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1.  INTRODUCTION

Regional climate models (RCMs) are powerful tools

that have the potential to provide high-resolution infor-

mation both in space and time on the properties of a

range of climate variables. On some occasions, data from

a range of different RCM simulations are considered. A

question in this context is how individual regional cli-

mate change scenarios can be converted into probabilis-

tic climate change signals. This is relatively straight-

forward if models are used as they are without

acknowledging the fact that different models are more or

less good at representing today’s climate. However, if

model performance is to be considered, the situation be-

comes more complicated. To take this larger complexity

into account, one idea, pursued in the ENSEMBLES pro-

ject (Hewitt & Griggs 2005, van der Linden & Mitchell

2009), is the weighting of RCMs according to how ade-

quately they simulate the recent past climate of the last

decades. In this context, a number of different weights

measuring various aspects of RCM realism have been

considered (Christensen et al. 2010, this Special). Here,

as part of the ENSEMBLES effort, we investigated the

match of RCM-simulated probability density distribu-

tions for maximum and minimum temperature and pre-

cipitation to those based on observational data.

Forced with boundary data from reanalysis products

such as ERA40 (Uppala et al. 2005), RCMs have been

shown to adequately simulate important aspects of the

climate of the recent past decades, including not just

long-term seasonal means but also extreme events of

e.g. temperature and precipitation (Christensen et al.
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2007). When forced by global climate models (GCMs),

RCMs have been found to sometimes produce large

biases in the mean climate (e.g. Räisänen et al. 2004,

Jacob et al. 2007) and even more so in terms of extreme

conditions (e.g. Moberg & Jones 2004, Beniston et al.

2007, Kjellström et al. 2007, Rockel & Woth 2007,

Nikulin et al. 2010). Kjellström et al. (2007) showed

that there is a considerably larger spread between

RCMs at the tails of the temperature probability distri-

butions than in simulated means both in today’s cli-

mate and in the simulated climate change signals. This

spread in the climate change signal was large even

when the forcing conditions were taken from the same

GCM following the same emissions scenario. Such a

large spread indicates a sensitivity of the results to the

formulation of the RCM.

Kjellström et al. (2007) investigated the daily maxi-

mum and minimum temperature by studying fixed per-

centiles from the empirical probability distributions.

This approach gave a first indication of some of the

quantiles of the probability distributions which had the

largest biases, but did not give information on the

whole distribution. Here we evaluated the models’ abil-

ity to represent the whole probability distributions si-

multaneously by using the skill score (SS) metric pre-

sented by Perkins et al. (2007). Earlier, Boberg et al.

(2009a,b) used this method to compare the daily precip-

itation in the PRUDENCE (Christensen

& Christensen 2007) and ENSEMBLES

simulations by comparison with the Eu-

ropean Climate Assessment (ECA;

Klein Tank et al. 2002) observational

data set. In addition to evaluating daily

data of precipitation and minimum and

maximum temperatures, we also per-

formed a comparison of probability dis-

tributions of monthly precipitation

data. By looking at those 2 data sets si-

multaneously, we obtained a broader

picture of how RCMs reproduce the ob-

served climate. Examples are given of

model behaviour in different regions of

Europe and in different seasons. Re-

sults from 16 downscaling experiments

of the ERA40 reanalysis data to 25 km

horizontal resolution were evaluated

against observations. Further, we cal-

culated combined weights based on the

evaluation for each model. The result-

ing weights (SSs) are dimensionless

numbers ranging between 0 and 1 that

are suitable for weighting model re-

sults in order to construct probabilistic

climate change scenarios based on a

given experimental setup as in the EN-

SEMBLES project (Christensen et al. 2010, Déqué & So-

moto 2010, both this Special). Finally, we investigated

whether a weighted mean outperforms an unweighted

mean when evaluated against observations.

2.  DATA AND METHODS 

2.1.  RCM data

We used data from 16 climate simulations with RCMs

run at approximately 25 km grid spacing (Table 1). All

models that operated on a rotated latitude–longitude

grid had the majority of their model domain in common

(Fig. 1), i.e. they worked on an identical grid (see

Table 1). The other models operated on Lambert-

conformal grids that were not internally identical and

not identical to the rotated ones. Data from these other

models were interpolated to the common rotated lati-

tude–longitude grid shared by the others. All models

were forced by lateral boundary conditions and sea

surface temperatures from the European Centre for

Medium Range Weather Forecasts (ECMWF) reanalysis

product ERA40 (Uppala et al. 2005).

From the models, we used time series of daily mini-

mum and maximum temperatures at the 2 m level and

daily precipitation as well as monthly precipitation for
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Number Institute Model Time step Source
(min)

1a C4I RCA3 15 Kjellström et al. (2005)

2 CHMI ALADIN 15 Farda et al. (2010)

3 CNRM RM4.5 22.5 / 6 hb Radu et al. (2008)

4a DMI HIRHAM5 10 Christensen et al. (2006)

5a ETH CLM 2 / 3 hb Böhm et al. (2006)

6 ICTP RegCM3 1.25 / 10b Giorgi & Mearns (1999)

7a KNMI RACMO2 12 van Meijgard et al. (2008)

8 Met.No HIRHAM 3.75 Haugen & Haakenstad
(2006)

9a Hadley Centre HadRM3Q0 5 Collins et al. (2009)

10a Hadley Centre HadRM3Q3 5 Collins et al. (2009)

11a Hadley Centre HadRM3Q16 5 Collins et al. (2009)

12a MPI-M REMO 2 Jacob (2001)

13 OURANOS MRCC4.2.3 10 Plummer et al. (2006)

14a RPN GEMLAM 12 Côté et al. (1998),
Zadra et al. (2008)

15a SMHI RCA3.0 15 Kjellström et al. (2005)

16 UCLM PROMES 0.83 / 10b Sanchez et al. (2004)
aModels that used the same rotated longitude–latitude grid
bThe first number (left) represents the RCM time step; the second number
(right) is the sampling interval used for maximum and minimum temperatures

Table 1. Regional climate models from which data were analysed. RPN:
Recherche en Prévision Numérique. Full forms of other institutes in Table 1 

of Christensen et al. (2010, this Special)



Kjellström et al.: Temperature and precipitation in the ENSEMBLES RCMs

the time period 1961–1990. Data were downloaded

from the ENSEMBLES regional data distribution cen-

tre at DMI (http://ensemblesrt3.dmi.dk). The time

steps used in the different RCMs for calculating daily

maximum and minimum temperatures varied between

2 and 15 min, except for the ETH and CNRM models,

for which they were estimated based on instantaneous

3- or 6-hourly data (Table 1).

2.2.  Daily and monthly observational data

Model results were compared to daily minimum and

maximum temperature and precipitation from a gridded

observational data set (E-OBS) that is based on the

largest existing pan-European data set with daily data

extending back to 1950 (Haylock et al. 2008, Klok &

Klein Tank 2009). A benefit from using this particular

data set is that it is constructed on the same rotated lati-

tude/longitude grid that was used by most of the RCMs,

implying that no further interpolation was needed for

most of the RCMs. In a comparison with other existing

data sets from more dense networks in smaller regions,

Hofstra et al. (2009) found that E-OBS correlated well

with these other data sets. However, they also found that

relative differences in precipitation could be large, and

that they were usually biased toward lower values in E-

OBS. Monthly precipitation was calculated as the sum of

all precipitation on each day of a month.

2.3.  Metrics used for daily data

A description of the metric we used for comparing

daily minimum and maximum temperatures and pre-

cipitation to E-OBS is given by Perkins et al. (2007).

Empirical probability distribution functions (PDFs)

were first constructed by binning data in N number of

bins according to temperature or precipitation amount,

and then generating a dimensionless ‘match metric’ or

SS based on the overlap of the RCM and observation

PDFs. A perfect overlap results in an SS of 1, whereas

the score is close to 0 for a low degree of overlap:

(1)

2.4.  Metrics used for monthly precipitation data

For the monthly precipitation data, we used the same

SS as defined in Eq. (1) but for the discussion also an ad-

ditional metric to test the sensitivity of the resulting

weights to the choice of scoring metric. This second

metric was taken from Sánchez et al. (2009) and con-

sisted of a collection of 5 functions measuring different

aspects of model probability distribution characteristics.

(2)

(3)

(4)

(5)

(6)

where ARCM and ACRU are the areas below the empiri-

cal cumulative distribution functions (CDFs obtained

from normalised PDFs) of the RCMs and observations

respectively, A+ and A– are the corresponding areas to

the right and left of the 50th percentile, respectively, P

is the spatial and temporal average of precipitation in

each season and region and σ is the standard devia-
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Fig. 1. Domains of the regional climate models (RCMs) run-
ning on the same rotated latitude–longitude grid. The colours
depict altitude (from the SMHI-RCA3.0 model). Indicated are
also the 8 sub-domains (BI: British Isles, IP: Iberian Peninsula,
FR: France, ME: mid-Europe, SC: Scandinavia, MD: Mediter-
ranean region, AL: Alps, EA: eastern Europe) and the larger 

European domain (EU) for which SSs were calculated
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tion. Each of the factors takes into account different

aspects of the behaviour of the model precipitation.

These are: the distribution as a whole in terms of mean

(Eq. 5) and total area (Eq. 2), the precipitation amounts

for more intense precipitation in the upper (Eq. 3) and

moderate precipitation in the lower (Eq. 4) half of the

distribution divided by the median and the width of the

distribution through the variance (Eq. 6). These 5 mea-

sures are all constructed so that a value close to 1 indi-

cates that the RCM is close to observations while a

value close to 0 indicates that the RCM is far from the

observations. Finally, the 5 numbers are multiplied by

each other giving a final dimensionless SS that also is

between 0 and 1.

(7)

2.5.  Data handling including area averaging

SSs were calculated for 8 European regions (Fig. 1)

as well as for the entire continental land area between

36° and 70° N and 10.5° W and 30° E (EU) for each nom-

inal season (winter: DJF, spring: MAM, summer: JJA,

autumn: SON) and as an annual mean calculated as

the average of the SSs for the 4 seasons (annual: ANN).

Daily maximum and minimum temperatures were

binned into 0.5°C intervals for all grid boxes for which

observational data were available, i.e. land areas. Dif-

ferent methods of averaging over different regions

were tested for all models: (1) by pooling data from all

grid points within each region into 1 common probabil-

ity distribution before calculating the SSs, and (2) by

first averaging temperatures for each day in a region

and then calculating the SSs. We note here that the

first method keeps all fine details but mixes spatial and

temporal variability. The second method smoothes

local, fine details. We also used a third method (3), in

which SSs were first calculated for each grid box, and

thereafter averaged over the area. In this case, data

from models operating on other grids were first inter-

polated to the common rotated latitude–longitude grid

before SSs are calculated. The first method was our

reference, while the 2 others were only used to test the

sensitivity of the score to the aggregation procedure.

For the daily precipitation analyses, we defined dry

days as days with precipitation <1 mm and removed

these from the precipitation data. PDFs were then cal-

culated from the remaining daily data for each region

and model by first binning the data into bins of 1 mm

width starting at 1 mm. The impact of using a threshold

is discussed in Section 4.3.

For the monthly precipitation analysis, data were

aggregated in the regions according to the first method

outlined above (this section) for daily data. This pool-

ing of data provided a large sample for deriving the

empirical percentiles. We note here that these monthly

data also included dry days, which were excluded from

the daily precipitation analyses.

2.6.  Comparing RCM results to observations at

different parts of the PDFs

To obtain a more detailed picture of why some RCMs

achieved high and others low SSs, we calculated

biases for each RCM with regard to the observations at

a number of percentiles (1, 5, 10, 25, 50, 75, 90, 95 and

99) based on all data in a region. These biases in differ-

ent parts of the PDFs allowed us to identify where dif-

ferent RCMs had problems and may help explain why

SSs differed between models.

2.7.  Combination of SSs into one weight per RCM

A combined weight (wirs) for each model (i), region (r)

and season (s) based on our model evaluation was cal-

culated according to:

(8)

with SS as in Eq. (1). Indices PRD, PRM, TXD and

TMD denote daily and monthly precipitation and daily

maximum and minimum temperatures, respectively. It

can be seen from Eq. (8) that the influence of monthly

data was downgraded, as we took the square root of

the resulting weight (SSPRM) when combining it with

the others. The rationale for this downgrading is that

while the daily data are seen as largely representing

regional information and hence form a relevant RCM

metric, the monthly precipitation fields are much more

strongly controlled by the driving GCM but are still

worthwhile to evaluate as discussed in Section 4.1

below. The dimensionless weight (wirs) was normalised

and takes a number between 0 and 1.

A final overall weight for each model (wi) was calcu-

lated by averaging all individual weights (wirs) over the

4 seasons and the 8 European regions. This final

weight (wi) was intended to be used in the weighting

system described by Christensen et al. (2010).

3.  RESULTS

3.1.  Daily maximum and minimum temperatures

Fig. 2 shows the geographical distribution of the SSs

for daily minimum temperatures in winter. The SSs

were generally highest in an area in western central

Europe and lower in the north and in the south. In par-

wirs = + +( ) +( )1

3
2SS SS SS SSPRD TXD TMD PRM/

SS = f f f f f1 2 3 4 5· · · ·

138
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ticular, many models had problems in northern Scandi-

navia. A few RCMs stand out in that they achieved

lower SSs compared to most others in much of Europe.

One of these is REMO, which had excessive problems

particularly in southern Europe. This is related to an

unrealistically high occurrence of temperature values

around 0°C that was caused by the representation of

freezing and thawing processes in the soil. In REMO,

as used for this study, the soil temperature was kept at

0°C until the entire soil water within a grid box was

either frozen or liquid. This is unrealistic for such a

subgrid process and has been modified for newer

REMO versions (D. Jacob pers. comm.). REMO also

achieved a low SS for daily maximum temperature

139
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Fig. 2. Skill scores for daily minimum temperature during winter (DJF) from 1961–1990 for the 16 regional climate models 
(RCMs). The SS is dimensionless and takes a number between 0 and 1
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during winter but in an area more to the east and north

where temperatures are generally lower (not shown).

MRCC4.2.3 generally had low SSs for minimum tem-

peratures, most pronounced in parts of eastern and

central Europe and also in southern Sweden. A

detailed comparison for different parts of the PDFs in

the Scandinavian region revealed that MRCC4.2.3

simulated temperatures were generally too low

(Fig. 3), which led to an overly extensive snow cover in

this region, further exacerbating the cold bias (not

shown). Most other models gave higher temperatures,

and differed relatively substantially from E-OBS, in

northern Scandinavia (Fig. 3). A more detailed look

into the biases in that region at different temperature

intervals revealed that all models except REMO and

MRCC4.2.3 showed the largest positive biases during

the coldest days (e.g. 1st or 5th percentiles), while

biases were smaller in situations with relatively

warmer conditions. As the horizontal and vertical grid

spacings in the RCMs were fairly coarse (25 × 25 km in

the horizontal, and typically the lowest model level

was some 50 to 100 m above ground) they did not allow

for a fair representation of strong inversions or local

conditions. Strong near-surface inversions are common

in winter in this area. Furthermore, many of the obser-

vational stations in the area are located in valleys that

may be much colder than the surrounding terrain

when these strong inversions prevail. Alternatively,

biases may reflect the fact that the station density is

low in this area (Haylock et al. 2008), or that the

stations are representative of open land conditions

while model results represented a mixture of different

vegetation types dominated by forests in this region

(Nikulin et al. 2010). Taken together, these potential

problems with RCMs and observational data indicate

that the biases are more a consequence of the fact that

the 2 data sets represent different features than an

indication of a systematic model error. We also note

that the problem was less pronounced for maximum

temperatures in winter (not shown), further indicating

that this is a problem mostly concerning the coldest

situations.

Fig. 4 shows the geographical distribution of the SSs

for daily maximum temperatures in summer. Some fea-

tures that could be observed in many models included

a generally relatively poor agreement in Scandinavia

and in parts of the Mediterranean area and a ‘lake

problem’ evident for the large lakes in northern

Europe. Many RCMs that included lake models

showed low SSs over the large lakes in northern

Europe. The RCMs with lake models are probably

more representative of the real temperatures above

the lakes than the observational data set that was

derived based mainly on land stations (see Kjellström

et al. 2005 for a comparison of simulated and observed

temperatures over Lake Ladoga and Lake Vänern).

Fig. 5 reveals that the match between observations and

model simulations was different in different parts of

the probability distributions. A group of models includ-

ing RCA3, ALADIN, RM4.5, HIRHAM5, GEMLAM

and RCA3.0 exhibited increasingly large cold biases

towards the high end of the probability distribution.

The other RCMs showed increasingly warmer biases

(or smaller cold biases in the case of HIRHAM and-

PROMES) towards the high end of the probability dis-

tribution. Notably, HadRM3Q3 showed very low SSs in

large parts of southern Europe. These were associated

with a large overestimation of daily maximum temper-

atures, in particular for warm occasions in this region

(not shown), that also influenced the area average over

Europe (Fig. 5).

3.2.  Daily precipitation

Skill scores for daily precipitation were high in large

parts of Europe in winter (Fig. 6). Relatively poor

agreement was seen in the Mediterranean area and in

the northernmost part of the model domain, including

parts of Scandinavia, Finland, Russia and Iceland in

most models. Compared to maximum and minimum

temperatures as discussed above, the SSs for precipita-

tion were generally higher. The relatively high SSs for

precipitation were a result of good agreement in the

low and central parts of the probability distributions

(Fig. 7). Contrastingly, Fig. 7 reveals poor agreement to

observations and a large spread among the RCMs for

the wettest quartile. It also shows that the overestima-
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tion in precipitation became worse with increasing

precipitation in most models. One exception was

MRC4.2.3, which simulated drier conditions than indi-

cated by the observations. This overestimated heavy

precipitation is in agreement with the findings of van

Meijgard et al. (2008), who investigated precipitation

extremes in a majority of the RCMs used here as com-

pared to the E-OBS data. Here we note that this may

be related to precipitation associated with extreme

events in E-OBS being too low (Hofstra et al. 2009).

In summer the SSs were slightly lower than in winter

in a majority of the models and in large parts of the
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Fig. 4. Skill scores for daily maximum temperature during summer (JJA) from 1961–1990 for the 16 regional climate models 
(RCMs). The SS is dimensionless and takes a number between 0 and 1
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domain (not shown). This may be related to the fact

that the distribution of daily precipitation is wider in

summer than in winter, which makes it more difficult

to achieve an equally good match, as we used the same

bin width in both seasons. Alternatively, it may be an

indication of the fact that the RCMs are more free to

develop their own climate, as the influence of the

large-scale circulation is weaker in summer than in

winter. However, it should also be noted that some

models were equally as good in summer as in winter.

This holds for 2 of the 3 members of the Hadley Centre

perturbed physics ensemble (HadRM3Q0 and HadRM

3Q16), while the third member (HadRM3Q3) showed

considerably lower SSs. As in winter, there was a ten-

dency for many models to simulate too much heavy

precipitation (Fig. 7). Again this was most pronounced

for the upper-end percentiles. In low and central parts

of the probability distribution, the agreement was bet-

ter, but with a systematic dry bias in all models at the

lower quartile.

3.3.  Monthly precipitation

Monthly statistics for wintertime precipitation

showed that the models generally had the most prob-

lems in representing precipitation in the Mediter-

ranean region, while SSs were relatively high in the

British Isles (Fig. 8). The figure shows that different

models were best in different regions; there was no

clear overall ‘winner’ that outperformed the others.

The same was true also for summer. Skill scores were

about equal in summer and winter in most regions

apart from the Mediterranean area, where the agree-

ment between models and observations on average

was better in summer.

Biases, relative to E-OBS, of monthly precipitation at

different percentiles are shown in Fig. 9. The spread

between different RCMs was large, and for some mod-

els the biases were large, in particular at low per-

centiles. All models but CNRM gave too much precipi-

tation in winter. In summer, large biases were seen at

low percentiles, while biases were smaller than in win-

ter at mid- and high percentiles. There was no clear

dry or wet bias in summer as in winter, but there was a

tendency for increasingly wet biases (or decreasingly

small dry biases) at higher percentiles.

4.  DISCUSSION

The methods used to calculate the SS metrics pre-

sented above are straightforward, and the SSs are

seemingly objective. However, as there is a range of

choices made in selecting data, calculating SSs and

combining them into final weights, the exercise is of

course associated with a large degree of subjectivity. In

this section, we investigate how the results may

change by using different data sets or other methods

for area averaging in a region, for calculating the indi-

vidual SS metrics and for combining the weights.

4.1.  Sensitivity to the choice of bin width and

threshold for precipitation data

For daily precipitation, we note that the results were

sensitive to the choice of threshold that we set at 1 mm

d–1 as our reference. By instead choosing a threshold of

0 mm d–1, we obtained very high SSs, while lowering

the threshold to a small number like 0.1 mm d–1 led to

much lower SSs (not shown). This is related to the fact

that many RCMs had too many days with drizzling rain

with small (i.e. <1 mm d–1) amounts of precipitation. If

the threshold was 0 mm d–1, these simulated drizzle

events tended to fall in the same bin as the observa-

tions did, as no precipitation was registered by the col-

lectors on dry days. If, however, we used a slightly

higher threshold (e.g. 0.1 mm d–1), the agreement was

no longer there as the models simulated too many

precipitation events in the first bin. With increasingly

larger thresholds, approaching 1 mm d–1, the SSs im-

proved. Also, the bin width was important, but only if

we used thresholds <1 mm d–1, when a smaller bin

width (e.g. 0.25 mm d–1) led to lower SSs. The results

indicate that the chosen threshold of 1 mm d–1, which is

a standard number used in climate impact related
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research, appears to be a good threshold in that it

removes drizzle discrepancies between observations

and models. Finally, we note that low intensity precip-

itation does not contribute significantly to the total

amount of precipitation (Dai 2001), further justifying a

threshold of 1 mm d–1 for daily data.

4.2.  Sensitivity to the choice of daily or monthly

precipitation data

When comparing daily and monthly frequency dis-

tributions, it is important to notice that monthly values

are the average of all days in a month including both
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dry days with no precipitation and days with light,

moderate and/or extreme precipitation. This implies,

on one hand, that monthly data include data from days

not included in daily PDFs (as days with no preci-

pitation fall below our chosen threshold, see Sec-

tion 4.1). On the other hand, extreme daily precipitation

amounts can be smoothed in accumulated monthly to-

tals that also include a large number of days with little

or no precipitation. In fact, it can be seen that the more

the average is made towards annual values, the more

Gaussian the distribution is (Lettenmaier 1995). An ad-

ditional complication when comparing daily and

monthly data is that the distribution of monthly data de-

pends on the autocorrelation structure of the daily data.

Thus, even if a model got the distribution of the daily

data exactly right, this will not necessarily result in a

correct monthly distribution.

Comparing Figs. 7 and 9 reveals large differences in

the biases of monthly and daily data. While daily data,

only including data above the threshold, showed rela-

tively good agreement to observations at the low end

of the PDF, monthly data including dry days disagreed

the most at this part of the PDF. Differences in agree-

ment with observations between daily and monthly

data were also manifested in the calculated SSs. Fig. 8

shows the SSs based on both monthly and daily precip-

itation data calculated with the same metric (Eq. 1). As

can be seen, the daily based SSs were higher than

those based on monthly data. The reason for this may

be related to the low threshold for the daily data

removing the dry days — for which models and obser-

vations tended to disagree (see Section 4.1) — from the

statistics. We note that the ranking of the models dif-

fered significantly depending on which data set was

used here. It was not the case that a ‘good’ model in

representing daily data was necessarily ‘good’ in terms

of representing monthly statistics. This can be seen by

comparing the ranking of the models by looking at

individual bars or by noting the low degree of correla-

tion between the 2 data sets for each region. The corre-

lation coefficient (0.51) was statistically significant at

the 95% significance level only for the British Isles in

summer. The differences in these 2 data sets clearly

illustrate that monthly and daily precipitation statistics

behave differently, such that both should be consid-

ered for model evaluation purposes.

4.3.  Sensitivity to the sampling models for daily

maximum/minimum

In addition to the choice of data sets, different ways

of calculating maximum and minimum temperatures in

the RCMs also introduces a source of uncertainty. The

longer time steps for storing data in CLM and RM4.5

(Table 1) imply that those models may underestimate
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extremes as they may not coincide with

the fixed time steps every 3 or 6 h.

Judging from the calculated SSs, it

appears that CLM did not perform

worse than the other models for mini-

mum temperatures in winter (Fig. 2).

RM4.5, on the other hand, showed rela-

tively low SSs. A closer look at biases in

different parts of the PDFs revealed that

RM4.5 had exceedingly large warm

biases closer toward the cold side of the

PDF, both in Scandinavia (Fig. 3), but

also in other areas (not shown). How-

ever, it is difficult to judge if this is

indeed a problem with sampling, as

RM4.5 and ALADIN behaved very sim-

ilarly, both in terms of SSs and bias

structure. The situation in summer

showed that SSs for maximum tempera-

tures were a bit lower in CLM than in

some of the other models, including

RM4.5 (Fig. 4). This may indicate that

the absolute maximum was not cap-

tured by the 8 instantaneous numbers

available for each day in CLM. How-

ever, we also note that CLM was warm

biased in the warm part of the PDFs

(above the 75th percentile, reaching about 2°C at the

95th and 99th percentiles, cf. Fig. 5), implying that

even higher temperatures would not necessarily lead

to a higher SS. RM4.5, which achieved a relatively

high SS in summer, showed an increasingly cold bias

at higher percentiles in summer, possibly indicating

that sampling was too infrequent to record the highest

temperatures in the course of the day. For the other

RCMs, differences in time steps for calculating maxi-

mum and minimum temperatures were between 2 and

15 min, which may also have had some impact on the

results. However, we assume that these differences

were relatively small compared to other differences

between the different RCMs in terms of how they rep-

resent sub-grid scale processes in their parameterisa-

tion schemes and also in terms of the relatively coarse

horizontal resolution considered.

4.4.  Sensitivity to the choice of area averaging

Area-averaged SSs for all RCMs for the 8 different

sub-regions as calculated by Methods (1) and (3) out-

lined in Section 2.5 were similar as exemplified for

daily minimum winter temperatures in Fig. 10. The 2

methods differ, as particularly (1) is ‘forgiving’ in a

sense that it mixes spatial and temporal variability.

Consequently, SSs were generally higher in (1) com-

pared to (3), which retains more of the geographical

information from the RCM. The 2 methods showed that

the ranking between the different models did not

change significantly depending on which method was

used. This can be seen from the correlation coefficients

that correlated the 2 sets of SSs with each other. Me-

thod (2) is somewhere in between (1) and (3) in terms

of how much of the geographical information is kept.

Skill scores calculated by method (2) were very similar

to those shown in Fig. 10, also in terms of ordering of

models (not shown). The implication is that a model

that is ‘good’ in the comparison to observational data is

also ‘good’ if area averaging is done in another way.

4.5.  Sensitivity to the choice of SS metric

For monthly precipitation, we present SSs for winter

(DJF) based on the 2 methods outlined above (Eqs. 1 & 7)

in Fig. 11. The difference in absolute numbers was

very large, with the Perkins et al. (2007) method (Eq. 1)

giving much higher numbers compared to that used by

Sánchez et al. (2009) (Eq. 7). The difference in absolute

numbers calculated by the 2 methods was much larger

than when comparing SSs based on monthly and daily

data calculated with the same SS (Eq. 1) as presented

in Fig. 8. In addition to the inclusion of more days with

little or no precipitation, as discussed above, the differ-
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ent formulations of SSs also contributed to the larger

differences. Specifically, the Sánchez et al. (2009)

method, in which 5 scores between 0 and 1 are multi-

plied, leads to overall lower SSs. We note here that the

SSs calculated by the 2 methods did not agree on

which models were the best (or worst)

in all regions, and the degree of corre-

lation between the methods was always

much lower compared to that for differ-

ent methods of area averaging as

described above. On the other hand,

the degree of correlation between the 2

methods was statistically significant

and higher in more areas than in the

case of monthly and daily data as dis-

cussed above. A similar picture was

also seen for other seasons (not shown).

4.6.  Combined weights

The results for the different seasons,

variables and areas generally showed

that there are areas/seasons for which

some models were better than others

for the different variables (Table 2). In

the individual seasons, it was not pos-

sible to pick a ‘winner’ in all areas, but

taken as an average over the whole

year, RACMO2 stands out with the

highest ranking in 6 of the areas inves-

tigated as well as for the whole continent. This is also

the model that ranked as the best in terms of overall

performance. The second best in an overall sense

was the high-sensitivity HadRM3Q16, which showed

a good ranking in winter and summer while it was
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Model Overall Season Region
number wi Rank Rank DJF MAM JJA SON EUR BI IP FR ME SC AL MD EA

(wi) (sum)

1 0.908 9 9 11 9 7 8 10 11 8 10 9 10 4 4 7
2 0.906 10 7 6 10 12 5 8 6 10 4 6 14 11 2 9
3 0.910 7 13 5 13 15 11 12 12 7 15 15 9 14 10 11
4 0.903 11 14 8 12 13 15 14 16 13 11 14 16 12 7 12
5 0.912 5 5 14 7 3 1 4 7 9 6 4 4 7 11 4
6 0.885 14 4 2 2 4 16 2 2 4 2 5 13 2 9 8
7 0.932 1 1 1 1 5 6 1 5 3 1 1 1 1 1 1
8 0.910 6 10 7 4 14 13 3 8 12 12 10 12 9 8 10
9 0.913 4 3 4 6 6 10 5 4 2 5 2 6 8 6 3
10 0.896 13 12 10 11 10 14 13 3 11 14 12 7 16 14 15
11 0.917 2 2 3 8 2 9 6 1 1 3 3 3 6 3 5
12 0.901 12 11 12 15 1 4 11 9 5 8 13 5 10 12 13
13 0.878 15 15 9 14 16 7 16 15 15 13 11 11 15 15 14
14 0.869 16 16 16 16 9 12 15 13 16 16 16 15 13 16 16
15 0.913 3 6 13 5 8 3 7 10 14 7 7 2 5 13 2
16 0.909 8 8 15 3 11 2 9 14 6 9 8 8 3 5 6

Table 2. Ranking of the models (numbers as in Table 1) based on the calculated SSs for different regions, variables and seasons.
‘Overall’ shows the overall performance calculated as an average of the annual mean SSs for all regions. wi: final weight for each
model (see Section 2.7); Rank(wi): ranking according to wi; Rank(sum): ranking according to the sum of all ranks based on the in-
dividual SSs (Eq. 1) for each variable, region and season. ‘Season’ (DJF: winter, MAM: spring, JJA: summer, SON: autumn) and
‘Region’ (abbreviations as in Fig. 1) columns also show the ranking according to the sum of all ranks based on the individual SSs 

(Eq. 1) in each season and region, respectively 
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intermediate among the other models during the tran-

sition seasons. A few models that performed less well

than the others in most areas and seasons can be

identified from Table 2. Many of the other models

showed good performance during part of the year, or

in part of the domain, and worse agreement in others.

An example of such behaviour is REMO, which was

the overall best model in summer, while its perfor-

mance during spring ranked among the poorest mod-

els. The latter may be related to the temperature

biases close to 0°C, as discussed above. Other similar

examples include the RCA3.0 and ALADIN, whose

performance was among the best in some areas, while

in others those particular models ranked among the

worst. These results clearly show that depending on

area and season of interest, different models have dif-

ferent skills in representing the observed climate. An

implication of this is that a general measure of overall

skill in the whole model domain, and/or for all sea-

sons, is not necessarily the best measure of skill in

individual regions and seasons.

4.7.  Evaluation of the weighting

As a test of the use of the weights in order to improve

an RCM ensemble, we tested whether a weighted

model mean outperforms an unweighted arithmetic

mean. The weighted ensemble mean (WEMj) was cal-

culated as

(9)

where wirs is the model specific weight

(Eq. 8) and VARj is the variable in

question. Weighted ensemble mean

seasonal averages showed very small

differences with regard to the un-

weighted averages (not shown). For

daily maximum and minimum temper-

ature, this means generally < 0.1°C for

most grid boxes and correspondingly

<±30% for precipitation, although

larger relative biases do occur in

mountainous areas and in the dry

Mediterranean area in summer. These

small differences are a result of the

small spread in the overall weights

(Table 2).

An additional test was done in

which we constructed more discrimi-

nating weights based on the overall

ranking of the models (Table 2). This

was achieved simply by assigning

each model a number from 1 (the poorest model) to 16

(the best model) and then normalising so that their sum

was 1. In this way, the spread between good and poor

models was more pronounced than with the original

weights, and the results showed slightly larger differ-

ences between the weighted and unweighted ensem-

ble means. For daily maximum and minimum temper-

ature, differences between the 2 means were up to 0.3

to 0.4°C for some parts of the domain (not shown).

Even if these differences between the 2 ensemble

means were relatively small, the 2 did differ signifi-

cantly in a statistical sense in a relatively large fraction

of the model domain. This is presented in Table 3,

which also shows to what extent the weighting leads to

an overall improvement or worsening of the agreement

between the ensemble mean and the observations. It

can be seen that the weighting leads to a statistically

significant improvement in a larger fraction of the

domain than where it leads to a deterioration. This

holds true for all variables and seasons with the excep-

tions of maximum temperature and precipitation in

summer and minimum temperature in winter. Simi-

larly, for the weighted ensemble mean calculated by

Eq. (9), there were improvements in larger fractions of

the area compared to where the results get worse (not

shown). These results show that weighting mostly

leads to small, but statistically significant, improve-

ments compared to unweighted ensemble means.

However, the results also underline the fact that the

weights are based on the overall ranking that takes

into account several variables and seasons implying

that weighting may lead to a worse agreement with

observations.
WEM

VAR
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i
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Variable Season Differences Improvement Deterioration

Daily max. temperature DJF 97.0 69.5 27.5

MAM 86.7 57.6 29.1

JJA 81.4 30.2 51.2

SON 97.9 84.3 13.6

ANN 93.7 66.1 27.6

Daily min. temperature DJF 90.0 25.7 64.3

MAM 79.4 47.5 31.9

JJA 96.7 80.8 16.0

SON 91.1 53.4 37.7

ANN 89.0 57.6 31.3

Daily precipitation DJF 82.6 60.9 21.7

MAM 70.1 48.9 21.2

JJA 76.7 36.0 40.6

SON 66.0 37.8 28.2

ANN 78.0 44.3 33.7

Table 3. Areal fraction of the analysed domain in which the weighted and un-
weighted means differed, and fractions where weighting led to an improvement
or a deterioration. Unit: %. DJF: winter, MAM: spring, JJA: summer, SON: autumn
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5.  SUMMARY AND CONCLUSIONS

• Biases in daily minimum temperature were large in

northern Europe during winter, most notably for low

end percentiles, when most models tended to simulate

too warm conditions. These differences between mod-

els and observations tended to be largest in northern

Scandinavia. Possibly, this discrepancy is more a con-

sequence of the fact that observations and models rep-

resent different features than an indication of a sys-

tematic model error in this area.

• The highest SSs for daily maximum temperature in

summer were seen in parts of central Europe in many

models. Worse agreement was obtained in Scandi-

navia and also in southern Europe in some models.

Biases in different regions were different, both in sign

and amplitude, in different parts of the probability dis-

tributions among the RCMs.

• Biases in daily precipitation were most pronounced

in the wettest part of the probability distribution where

the RCMs tended to overestimate precipitation com-

pared to the E-OBS data set. The overestimation grew

with increasing amounts of precipitation. Skill scores

were higher for precipitation than for temperature due

to a good correspondence between models and obser-

vations for moderate precipitation.

• The calculated SSs and the evaluation performed

here indicated that some models performed poorly for

some variables and seasons. The underlying reasons

for this were not revealed by our analysis, although

results of this type may assist in identifying potential

problems in different models.

• Applied on the present data set, the Perkins et al.

(2007) method (Eq. 1) for calculating SSs gave a rela-

tively small spread among the models. This is not sur-

prising, as the method, by definition, integrates over

the entire probability distributions. Further, positive

and negative biases gave similar SSs, and biases in dif-

ferent parts of the probability distribution had equal

influence on the resulting SS.

• The evaluation performed here over different vari-

ables, seasons and regions showed that some models can

be better/worse than the others in an overall sense but

that no model is best/worst in all aspects. The evaluation

showed that some models performed well in some re-

gions and seasons and poorly in others. An implication of

this is that preferably the whole ensemble should be

used in studies of climate change and impact studies.

Another implication is that weighting of a model ensem-

ble possibly should not be based on overall performance

measures of the models, but instead should be based on

different weights for different regions, seasons, vari-

ables, etc., depending on individual applications.

• The sensitivity to area averaging over the regions

in Europe was small as the resulting SSs and ranking

of models were similar regardless of whether area

averaging was done before or after calculating SSs.

• The sensitivity to choice of SS metric was very

large. The 2 different methods used for calculating SSs

for monthly precipitation gave substantially different

numbers and also different rankings of the models.

• The sensitivity to choice of input data was large.

The same SS metric based on daily data excluding dry

events, or monthly data including both wet and dry

events, gave very different results in terms of model

ranking. This was most likely a result of the fact that

the underlying PDFs differed, and that dry days were

excluded from the daily data.

• We found that weighted ensemble means were

closer to observations than corresponding unweighted

ensemble means for most, but not all, variables and

seasons. This is the result of there being statistically

significant improvements in a larger fraction of the

domain than where the agreement deteriorated. This

held true both for the original weights calculated from

the SSs presented here and for more discriminating

weights based on a ranking of the models. The differ-

ences, however, were small: for daily minimum and

maximum temperatures, generally below 0.1°C for

most grid boxes for the original weights, and most

often below 0.3 to 0.4°C for the more discriminating

weights.
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