
CudaCuts: Fast Graph Cuts on the GPU

Vibhav Vineet and P. J. Narayanan

Centre for Visual Information Technology

International Institute of Information Technology

Hyderabad, 500032. India

{vibhavvinet@students.,pjn@}iiit.ac.in

Abstract

Graph Cuts has become a powerful and popular opti-

mization tool for energies defined over an MRF and has

found applications in image segmentation, stereo vision,

image restoration etc. The maxflow/mincut algorithm to

compute graph cuts is computationally expensive. The best

reported implementation of it takes over 140 milliseconds

even on images of size 640×480 for two labels and cannot

be used for real time applications.

The commodity Graphics Processor Unit (GPU) has

emerged as an economical and fast parallel co-processor

recently. In this paper, we present an implementation of

the push-relabel algorithm for graph cuts on the GPU. We

show our results on some benchmark dataset and some syn-

thetic images. We can perform over 25 graph cuts per sec-

ond on 640×480 size benchmark images and over 35 graph

cuts per second on 1K × 1K size synthetic images on an

Nvidia GTX 280. The time for each complete graph-cut is

few milliseconds when only a few edge weights change from

the previous graphs, as on dynamic graphs. The CUDA

code with a well-defined interface can be downloaded from

http://cvit.iiit.ac.in/index.php?page=resources .

1. Introduction

Graph cuts have been used as a method to find the op-

timal MAP estimation of various Computer Vision prob-

lems defined over an MRF. Though the mincut/maxflow al-

gorithm was introduced into Computer Vision early [17],

their potential was exploited only after the work of Boykov

et al. [5, 6] and their characterization of functions that can

be optimized using graph cuts [25]. Graph-cuts have since

then been applied to several Computer Vision problems like

image and video segmentation [29, 27], stereo and motion

[5, 31], multi-camera scene reconstruction [24, 20], etc.

Various algorithms and strategies have been proposed to

improve the computational performance of maxflow/mincut

algorithm. Boykov and Kolmogorov [4] reused the

search trees towards improving the computational effi-

ciency. MRFs can be initialized to the solution com-

puted for the MRF instance in the previous frame, in a

video, to converge to the solution quickly. Dynamic graph-

cut [22, 23] and Active graph-cuts [21] use similar strate-

gies. All the proposed implementations cannot be used for

any real-time application.

The contemporary graphics processor unit (GPU) has

huge computation power and can be very efficient on many

data-parallel tasks. They have recently been used for

non-graphics applications [16] and many in Computer Vi-

sion, e.g., OpenVidia [13], feature based tracker [30], Sift-

GPU [32]. The GPU, however, has had a difficult program-

ming model that followed the traditional graphics pipeline.

This made it difficult to implement general graph algo-

rithms on them. The Compute Unified Device Architecture

(CUDA) from Nvidia [9] and the Close-To-Metal (CTM)

from ATI/AMD [8] are such interfaces for modern GPUs.

These enable the acceleration of algorithms on irregular

graphs [18] and other application involving graphs.

In this technical report, we present a fast implementation

of the push-relabel algorithm for mincut/maxflow algorithm

for graph-cuts using CUDA. We use the global memory and

the shared memory on the GPU for efficient computation.

We use the atomic functions operating on the global mem-

ory only availabel for devices of compute capability 1.1 or

above. We also propose stochastic cuts which improves the

performance of push-relabel algorithm by factors for differ-

ent problems on the GPU.

Our implementation of the basic graph-cut can perform

over 30 graph-cuts per second on synthetic images of size

1024×1024 and benchmark images of size 640×480 on

an Nvidia GTX 280. Each graph cut can be computed in

few millisecond on images on dynamic graphs arising from

videos. A shader based early implementation of graph cuts

on the GPU was even slower than the CPU implementation

[10]. Hussein et al. [19] report an implementation of the

push-relabel algorithm on CUDA. They achieve a speedup

of only 2-4.5 over the CPU implementation with a running

time of 100 milliseconds per frames with a million pixels,

as opposed to 33 milliseconds by our implementation. Sec-

tion 2 describes the the GPU implementation of the basic

push-relabel algorithm for graph cuts. Different strategies

to optimize the graph cuts on CUDA is described in sec-

tion 3. Section 4 presents the experimental results. Some

concluding remarks and directions for future work are given

in Section 5.

2. Graph Cuts on GPU

The mincut/maxflow algorithm tries to find the minimum

cut in a graph that separates two designated nodes, namely,

the source s and the target t. The mincut minimizes the

energy of an MRF defined over the image lattice when a

discontinuity preserving energy function is used [25]. The

energy function used has the following form:

E(f) =
∑

p,q∈N

Vp,q(fp, fq) +
∑

p∈P

Dp(fp), (1)

where, Dp is the data energy, Vp,q is the smoothness energy,

N the neighbourhood in the MRF, fp is the label assigned

to the pixel p, and P are all pixels of the lattice.

Two algorithms are popular to compute the min-

cut/maxflow on graphs. The first one, due to Ford and Fulk-

erson [12] and modified by Edmonds and Karp [11], repeat-

edly computes augmenting paths from source s to target t in

the graph through which flow is pushed until no augment-

ing path can be found. The second algorithm, by Goldberg

and Tarjan [15], works by pushing flow from s to t with-

out violating the edge capacities. Rather than examining

the entire residual network to find an augmenting path, the

push-relabel algorithm works locally, looking at each ver-

tex’s neighbors in the residual network. There are two basic

operations in a push-relabel algorithm: pushing excess flow

from a vertex to one of its neighbors and relabelling a vertex

to its distance to the sink. The algorithm is sped up in prac-

tice by periodically relabelling the vertices using a global

relabelling procedure or a gap relabelling procedure [7].

The sequential implementation of graph cuts by Boykov

and others follow the Edmonds-Karp algorithm which re-

peatedly finds the shortest path from the source to the target

using a breadth-first search (BFS) step, which is not eas-

ily parallelizable. The push-relabel algorithm was paral-

lellized by Anderson and Setubal [2]. Bader and Sachdeva

later produced a cache-aware optimization of it [3]. The tar-

get architecture is a cluster of symmetric multi-processors

(SMPs) having from 2 to over 100 processors per node. Al-

izadeh and Goldberg [1] present a parallel implementation

on a massively parallel Connection Machine CM-2. Two

attempts to implement this algorithm on the GPU have also

been reported [10, 19]. We implement the push-relabel al-

gorithm on the GPU using CUDA.

2.1. PushRelabel Algorithm

Let G = (V, E) be the graph and s, t be the source

and target nodes. The push-relabel algorithm constructs and

maintains a residual graph at all times. The residual graph

Gf of the graph G has the same topology, but consists of

the edges which can admit more flow. The residual capac-

ity cf (u, v) = c(u, v)− f(u, v) is the amount of additional

flow which can be sent from u to v after pushing f(u, v),
where c(u, v) is the capacity of the edge (u, v). The push-

relabel algorithm maintains two quantities: the excess flow

e(v) at every vertex and the height h(v) for all vertexes

V
′

= V ∪ {s, t} with h(s) = n and h(t) = 0. The excess

flow e(v) ≥ 0 is the difference between the total incoming

and outgoing flows at node v through its edges. The height

h(v), is a conservative estimate of the distance of vertex v

from the target t. Initially all the vertexes have a height of

0 except for the source s which has a height n = |V |, the

number of nodes in the graph.

Computation proceeds in terms of two operations. The

push operation can be applied at a vertex u if e(u) > 0 and

its height h(u) is equal to h(v) + 1 for at least one neigh-

bour (u, v) ∈ Ef . After the push, either vertex u is satu-

rated (i.e., e(u) = 0) or the edge (u, v) is saturated (i.e.,

cf (u, v) = 0). The relabel operation is applied at a vertex

u if it has positive excess flow but no push is possible to

any neighbour due to height mismatch. The height of u is

increased in the relabelling step by setting it to one more

than the minimum height of its neighbouring nodes. Global

relabelling needs a breadth first search to correctly assign

the distances to the target. Gap relabelling needs to find

any gaps in the height values in the entire graph. Both are

expensive operations and are performed only infrequently.

The algorithm stops when neither push nor relabelling can

be applied. The excess flows in the nodes are then pushed

back to the source and the saturated nodes of the final resid-

ual graph gives the mincut.

2.2. Graph construction on CUDA architecture

Our graph-construction exploits the grid-structure that

arises for MRFs defined over images. There are two popu-

lar method for constructing the graphs for the MRFs defined

over images. Kolmogorov et.al. [25] constructs the graph

which does not introduce any auxiliary vertices, which is

in contrast to the graph construction of Boykov et.al. [6],

which introduces auxiliary vertices. We adapt the graph

construction of Kolmogorov et.al. [25], which maintains

the the grid structure, suitable for the GPU/CUDA archi-

tecture. We constructs the grid-graph such that each pixel

represents a non-terminal vertex in the graph. We assume

fixed connectivity which could be 4 or 8 neighbors for each

node. Consequently, 4 or 8 two-dimensional arrays store the

weights along the n-edges. Two other arrays hold the excess

flow and the edge capacity to the target node for each node.

Graph construction on GPU is very fast as shown in Table 1.

An array to hold the heights and a mask array to hold the

status of each node complete the representation. This rep-

resentation can easily be extended to 3D grids for 3D graph

cuts and other fixed connectivity patterns. Different strate-

gies will have to be adopted for general graphs represented

using adjacency list or adjacency matrix.

Image Size GPU Time(ms) CPU Time(ms)

Sponge 640X480 0.151 61

Person 600X450 0.15 60

Flower 600X450 0.15 60
Table 1. Timings for constructing graphs from energy functions on

different dataset on GTX 280 and CPU.

2.3. PushRelabel Algorithm on CUDA

The CUDA environment exposes the SIMD architecture

of the GPUs by enabling the operation of program kernels

on data grids, divided into multiple blocks consisting of sev-

eral threads. The highest performance is achieved when the

threads avoid divergence and perform the same operation on

their data elements. The GPU has high computation power

but low memory bandwidth. The GPU architecture cannot

lock memory; synchronization is limited to the threads of

a block. This places restrictions on how modifications by

one thread can be seen by other threads. However, later ver-

sions of CUDA provide the facility of atomic functions. An

atomic function performs a read-modify-write atomic op-

eration on one 32-bit or 64-bit word residing in global or

shared memory. For example, atomicAdd() reads a 32-bit

word at some address in global or shared memory, adds an

integer to it, and writes the result back to the same address.

The operation is atomic in the sense that it is guaranteed to

be performed without interference from other threads. In

other words, no other thread can access this address until

the operation is complete. Atomic functions can only be

used in device functions and are only available for devices

of compute capability 1.1 and above. Atomic functions op-

erating on shared memory and atomic functions operating

on 64-bit words are only available for devices of compute

capability 1.2 and above.

The basic implementation of the push-relabel algorithm

requires three phases. The Push phase pushes excess flow

at each node to its neighbours and the Pull phase updates

the net excess flow at each node. The Local Relabel phase

applies a local relabelling operation to adjust the heights

as stipulated by the algorithm. These three basic phases

use two kernels. The Push phase requires one kernel. The

Pull phase and Local Relabel phase require another kernel.

The heights of the nodes can also be adjusted by applying

breadth first search starting from the sink. The breadth first

search step is very slow and slows the computation overall.

Our implementation exploits the structure of the grid-

graph that arise for MRFs over images, where each pixel

corresponds to a node and the connectivity is fixed to its

4-neighbours. The grid has the dimensions of the image.

We organize them into a two-dimensional grid of geome-

try Bx × By , where Bx and By are the number of thread

blocks in x and y directions. Blocks are further divided

into Dx×Dy threads. The maximum efficiency is achieved

when Bx and By are multiple of Dx and Dy respectively.

In our case, Each thread block is of size 32×8. To achieve

maximum efficiency, we pad the rows and columns to make

them multiples of 32×8. Each thread handles a single node

or pixel and a block handles Dx×Dy pixels. It needs to

access data from a (Dx + 2)× (Dy + 2) section of the

image. Each node has the following data: its excess flow

e(u), height h(u), an active status flag(u) and the resid-

ual edge capacities to its neighbours. These are stored as

appropriate-sized arrays in the global(or device) memory of

the GPU, which is accessible to all threads.

There are multiple blocks running in parallel on the

GPU. We organize them into a two-dimensional grid of ge-

ometry Bx×By, where Bx and By are the number of thread

blocks in x and y directions. Blocks are further divided

into Dx×Dy threads. The maximum efficiency is achieved

when Bx and By are multiple of Dx and Dy respectively.

We represent an image as a two dimensional grid. Each

thread block is of size 32×8. To achieve maximum effi-

ciency, we pad the rows and columns to make them multi-

ples of 32×8.

A node can be active, passive, or inactive. Active nodes

have the excess flow e(u) > 0 and h(u) = h(v) + 1 for

at least one neighbour v. Passive nodes do not satisfy the

height condition, but may do so after relabeling. If a node

has no excess flow or has no neighbour in the residual graph

Gf , it becomes inactive. The kernel first copies the h(u)
values of all nodes in a thread-block to the shared memory

of the GPU’s multiprocessor. Since these values are needed

by all neighbour threads, storing them in the shared memory

speeds up the operation overall.

Push is a local operation with each node sending flow

to its neighbours and reducing own excess flow. A node

can receive flow from its neighbours also. Thus, the net

excess flow cannot be updated in one step due to the read-

after-write data consistency issues. To maitain the preflow

conditions without the read-after-write data consistency, we

divide the operation into two kernels: Push Kernel and

Pull kernel. However, atomic functions can perform read-

modify-write atomic operations on 32-bit or 64-bit word re-

siding in global or shared memory. So, we can combine

push phase and pull phase without any inconsistency. Sec-

tion 2.3.1 describes the implementation on hardware with

atomic capabilites and Section 2.3.2 describes the imple-

mentation on hardware without atomic capabilities.

2.3.1 CudaCuts on hardware with atomic capabilities

PushPull Kernel: The kernel updates the edge-weights

of the edges (u, v) and (v, u) and the excess flows e(u) and

e(v) of the vertices, u and v in the residual graph Ef .

PushPullKernel (node u)
1. Load h(u) from the global memory to the shared mem-

ory of the block.

2. Synchronize threads to ensure completion of load.

3. Push flow to eligible neighbours atomically without vi-

olating the preflow conditions.

4. Update the edge-weights of (u, v) and (v, u) atomi-

cally in the residual graph Ef .

5. Update the excess flows of e(u) and e(v) atomically in

the residual graph Ef .

Atomic writes to the global memory ensure synchronza-

tion across the blocks of the grid.

Local Relabel Kernel: The local relabelling step replaces

the height of a vertex with 1 more than the minimum of the

heights of its neighbours. This operation reads the heights

of neighbouring vertices from the global memory and writes

the new height value to the global memory. After the relabel

operation, many passive vertices become active. The thread

for node u of the kernel does the following.

RelabelKernel (node u)
1. Load h(u) from the global memory to the shared mem-

ory of the block.

2. Synchronize threads to ensure completion of load.

3. Compute the minimum height of neighbours of u in

the residual graph Ef .

4. Write the new height to global memory h(u).

2.3.2 CudaCuts on hardware without atomic capabili-

ties

Atomic functions are not available on such devices, so push

and pull phases can not be combined into one. The syn-

chronization is limited to the threads of a block. The border

pixels of a block may not get the exact flow value. So, we

perform the push operation in one kernel and pull and rela-

bel operation in another kernel.

Push Kernel: The push kernel updates the edge-weights

of the possible edges (u, v) and the excess flow of e(u) in

residual graph.

PushKernel (node u)

1. Load h(u) from the global memory to the shared mem-

ory of the block.

2. Synchronize threads to ensure completion of load.

3. Push flow to the eligible neighbours without violating

the preflow conditions.

4. Update the residual capcities of edges (u, v) in residual

graph.

5. Update the excess flow e(u) of the vertex.

6. Store the flow pushed to each edge in a special global

memory array F .

PullRelabel Kernel: The kernel updates the excess flow

e(u) and edge-weights e(u, v) residual graph.

PullRelabelKernel (node u)
1. Load h(u) from the global memory to the shared mem-

ory of the block.

2. Synchronize threads to ensure completion of load.

3. Update the excess flow e(u) of each vertex and the

residual capacities of edges (u, v) in the residual graph

Ef with the flows from global memory array F .

4. Synchronize threads to ensure completion of updation

of edge-weights and excess flow.

5. Compute the minimum height of neighbours of u in

the residual graph Ef .

6. Write the new height to global memory h(u).

Figure 1 shows the effect of push and pull operations. It

shows an active vertex which pushes flow to all its neigh-

bours in the residual graph. Similarly, a vertex in the pull

phase updates its excess flow by receiving flows from its

neighbours and aggregating the net excess.

s

t
Figure 1. A 4×4 grid graph. Push kernel pushes flow along edges

and pull kernel takes them into each node.

Overall Graph Cuts Algorithm: The overall algorithm

applies the above steps in sequence, as follows. The CUDA

grid has the same dimensions as the image, say, M×N . The

CUDA block size is B1×B2 threads.

GPUGraphCuts ()

1. Compute energies and edge weights from the underly-

ing image.

2. On hardware with atomic capabilities: Perform Push-

PullKernel followed by RelabelKernel() on the whole

grid untill convergence.

3. On hardware with non-atomic capabilities: Perform

PushKernel followed by PullRelabelKernel() on the

whole grid untill convergence.

Estimating the energies and weights can also be per-

formed in parallel on the GPU. This can reduce the com-

putation time on large image that use complex energy func-

tions.

2.3.3 Stochastic Cut

We notice that most of the pixels get their actual label after a

few iterations on all datasets. Figure 6 shows the labels after

different numbers of iterations on sponge image. After 10

iterations only 643 pixels are labelled incorrectly for sponge

image. Figure 2 and Figure 3 gives an estimate of error

(pixels getting incorrect lebels) and energy, respectively, as

the computation of graph cuts progresses. Only a few pix-

els exchange flow with their neighbours later. Processing

nodes which are unlikely to exchange any flow with their

neighbors results in inefficient utilization of the resources.

We also explore the number of blocks that are active after

each iteration. An active block has at-least one pixel which

has exchanged flow in the previous iteration. The activity

is determined based on the change in n edge-weights and

t edge-weights in the previous iteration. The kernel marks

whether each block is active. Based on the active bit, the

kernel executes the other parts of the program. Figure 4

gives an illustration of the grid when some blocks are ac-

tive and some are inactive. It is observed that after a few

iterations, only 5-10% of the blocks are active, as shown in

Figure 5. We delay the processing of a block based on its

activity bit. A better model is to delay the processing of a

block based on the likelihood and prior information, but we

settle for a fixed delay for inactive blocks. We check the

activity of a block after each 10 iterations. A block is pro-

cessed for next 10 iterations if its active otherwise the block

is not processed.

StochasticCut (node u)

1. Check the active bit of the block.

2. Perform step 2 or 3 of GPUGraphCuts() every it-

eration on all above blocks and every Kth iteration on

inactive blocks.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

er
ro

r(
nu

m
be

r
of

 p
ix

el
s)

number of iterations

Figure 2. The plot shows the error(pixels) with iterations for

Sponge image.

0 20 40
0

5

10

15

20

25

30

35

number of iterations

energy(in multiple of 10)
time(in msec)

7

Figure 3. The plot shows the energy vs. iterations and time vs.

iterations plot for Sponge image. It gives an estimate of energy

drop as the graph cuts computation progresses.

3. Different Levels of Optimizations

As the GPU has lower memory bandwidth, reducing

global memory access is critical to performance. We ex-

plored the impact on the running time of different compact

representaion. The compact versions have to be split into

constituent terms after reading. The active flag takes val-

ues: 0, 1 or 2 and 2 bits are sufficient to store them. We can

compact 16 active bits in one word. In practice, heights can

be represented using 16 bits or even 8 bits and edge weights

using 32 bits or 16 bits. We also explored combining the

flag bits along with the edge weights and heights. Some

instances of data structure at a node are shown in Figure 7.

Table 2 and Table 3 show the different parameters (inco-

Figure 4. Active Vs Inactive Blocks as in Stochastic Cuts

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

number of iterations

nu
m

be
r

of
 a

ct
iv

e
bl

oc
ks

Figure 5. It shows the number of active blocks with the number of

iterations of the graph cuts for sponge image.

Figure 6. First two images are the sponge image and the segmented

image. The other images shows the errors after 10, 20, 40, 80, 90,

100 iterations of graph cuts for Sponge Image.

herency, occupancy, shared memory uses, register counts)

which effects the performance on the GPU. Table 5 shows

the effect of compact representation. These tables show

interesting results on 8800 and GTX 280, as far as global

reads and global writes are considered. The Table 2 shows

that there are almost 14% incoherent reads and 23% inco-

herent writes for Non-Atomic CudaCuts on 8800. However,

there is no incoherent reads and writes on GTX 280. There

is always a tradeoff between the shared memory used per

block and the register count per thread. These two factors

decide the occupancy. As we try to compact more data in

a 32 bit word, the efficiecy decreases. When heights are in

8 bits and edgeweights are in 16 bits, we get the worst per-

formance. Compacting the data reduces the global memory

accesses at the cost of higher number of computations due

Figure 7. Data Structure at a node: Each node has height, mask and

edge-weights. Each height value can be stored in 32 bits, 30 bits, 8

bits. Each mask can take 32 bits or 2 bits. Edge-weights are stored

in 32 bits or 16 bits. Case 1: Height, mask and edge-weights are

stored in 32 bits. Case 2: Height and mask are compressed in a sin-

gle 32 bits word with height taking 30 bits and mask taking 2 bits.

Edge-weights are stored in 16 bits. Case 3: Four height values are

stored in a single 32 bits word with each taking 8 bits. Similarly,

16 masks are compressed in 32 bits with each mask taking 2 bits.

Each edge-weight is stored in 16 bits.

to the shifting of the data. The register count per thread is

also increased, which reduces the occupancy and so the ef-

ficiency. When height, edge-weights and mask all use 32

bits word, we get the best performance on GTX 280. Ta-

ble 5 shows timings of two different implementations dis-

cussed in the previous section on the sponge image of size

640 × 480 on GTX 280.

Efficiency Considerations: The regular connectivity of

the grid graphs results in efficient memory access patterns

from the global memory as well as from the shared mem-

ory. The use of shared memory in different kernels speeds

up the operations by over 20%. Heights can be stored in

one-dimensional or two-dimensional shared memory block.

Storing heights in one-dimensional block is efficient. We

use a logical OR of the active bit of each node to check

the termination condition. Logical OR is evaluated by all

active nodes writing a 1 to a common global memory loca-

tion. Though CUDA model doesn’t guarantee an order of

execution, OR can be computed quickly.

The push-relabel algorithm can be modified to perform

m push operations before each relabel operations. The ex-

perimental results show if relabeling is done every other it-

eration, the speed increases. However, that does not extend

to the higher values of m. The multiple push operations be-

fore each relabel operation exhausts excess flow quickly. In

this way, the algorithm converges in fewer number of itera-

tions. When there is bias towards data term, higher values

of m will get efficient performance. Otherwise, value of m

should be kept lower. The cuda cuts on flower image con-

verges in 90 iterations when m = 1 and in 65 iterations

when m = 2. Table 6 shows the effect of varying m on

timings and number of iteration for convergence of the al-

gorithm on flower image.

Kernel Occupancy Incoh(%) Coh(%) Incoh(%) Coh(%) Shared(Bytes) Registers

Load Load Store Store Memory Used Used

8800 Push 1 23.3 76.7 72.5 27.53 1448 9

280 Push 1 0 100 0 100 1448 9

8800 PullRelabel 0.67 0 100 0 100 1532 16

280 PullRelabel 1 0 100 0 100 1532 16
Table 2. Non-atomic: heights, edgeweights, masks are stored in a word. Push and Pull operations are in separate Kernel.

Kernel Occupancy Incoh(%) Coh(%) Incoh(%) Coh(%) Shared Registers

Load Load Store Store Memory Used Used

280 PushPull 1 0 100 0 100 1532 10

280 Relabel 1 0 100 0 100 1532 9
Table 3. Atomic: heights, edgeweights, masks are stored in a word. Push and Pull Kernels are combined.

Image Size Non-Atomic Atomic

Sponge Image 640 × 480 61 49

Flower Image 608 × 456 73 51

Person Image 608 × 456 81 77
Table 4. The timings on standard images and synthetic image on GTX 280. Each push is followed by a relabel operation.

No. Of bit Occupancy Shared Memory Registers Time(in ms)

(ht/edgeweights/mask) Used Used (m = 1)
32/32/32 1/1 1360/1360 13/10 49

32/32/2 1/1 2384/1360 13/10 51

30/32/2 1/1 2384/1360 13/10 54

30/16/2 0.75/1 2384/1360 20/10 56

8/32/32 1/1 1360/1360 13/10 56

32/16/32 0.75/1 1360/1360 20/11 52

16/16/32 0.75/1 1360/1360 20/11 67

8/16/32 0.75/1 1360/1360 20/11 67

8/16/2 0.5/1 2384/1360 23/11 73
Table 5. The table evaluates different parameters which determine the efficiency of implementation on the sponge image on GTX 280. First

column gives the different possible combinations of heights, edgeweights and masks in one word. The second, third and forth columns give

the occupancy, shared memory used and register used per thread respectively, for PushPull kernel and Relabel kernel as in Atomic case.

Figure 8. The graph updation and reparameterization scheme for change in weights as in dynamic graph cuts.

When using atomic CUDA Cuts, performing 2 pushes

before each relabel performs the best. However, starting

with m = 1 and increasing it to 2 after about 40 iterations

performs the best on non-atomic CUDA Cuts. Table 7 gives

timings after these optimizations.

m Number of iteration Time (ms)

1 231 77

2 187 64

Table 6. Comparison of running times of CUDA Atomic imple-

mentation without stochastic operations on GTX 280 when value

of m is changed on person image.

3.1. Dynamic Graph Cuts

Repeated application of graph cuts on graphs for which

only a few edges change weights is common in applications

like segmenting frames of a video. Kohli and Torr describe

a reparametrization of the graph that maintains the flow

properties even after updating the weights of a few edges

[23]. The resulting graph is close to the final residual graph

and its mincut can be computed in a small number of itera-

tions.

The final graph of the push-relabel method and the final

residual graph of the Ford-Fulkerson’s method are same.

So, we adapt the reparametrization scheme to the leftover

flow that remains after the push-relabel algorithm. Updation

and reparameterization are two basic operations involved

in the dynamic graph cuts (Figure 8). These operations

assign new weights/capacities as a modification of the fi-

nal graph without violating any constraints. The frame-to-

frame change in weights is computed for each edge first and

the final graph from the previous iteration is reparametrized

using the changes. It finds the pixels which change their

labels with respect to the previous frame. This operation is

performed in kernels in parallel. The two basic operations,

updation and reparameterizations, are performed by these

kernel. So, the maxflow algorithm terminates quickly on

them, giving a running time of few milliseconds per frame.

The running time depends on the percentage of weights that

changed.

4. Experimental Results

The CUDA Cuts algorithm was tested on several stan-

dard and synthetic images. The running time also depends

on the number of threads per block as it determines the level

of parallelism. We experimented with different numbers of

threads per block. A block size of 32×8 threads gives the

best results with 256 threads per block.

We tested our implementations on various real and syn-

thetic images. Figure 9 shows the results of image segmen-

tation on the Person image, Sponge image and the Flower

image. The energy terms used are the same as those given

in the Middlebury MRF page [31]. It also shows the results

of image segmentation on a noisy synthetic image. The run-

ning times for these are tabulated in Table 7 along with the

time for Boykov’s sequential implementation of graph cuts.

The reported times of the GPU algorithm does not include

the time to compute the edge weights. Figure 11 plots the

running times on a noisy synthetic image of CUDA Cuts

and the sequential graph cuts for different image sizes.

Figure 10. The plot compares the performance of different meth-

ods for Sponge image as graph cuts computation progresses on

GTX280.

The figure 10 evaluates different optimization methods

on GTX280 on sponge image. The stochastic cuts performs

the best when m = 2.

Figure 12 shows the results of independent segmentation

of the frames of a video using our implementation of dy-

namic graph cuts. The frame-to-frame change in weights

is computed for each edge first and the final graph from

the previous iteration is reparametrized using the changes.

The CUDA implementation of the dynamic graph cuts is

efficient and fast. It finds the pixels which change their

labels with respect to the previous frame. This operation

is performed in kernel in parallel. The two basic opera-

tions, updation and reparameterizations, are performed by

this kernel. So, the maxflow algorithm terminates quickly

on them, giving a running time of 4 milliseconds per frame.

The running time depends on the percentage of weights that

changed.

5. Conclusions and Future Work

In this paper, we presented an implementation of graph-

cuts on GPU using CUDA architecture. We used the push-

relabel algorithm for mincut/maxflow as it is more paral-

lelizable. We carefully divide the task among the multipro-

cessors of the GPU and exploit its shared memory for high

performance. We perform over 90 graph cuts per second on

640×480 images. This is 10-12 times faster than the best

sequential algorithm reported. More importantly, since a

graph cut takes only 30 to 40 milliseconds, it can be applied

multiple times on each image if necessary, without violat-

Figure 9. Binary Image Segmentation: Person, Sponge, Flower, and Synthetic images

Image GC Time(ms) GC Time(ms) GC Time(ms) GC Time(ms) Graph Construct TotalTime

BK Non-atomic Atomic Stochastic CPU/GPU Time(ms) CPU/GPU (ms)

Flower 188 73 51 37 60/0.15 248/37.15

Sponge 142 61 49 44 61/0.151 203/44.15

Person 140 81 64 61 60/0.15 201/61.15

Synthetic 480 39 37 33 170/1.2 650/34.2
Table 7. Comparison of running times of CUDA implementations on GTX 280 with that of Boykov on different images. Non-atomic: Pull

and Relabel kernels are combined into one kernel. Atomic: Push and Pull kernels are combined into one. Stochastic: Atomic functions are

applied along with the stochastic operations.

0.26 1.04 1.3 2.2
0

20

40

60

80

100

120

140

160

number of pixels(in millions)

tim
e

in
 m

s

Cuda Cuts timings in ms
BK in 10s of ms

Figure 11. Comparing the running times of graph cuts on the GPU

and the CPU for synthetic images.

ing real-time performance. The code is available from our

webpage and other relevant resources for download and use

by other researchers. We are currently working on imple-

menting multilabel graph cuts onto the GPU using a similar

strategy.

Figure 12. Segmenting frames of a video using dynamic graphs

References

[1] F. Alizadeh and A. Goldberg. Implementing the push-

relabel method for the maximum flow problem on a

connection machine. Technical Report STAN-CS-92-

1410, Stanford University, 1992.

[2] R. J. Anderson and J. C. Setubal. On the parallel im-

plementation of goldberg’s maximum flow algorithm.

In SPAA, pages 168–177, 1992.

[3] D. A. Bader and V. Sachdeva. A cache-aware paral-

lel implementation of the push-relabel network flow

algorithm and experimental evaluation of the gap rela-

beling heuristic. In ISCA PDCS, pages 41–48, 2005.

[4] Y. Boykov and V. Kolmogorov. An experimental com-

parison of min-cut/max-flow algorithms for energy

minimization in vision. IEEE Trans. Pattern Anal.

Mach. Intell., 26(9):1124–1137, 2004.

[5] Y. Boykov, O. Veksler, and R. Zabih. Markov random

fields with efficient approximations. In CVPR, pages

648–655, 1998.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE Trans.

Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001.

[7] B. V. Cherkassky and A. V. Goldberg. On implement-

ing push-relabel method for the maximum flow prob-

lem. In IPCO, pages 157–171, 1995.

[8] A. Corporation. Ati ctm (close to metal) guide. Tech-

nical report, AMD/ATI, 2007.

[9] N. Corporation. Cuda: Compute unified device archi-

tecture programming guide. Technical report, Nvidia,

2007.

[10] N. Dixit, R. Keriven, and N. Paragios. Gpu-cuts:

Combinatorial optimisation, graphic processing units

and adaptive object extraction. Technical report, CER-

TIS, 2005.

[11] J. Edmonds and R. M. Karp. Theoretical improve-

ments in algorithmic efficiency for network flow prob-

lems. J. ACM, 19(2):248–264, 1972.

[12] L. R. Ford and D. R. Fulkerson. Flows in Networks.

Princeton Univ. Press, NJ, 1962.

[13] J. Fung, S. Mann, and C. Aimone. Openvidia: Paral-

lel gpu computer vision. In Proc of ACM Multimedia

2005, pages 849–852, 2005.

[14] S. Geman and D. Geman. Stochastic relaxation, gibbs

distributions, and the bayesian restoration of images.

IEEE Trans. Pattern Anal. Mach. Intell., 6:721–741,

1984.

[15] A. V. Goldberg and R. E. Tarjan. A new approach to

the maximum-flow problem. J. ACM, 35(4):921–940,

1988.

[16] N. K. Govindaraju. Gpufftw: High performance gpu-

based fft library. In Supercomputing, 2006.

[17] D. Greig, B. Porteous, and A. Seheult. Exact max-

imum a posteriori estimation for binary images. J.

Royal Statistical Society., Series B, 51(2):271–279,

1989.

[18] P. Harish and P. J. Narayanan. Accelerating large

graph algorithms on the GPU using CUDA. In Intnl.

Conf. on High Performance Computing (HiPC), LNCS

4873, pages 197–208, December 2007.

[19] M. Hussein, A. Varshney, and L. Davis. On imple-

menting graph cuts on cuda. In First Workshop on

General Purpose Processing on Graphics Processing

Units. Northeastern University, October 2007.

[20] H. Ishikawa and D. Geiger. Occlusions, discontinu-

ities, and epipolar lines in stereo. In ECCV (1), pages

232–248, 1998.

[21] O. Juan and Y. Boykov. Active graph cuts. In CVPR

(1), pages 1023–1029, 2006.

[22] P. Kohli and P. H. S. Torr. Effciently solving dynamic

markov random fields using graph cuts. In ICCV,

pages 922–929, 2005.

[23] P. Kohli and P. H. S. Torr. Dynamic graph cuts for effi-

cient inference in markov random fields. IEEE Trans.

Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007.

[24] V. Kolmogorov and R. Zabih. Computing visual cor-

respondence with occlusions via graph cuts. In ICCV,

pages 508–515, 2001.

[25] V. Kolmogorov and R. Zabih. What energy functions

can be minimized via graph cuts? IEEE Trans. Pattern

Anal. Mach. Intell., 26(2):147–159, 2004.

[26] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and

J. D. Owens. Glift: Generic, efficient, random-access

gpu data structures. ACM Trans. Graph., 25(1):60–99,

2006.

[27] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and

paste. ACM Trans. Graph., 24(3), 2005.

[28] P. J. Narayanan. Processor Autonomy on SIMD Ar-

chitectures. In Proceedings of the Seventh Interna-

tional Conference on Supercomputing, pages 127–

136, 1993.

[29] C. Rother, V. Kolmogorov, and A. Blake. Grabcut:

interactive foreground extraction using iterated graph

cuts. ACM Trans. Graph., 23(3):309–314, 2004.

[30] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc.

Feature tracking and matching in video using graphics

hardware. In Proc of Machine Vision and Applica-

tions, 2006.

[31] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler,

V. Kolmogorov, A. Agarwala, M. F. Tappen, and

C. Rother. A comparative study of energy minimiza-

tion methods for markov random fields. In ECCV (2),

pages 16–29, 2006.

[32] C. Wu and M. Pollefeys. Siftgpu library. Technical

Report http://cs.unc.edu/ ccwu/siftgpu/, UNC, Chapel

Hill, 2005.

