

In the nonbinary case, MDS codes provide good examples of intersecting codes 
[see Theorem l(v)]. Other examples are given by codes with few weights, cf. [9], but 
these do not seem to produce efficient 3-coverings. S. Litsyn [39] has pointed out that 
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for large N ,  algebraic-geometric codes provide good examples of intersecting codes. 
Let Q be an even power of a prime. Then there are algebraic-geometric codes over 
the field of order Q with 

and having a polynomial-time construction [33], [57, Theorem 3.4.151. These codes 
are intersecting. 

Rather more is known in the binary case. 

Theorem 4. The minimal length f 2  ( K )  of an [N ,  K ,  D] binary intersecting code satis- 
fies 

where c1 = 3.53.. . , c2 = & = 4.8188.. . . 

Sketch ofproof. The lower bound, obtained by Katona and Srivastava [32], follows 
immediately from Theorem l(i) and the McEliece-Rodemich-Rumsey-Welch bound 
for linear codes ([42], [40], Chap. 17). This version of the upper bound is due to 
Blokhuis and Metsch [5], although essentially equivalent bounds had been given ear- 
lier by Koml6s (see [14]) amd Retter [49]. Blokhuis and Metsch observe that l + f 2 ( K )  
is the minimal number of points needed to block all affine subspaces AG(K - 2 , 2 )  in 
an AG(K, 2 ) .  Since each point blocks one quarter of all AG(K - 2 , 2 )  we can make 
sure that after choosing i points at most a fraction ( 3 / 4 ) i  of all AG(K - 2 , 2 )  are not 
blocked. Since the total number of AG(K - 2 , 2 )  is less than 4K, it suffices to take c2K 
points, where c2 = log4/ log(4/3). Therefore 1 + f 2 ( K )  < c2K. Retter [49] shows 
that f ( K )  = c2K(1+ o(1)) can be achieved by Goppa codes (although his argument 

c iK(1+ ~ ( l ) )  5 f 2 ( K )  I c2K - 2 ,  ( 9 )  

is also nonconstructive). 0 

Table I gives the best upper bounds presently known on f2(K)  for small values of 
K .  For K 5 6 the values of f 2 ( K )  are easily proved to be optimal, using Theorems 
l(i), 2(ii), 2(iii), and the bounds on the minimal distance of binary linear codes given in 
[58]. For example, f 2 ( 5 )  cannot be less than 13 since no [12,5,5] linear code exists [6]. 
The values of fi( l),  . . . , f 2 ( 5 )  were first determined in [32]. Conway [16] has shown 
that f 2 ( 7 )  2 19. 

Two of the best codes in Table I are duals of BCH codes. It seems likely that the du- 
als of some longer BCH codes will also provide good intersecting codes. The obvious 
approach is to use the Carlitz-Uchiyama bound ([40], p. 280) to guarantee that the 
weights satisfy condition (iii), but unfortunately the resulting codes are quite weak. 

Generator matrices for some of the other codes mentioned in Table I are given in 
Table 11. If the generator matrix has the form [A I] then Table I1 gives the rows of A 
in hexadecimal. The remaining codes in Table I may be obtained from the author. 

3. BINARY 3-COVERING ARRAYS 

In this section we study binary 3-covering arrays, beginning with the asymptotic re- 
sults. Let g t ( n )  denote the minimal size of a binary t-covering array of length n. Then 
g1(n) = 2,  and g2(n) is determined by (2). 
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TABLE I. Minimal Length of fi ( K )  of any [N ,  K ,  D] Binary Intersecting Code. The Entries 
for K 5 6 are Exact While the Remaining Entries Give Upper Bounds on f i ( K ) .  Explicit 
Codes are Known in Every Case 

K f ( K )  Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
17 

1 
3 
6 
9 

13 
15 
21 
25 
29 
31 
41 
46 
51 
56 
63 

{OJ) 
[3,2,2] even weight code 
[6,3,3] shortened Hamming code 
Use Theorem l(iv) 
Omit coordinates 1,6 from following code 
[ 15,6,6] BCH code [ 141 
See Table I1 
See Table I1 
Omit coordinates 1,2 from following code 
Dual of [31,21,5] BCH code [14] 
See Table I1 

Dual of [63,46,7] BCH code 

TABLE 11. Generator Matrices [AI ]  for Binary Intersecting Codes 

Rows of A in hexadecimal N K D  

21 7 7 35ED,216E,38B8,1389,2E5D,339E,2FF7 

25 8 9 001FF,01FF0,0333A,07C3C,OB996,0D6B7,13A77,14A9D 

41 11 11 3C8DF41E,33EC23BF,22543C8B,112FD46A,14FF5B3D, 
2ED72BF9,3EE1EF78,OC6EFF07,357CC3AD,3D75F~E,2F~D2BB 

Theorem 5. As n -+ co, 

3.21256 ... l o g n ( l + ~ ( l ) )  < g3(n) < 7.56444 ... l o g n ( l + ~ ( l ) ) .  (10) 

Remarks. The lower bound is due to Kleitman and Spencer [34]. The constant is equal 
to (H(1/4)-l/2)-l7whereH(z) = -a:logz-(l-z) log(1-z). Therehasbeensome 
confusion in the literature concerning this bound. An unfortunate misprint in Eq. (11) 
of [34] misleadingly suggests that a stronger lower bound has been established, and 
this error was repeated in [8] and [12]. 

Kleitman and Spencer also obtain an upper bound of 15.5726 log n by considering 
random arrays. By using the main result of the Erdos-Frankl-Fiiredi paper [20] this 
can be reduced to 11.02logn. A further reduction to 9.6377logn can be obtained 
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by using the binary intersecting codes whose existence is guaranteed by the right-hand 
side of (9) in the construction of Theorem 7(i) below. The bound of 7.56444 log n uses 
an argument due to Row [50]. Row actually claims an upper bound of 6.294 log n, 
but this seems to be an arithmetic error. The following is a corrected version of his 
argument. 
Roux defines a k x n binary array A to be an €-bud t-covering array if the number 

of bad t-tuples, that is, t-tuples of coordinates such that the projection of A onto those 
coordinates does not include all 2t possibilities, is at most €(:). 

Proof of upper bound (after Roux [50]). Let n' = 3n/2, k = 2r. We consider the 
collection of k x n' arrays A formed by choosing the columns to be random vectors of 
length 27- and weight T. For any triple s = sls2s3 of coordinates and any binaryvector 
v = ~ 1 ~ 2 ~ 3 ,  define the random variable Qs,v(A) to be 0 if the projection of A onto s 
includes v, and to be 1 otherwise. Also let 

5 7 ,  

If Q(A) = 0 then A is 3-covering array, while if Q(A) < b then A is an €-bad 3-covering 
array with € = b / ( $ ) .  

The probability that Q,,, (A) = 1 is equal to 

To see this, take for example s = 123, w = 111, and suppose the first column consists 
of T 1s followed by T 0s. The number of choices for columns 2 and 3 is (",')". Let u 
be the number of common 1s in columns 1 and 2. Q,,, ( A )  = 1 if and only if the 1s in 
column 3 are disjoint from these common Is, an event which can happen in (C) ("',") 
ways. The expected value of Q(A) is then 

8(:) (:)-'k u=o (c)'("',"). 
We choose r to be the largest integer so that this quantity is less than n/2. It follows 
that there exists a 2r x n' array A which contains at most n/2 bad triples. By deleting 
at most n/2 coordinates we can eliminate these bad triples, producing a 3-covering 
array of size 2r x n. The sum in (11) is dominated by the terms near u = cur, where 
a = (3 - &)/2 = .3819.. . , and we find k = 2r = 7.56444.. .logn(l + o(l)), as 
claimed. The constant is 

4 
4 - 2H(a) - (2 - a)H(l/(2 - a))' 

0 

The upper bound in Theorem 5 is nonconstructive. Alon [l] gave an explicit con- 
struction of t-covering arrays with k 5 clog n, but his constant is extremely large. 
In the case t = 3, Cohen [12] found that the constant in Alon's construction is about 

The construction using non- 
binary intersecting codes given in Theorem 7(ii) produces arrays with a polynomial- 
time construction and k 5 12.347 log n, as well as explicit arrays with a small constant 
for a wide range of values of n. 

Row [50] was able to reduce the constant to 
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Before leaving the asymptotic theory we mention another result from Roux’s the- 
sis that is at first glance quite surprising. For any t and any & > 0 there is a constant 
ko such that &-bad t-covering arrays of size ICo exist for all lengths n. The size is in- 
dependent of the number of columns. For example, at most 68 vectors are needed 
for an 0.001-bad 3-covering array with any number of columns. The result is easily 
established by choosing arrays at random and using a probabilistic argument. 
Roux also gives two useful bounds. 

Proof 
check that 

(12) is clear. (13) Let A, B be arrays achieving g3(n), g2(n). Then it is easy to 

A A  
B B  

is a 3-covering array (where the bar indicates the complementary array). 

We now give some constructions for 3-covering arrays. The rows of I, and 1, show 
that g3(n) 5 2n for n 2 4. It is also trivial to verify (by computer) that a normalized 
Hadamard matrix (H12) of order 12 yields a 3-covering array with n = 11 and k = 12 
when the initial column of 1s is deleted and -1s are replaced by 0s. None of the 
five Hadamard matrices of order 16 produces a 3-covering of length 15 in this way. 
However, Mallows [41] found that if the first and ninth columns are omitted from 
the fourth Hadamard matrix of order 16 (B3 in the notation of Assmus and Key [3]), 
a 3-covering array is obtained with length 14 and size 16. Kreher and Tonchev [37] 
observed that the incidence matrix of the nicest 2-(16,6,2) biplane ([lo]; [22], Table 
XVII, No. 5; [27], Table 1.1, No. lo), supplemented by 0, forms a 3-covering with 
n = 16, k = 17. Another array with the same parameters is given in (1). 

Theorem 7. ( i )  Zf an [N ,  K ,  D] binaly intersecting code C exfits then 

( i i )  Zf  a 3-surjective array A exists of size ko and length no, where no is a prime power, then 

93(723 5 ko(2K - 1) (15) 

holds for all k with 1 5 K 5 no12 + 1. 

Remark. This is a strengthening of some constructions introduced by Busschbach 
[8] and also used by Roux [50]. Reference [8] has 2K - 1 rather than 2K in (14), and 
establishes (15) only under the stricter hypothesis that 

k 5  [2]+1. 
Proof For part (ii) we let C be an [N = 2K - 1, K ,  K ]  MDS intersecting code over 
the field of order no. Such a code exists by Theorem l(v). For part (i) we set no = ko = 
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2, A = ( y  i) . Then for both parts we arbitrarily label the columns of A by the elements 
of the field of order no, form the N x no" array whose columns are the codewords of C, 
and replace every entry of this array by the corresponding column of A. This produces 
a koN x no" array. For part (i) we further adjoin the all-0s and all-1s rows. Theorem 

0 3 now implies that the resulting array is a 3-covering. 

For example, let us apply Theorem 7(ii) with no = 11, ko = 12. We may take 
K = 6 in (13), and deduce that g3(l16) 5 132. This array was also given by Row, 
but his claim that it is a 3-covering is unjustified since K = 6 violates (16). A second 
iteration gives 

g3(113'l16) 5 132 x 116, 

and so on. This sequence of 3-coverings has kllogn x 6.4 for n I lo6, x 12.719 
for n 5 105000000 [compare with (lo)], while, for large n, k/ logn grows as constant 
x log* n, where log* n is the number of logarithms needed to reduce n to a number 
less than 1. 

If instead of MDS codes we use the algebraic-geometric codes mentioned in (8), 
we obtain the following result. 

Theorem 8 ([39].) If there exists a 3-covering array of size ko and length no, where no is 
an even power of a prime, then there is an infinite sequence of 3-covering arrays of size k 
and length n with 

k 1 k0 
1 lim inf - 

n-00 logn - logno. 

The complaiy of constructing these arrays grows as a poEynomial in n. 

For example, using no = 14641, ko = 84 we obtain k 5 12.347 log n( 1 + o( 1)). 
The final theorem is due to Kreher [36] and the author. 

Theorem 9. ( i )  If a binay constant weight code with length N, constant weight W, 
minimal distance D and containing M codewords exists with N > 3W and D > W, then 
gs(M) 5 2N. ( i i )  If a Steiner system S(T, K ,  V )  containing M = (F) / (:) blocks exists 
with V > 3K and K > 2(T - l), then g3(M) 2 2V. 

Proof: (i) Let A be the N x M array whose columns are the codewords. Any two dis- 
tinct codewords intersect in at most W - 0 / 2  coordinates, and since W > 2( W -0/2) 
this means that in any three columns all of 100,010,001 occur. Since N > 3W, 000 
also occurs. Therefore the rows of A and A form a 3-covering array. (ii) is a special 
case of (i). 0 

The maximal number of codewords in a constant weight code of length N, weight 
W, and minimal distance D is usually denoted by A(N, D, W), and [7] gives extensive 
tables of lower bounds on this quantity. An entry marked A(N, D, W) or S(T, K, V) 
in Table I11 indicates an array obtained by applying Theorem 9. 

Table I11 summarizes all these results, giving upper bounds on g3(n) for n 5 116. 
If n is missing, the following entry should be used. Explicit arrays are known in every 
case. It follows from (12) that the entries in Table I11 for n 5 11 are exact. However, 
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the author expects that most of the other entries (as well as those in Table I) can be 
considerably improved, and offers these tables as a challenge to the reader. 

TABLE 111. Upper Bounds to g3(n), the Minimal Number of Vectors in a Binary 
3-Covering Array of Length n. If n is Missing, Use the Following Entry 

Construction n 93 (4 

3 
4 
5 
11 
14 
16 
20 
22 
28 
30 
32 
40 
44 
56 
64 
70 
80 
121 
128 
176 
253 
254 
256 
260 
36 1 
420 
506 
1331 
1584 
2662 
14641 
22880 
29282 
161051 
184756 
322102 
1771561 

8 
8 
10 
12 
16 
17 
18 
19 
23 
24 
25 
26 
27 
31 
32 
34 
35 
36 
42 
44 
46 
50 
51 
52 
54 
57 
58 
60 
73 
74 
84 
101 
102 
108 
128 
129 
132 
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