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Abstract—This paper proposes a data-driven approach to de-
tect the switching actions and topology transitions in distribution
networks. It is based on the real time analysis of time-series
voltages measurements. The analysis approach draws on data
from high-precision phasor measurement units (µPMUs or syn-
chrophasors) for distribution networks. The key fact is that time-
series measurement data taken from the distribution network has
specific patterns representing state transitions such as topology
changes. The proposed algorithm is based on comparison of
actual voltage measurements with a library of signatures derived
from the possible topologies simulation. The IEEE 33-bus model
is used for the algorithm validation.

I. INTRODUCTION

Different tools have been developed and implemented to
monitor distribution network behavior with more detailed and
temporal information, such as SCADA, smart meters and line
sensors. Creating observability out of disjointed data streams
still remains a challenge, though [1]. The cost for monitoring
systems in distribution networks still remains a barrier to
equipping all nodes with measurement devices. To some ex-
tent, a capable distribution state estimator can compensate for
the lack of measurement data to support system observability.
However, topology errors will easily downgrade state estimator
accuracy. Topology detection is a key component for different
real-time operation and control functions. Most of literature
on topology detection is based on state estimator (SE) results
and measurement matching with different topologies. In [2]
authors propose a state estimation algorithm that incorporates
switching device status as additional state variables. A nor-
malized residual test is used to identify the best estimate of
the topology. SE-based algorithms are easy to implement, but
their accuracy is limited to that of the state estimator. They
are also sensitive to measurement device placement. In [3],
the authors provide a tool for choosing sensor placement for
topology detection. Given a particular placement of sensors,
the tool reveals the confidence level at which the status of
switching devices can be detected. Authors in [4] are focused
on estimating the impedance at the feeder level. However, even
a perfect identification of network impedance cannot always
guarantee the correct topology, since multiple topologies could
present very similar impedances.

In this paper, a real time topology detection algorithm is
proposed based on time series analysis of phasor measurement
unit (PMU) data. This approach is inspired by high-precision
phasor measurement units for distribution systems, called
micro-synchrophasors or (µ-PMU), with whose development
the authors are involved [5]. The main idea derives from the

fact that time-series data from a dynamic system show specific
patterns regarding system state transitions, a signature is left
from each topology change. The algorithm is based on the
comparison of the trend vector, built from system observations,
with a library of signatures derived from the possible topology
transitions. The topology detection results are impacted by
load uncertainty and measurement device accuracy. Therefore,
the analysis takes load dynamics and measurement error into
account. The topology detection accuracy is also depends on
the number of µ-PMUs. But, the simulations shows topology
detection is converge robustly even with limited measurement
devices.

II. DISTRIBUTION NETWORK MODEL AND PHYSICAL
TOPOLOGY

Given a matrix W , we denote its element-wise complex
conjugate by W , its transpose by WT and its conjugate
transpose by W ∗. We denote the matrices of the absolute value,
of the real and of the imaginary part of W by |W |, <(W ) and
by =(W ) , respectively, and with |W | . We denote the entry
of W that belongs to the j-th row and to the k-th column by
[W ]jk. Given a vector v, [v]j will denote its j-th entry, while
[v]−j the subvector of v, in which the j-th entry has been
eliminated. Given two vectors v and w, we denote by 〈v, w〉
their inner product v∗w. We define the column vector of all
ones by 1 We associate with the electric grid the directed
graph G = (V, E), where V is the set of nodes (the buses),
with cardinality n and E is the set of edges (the electrical
lines connecting them), with cardinality w; the set S of the
switched deployed in the electrical grid, with cardinality r and
the set P is the set of the electrical grid nodes endowed with
voltage phasor measurement units (PMUs), with cardinality p.
Let A ∈ {0,±1}w×n be the incidence matrix of the graph G,
A =

[
aT1 . . . aTw

]T
where aj is the j-th row of A, whose

elements are all zeroes except for the entries associated to the
nodes connected by the j-th edge, for which the elements equal
+1 or −1, respectively. If the graph G is connected (i.e. for
every pair of nodes there is a path connecting them), then 1
is the only vector in the null space kerA, 1 being the column
vector of all ones. In this study, we limit our study to the steady
state behavior of the system, when all voltages and currents
are sinusoidal signals waving at the same frequency ω0. Thus,
they can be expressed via a complex number whose magnitude
corresponds to the signal root-mean-square value, and whose
phase corresponds to the phase of the signal with respect to an
arbitrary global reference. Therefore, x represents the signal
x(t) = |x|

√
2 sin(ω0t+ ∠x).



We will denote the vector of the voltages as u ∈ Cn, the
vector of the currents as i ∈ Cn, and the vectors of the powers
as s = p + iq ∈ Cn, with p, q ∈ Rn are the active and the
reactive power injected at node v. The state of the switches
is σ ∈ [0, 1]r, where [σ]l = 0 if the switch v is open, [σ]l =
1 if the switch l is closed. The measured grid voltages are
collected in y ∈ Cp. We define the trend vector δ(t1, t2) ∈ Cp,
as the difference between phasorial voltages taken at the two
time instants t1 and t2. i.e. δ(t1, t2) = u(t1) − u(t2). We
assume that the deployed PMUs in the distribution network
take measurements at the frequency f .

We consider a topology T σ which switches status are
described by σ. Its bus admittance matrix Y σ is defined as

[Y σ]jk =

{∑
j 6=k Yjk, if j = k

−Yjk, otherwise
(1)

where Yjk is admittance of the branch connecting bus j and
bus k, we neglect the shunt admittances. From (1) we see that
Y σ is symmetric and it satisfies

Y σ1 = 0, (2)

i.e. 1 belongs to the Kernel of Y σ . Furthermore, it can be
shown that if G, the graph associated to the electrical grid, is
connected, then the kernel of Y σ has dimension 1.

We model the substation as an ideal sinusoidal voltage
source (slack bus) at the distribution network nominal voltage
UN , with arbitrary and fixed angle φ. We consider, without loss
of generality, φ = 0. We model all nodes except the substation
as constant power devices, or P-Q buses. The system state
satisfies the following equations

i = Y σu (3)
u0 = UN (4)
uvi
∗
v = pv + iqv v 6= 0 (5)

The following Lemma [6] introduces a particular and useful
pseudo inverse of Y σ for our topology detection algorithm.

Lemma 1: There exists a unique symmetric, positive
semidefinite matrix Xσ ∈ Cn×n such that{

XσY σ = I − 11T0
Xσ10 = 0.

(6)

Applying Lemma 1, from (3) and (4) we can express voltages
of the grid as a function of the currents and of the nominal
voltage

u = Xσi+ 1UN (7)

The following proposition ( [6]) provides a approximation of
the relationship between voltages and powers.

Proposition 1: Consider the physical model described by
the set of nonlinear equations (3), (4), (5) and (7). Node
voltages then satisfy

u = UN1 +
1

UN
Xσ s̄+ o

(
1

UN

)
(8)

(the little-o notation means that limUN→∞
o(f(UN ))
f(UN ) = 0).

Equation (8) is derived from a first order Taylor expansion
w.r.t. the nominal voltage UN of the equation relates powers

Table I. LOAD DIFFERENCES

Mean (kW) SD (kW)
House 1 0.000 0.045
House 2 0.000 0.070
House 3 0.000 0.113
House 4 0.000 0.110
House 5 0.000 0.046
Aggregate 0.000 0.184

Table II. AGGREGATE LOAD DIFFERENCES FOR DIFFERENTS
FREQUENCY

Mean (kW) SD (kW)
f = 1 Hz 0.000 0.184
f = 0.2 Hz 0.000 0.425
f = 0.1 Hz 0.000 0.604

and voltages. The approximate solution of (8) has been already
used with success in state estimation [7], Volt/Var optimization
[8], and the optimal power flow problem [9].

There is always some noise associated with PMUs, i.e. the
output of our PMU placed at bus j is

yj = uj + ej (9)

where ej ∈ C is the error caused by the measurement device.
A common index for measurement error is the total vector
error (TVE) [10]. In this paper we assume that the loads have
constant power factor, and consequently

[p(t1)]j
[q(t1)]j

=
[p(t2)]j
[q(t2)]j

, ∀j, t1, t2. (10)

Furthermore, loads have dynamic behavior, described by

p(t+ 1) = p(t) + np(t) (11)

where np(t) is a Gaussian random variable, np(t) ∼
N (0, σ2

pp
2
M ). A load measurement data set for five residential

houses in the Texas, U. S. has been analyzed to drive the
statistical load model. Some smart meters can measure loads
every second or a couples of seconds. Load demand (kW) are
recorded every seconds for a week. Statistical analysis of load
variations between two consecutive seconds is presented in
Table I. In the United States, a number of houses are connected
to one distribution transformer. Therefore, the aggregated loads
for five houses are considered as the reference for load
variability in this paper. Lower measurement sampling time
leads to higher uncertainty in load data variability. In Table
II, the aggregate characterization for different frequencies is
reported.

III. IDENTIFICATION OF SWITCHING ACTIONS

The basic idea behind our proposed approach is that
changes in switching status will create specific signatures in
the voltage waveform measurements. In order to develop the
theoretical base for the proposed algorithm and its ease of
mathematical proof, we make the following assumptions.

Assumption 1: All the lines have the same resistance over
reactance ratio. Therefore, =(Yjk) = α<(Yjk),∀Yjk.

Assumption 2: Only one switch can change its status at
each time.

Assumption 3: The graph associated to the electrical net-
work is always connected, i.e. that there are no admissible state
in which any portion of the grid remains disconnected.



Assumption 4: The initial switches status are known.

Assumption 1 will be relaxed in Section VI, in order to test
the algorithm in a more realistic scenario. However, it allows
us to decompose the bus admittance matrix as follow.

Y σ = UΣRU
∗ + iUΣIU

∗ (12)

where ΣR,ΣI are diagonal matrices whose diagonal entries
are the non-zero eigenvalues of =(Y σ(t−1)) and <(Y σ(t−1)),
U is an orthonormal matrix that includes all the associated
eigenvectors and ΣI = αΣR. From (2), it can be showed that
U spans the space orthogonal to 1. Furthermore, we have

Xσ = (1 + iα)−1ΓU(ΣR)−1U∗Γ (13)

with Γ = (I − 1eT0 ). Assumption 2 is reasonable for the
proposed algorithm framework: it works on a time scale of sec-
onds, and typically the switches are electro-mechanical devices
and their actions are not simultaneous. Finally, Assumption 3
is always satisfied during the normal operation.

Assume that at time t− 1 the switches status is described
by σ(t − 1) = σ1, resulting in the topology T σ(t−1) with
bus admittance matrix Y σ(t−1). Applying Proposition 1 and
neglecting the infinitesimal term, the voltages can be expressed
as

u(t− 1) = Xσ(t−1)
s̄

UN
+ 1UN (14)

At time t the `-th switch, that was previously open, changes
its status. Let the new status be described by σ(t) = σ2,
associated to the topology is T σ(t). Since we are basically
adding the edge in which switch ` is placed from the graph
that represents the grid, we can write

Y σ(t) = Y σ(t−1) + y`a`a
T
` (15)

where y` is the admittance of the line, and a` is the `-th row
of the adjacency matrix associated with the T σ(t). Since a` is
orthogonal to 1, there exists b` such that Ub` = a`. This allow
us to write

Y σ(t) = (1 + iα)U(ΣR + <(Y`)b`b
T
` )U∗

Xσ(t) = (1 + iα)−1ΛU(ΣR + <(Y`)b`b
T
` )−1U∗ΛT (16)

The voltages satisfy

u(t) = Xσ(t)
s̄

UN
+ 1UN (17)

From (13) and (16), the trend vector can be written as

δ(t, t− 1) = ΓΦσ(t−1)σ(t)Γ
T s̄

UN
(18)

where

Φσ(t−1)σ(t) = UΣ−1R U∗ − U(ΣR + <(Y`)b`b
T
` )−1U∗ (19)

We can observe that when there is a switching action, the
voltage profile varies in accordance to a specific topology
transition. Since [σ1]−` = [σ2]−`, for the ease of notation in the
following we will write Φσ(t−1)σ(t) as Φ[σ(t)]−`

. The following
Proposition shows a characteristic of Φ[σ(t)]−`

that is crucial
for the development of our topology detection algorithm.

Proposition 2: For every topology transition from the state
described by σ(t−1) to the one described by σ(t) by changing
the switch `, Φ[σ(t)]−`

is a rank one matrix.

Proof: Exploiting (13), (16), using Ken Miller Lemma
[11] with some simple computations, we can write

Φ[σ(t)]−`
= µUΣ−1R b`b

T
` Σ−1R U∗ (20)

with
µ =

1

1 + Tr(<(Y`)b`bT` ΣR)
.

It’s trivial to see that Φ[σ(t)]−`
is a rank one matrix with the

non-zero eigenvalue λσ(t)−`
= µ‖UΣ−1R b`‖2 associated with

the eigenvector ĝ[σ(t)]−`
= UΣ−1R b`and thus can be written as

Φ[σ(t)]−`
= λ[σ(t)]−`

ĝ[σ(t)]−`
ĝ∗[σ(t)]−`

.

The trend vector δ(t) shows the relationship between switching
actions and voltage profile. Thanks to Proposition 2 we can
write it as

δ(t, t− 1) =

[
λσ(t)−`

ĝ∗σ(t)−`
ΓT

s̄

UN

]
Γĝσ(t)−`

from which we see that

δ(t) ∝ Γĝ[σ(t)]−`
. (21)

Therefore, every specific switching action pattern that ap-
pears on the voltage profile is proportional to the eigenvector
ĝ[σ(t)]−`

, irrespective of other variables such as voltages u and
loads s that describe the network operating state at the time.
Thus, g[σ(t)]−`

can be seen as the particular signature of the
switch action. This fact is the cornerstone for the topology
detection algorithm in this paper.

IV. TOPOLOGY DETECTION ALGORITHM

Assuming the distribution network physical infrastructure
and the initial switches status are known, we can construct
a library L in which we collect all the normalized products
between (I − e01

T ) and the eigenvectors for all possible
switches action

Lσ(t−1) = {g[σ(t)]−`
: [σ(t)]−` = [σ(t− 1)]−`} (22)

where
g[σ(t)]−`

=
Γĝ[σ(t)]−`

‖Γĝ[σ(t)]−`
‖

(23)

The next step is comparing the trend vector δ(t, t − 1) with
the entries in the library to identify which switch changed
its status. The detection process is stated in Algorithm 1.
The comparison is made by projecting the normalized actual
trend vector δ(t,t−1)

‖δ(t,t−1)‖ onto the topology library Lσ(t−1). The
projection is performed with the inner product, and it allows
us to obtain the projection index for each vector in Lσ(t−1)

c[σ(t)]−`
=

∥∥∥∥〈 δ

‖δ‖
, g[σ(t)]−`

〉∥∥∥∥ . (24)

If c[σ(t)]−`
' 1, it means that δ is spanned by g[σ(t)]−`

and
then that the switch ` changed its status. Because of the
approximation (8), the projection will never be exactly one.
Therefore, we will use a heuristic threshold, called min proj,
based on numerous simulations to select the right switch. If
projection be greater than the threshold, the associated switch
is selected. Based on simulations, the min proj is setted to
0.98. If there is no switching action, the trend vector will be



Algorithm 1 Topology Changes Detection
Require: At each time t, σ(t− 1), min proj = 0.98

1: σ(t)← σ(t− 1)
2: each PMU at each node j record voltage phasor measure-

ments yj(t)
3: the algorithm builds the trend vector δ(t, t− 1)
4: the algorithm projects δ(t, t − 1) in the library LP,σ(t)

obtaining the set of values

C =

{
c[σ(t)]−`

=

∥∥∥∥〈 δ

‖δ‖
, g[σ(t)]−`

〉∥∥∥∥ , g[σ(t)]−`
∈ L

}
;

5: if max C ≥ min proj then
6: σ(t)← arg max C
7: end if

zero as all the c[σ(t)]−`
, and the algorithm will not reveal any

topology transition. Notice that the projection value is used
to detect the change time too, differently of what proposed
in [12], where instead we used the norm of a matrix built
by measurements (the trend matrix). With a slight abuse of
notation, we will say that the maximizer of C is the switches
status σ such that [σ]−` = [σ(t)]−`, [σ]` = 1 if [σ(t)]−` = 0
or vice-versa [σ]` = 0 if [σ(t)]−` = 1 and c[σ(t)]−`

its
the maximum element in C. We tacitly assumed so far that
all the buses are endowed with a PMU, but this is not a
realistic scenario fora distribution network. In presence of few
measurements device the algorithm works the same way. The
only difference is that we are allowed to take the few voltage
measures

y = IPXσ(t)
s̄

UN
+ 1UN (25)

where IP ∈ [0, 1]p×n is a matrix that select the entries of u
where a PMU is placed, and P is the set of nodes endowed
with PMU. The trend vector will become

δ(t1, t2) = y(t1)− y(t2) (26)

The elements of the library vector and their dimension change
too. In fact one can easily show, using (25) and retracing (17)
and (20) that (23) becomes

g[σ(t)]−`
=

IPΓĝ[σ(t)]−`

‖IPΓĝ[σ(t)]−`
‖

(27)

Of course, if we have only few PMUs, we have to tackle the
observability problem, i.e. we have to find a way to place
the PMUs such that we are able to detect topology changes.
Therefore, we have to minimize number of PMUs and maintain
the system observability for topology detection.

V. MEASUREMENTS AND LOADS UNCERTAINTY

So far, we considered the case in which the measurement
devices were not affected by noise and loads were static. In
reality, there is some noise associated with PMUs. If we take
(9) and (11) into account, the trend vector becomes

δ(t1, t2) = IP(Xσ(t1) −Xσ(t2))
s̄(t2)

UN
+ et1 − et2+

+
IPXσ(t1)

UN

t1−1∑
t=t2

np(t)− inq(t) (28)

Therefore measurement noise and load dynamics yield non-
zero values for the trend vector, even if there has not been any
switching action. The projection index (24) may have values
near unity, leading to wrong topology detection.

When a switching action happens, branches of the net-
work are changed and current flows change respectively, thus
causing abrupt voltages variations. Therefore it helps to avoid
topology detection errors caused by load uncertainty to con-
sider a proper threshold min norm for the trend vector norm.
Moreover the additive noise can make the projection value of
the trend vector onto the library considerably lower than one,
even if a topology change occurred. This fact prompts us to
use a threshold on the maximum projection value, min proj,
over which we consider if the trend vector change is due to
a topology transition. To increase the accuracy of topology
detection, the following steps are added to the algorithm.
We assume the ideal case without load and measurement
uncertainty with the `-th switch change its status at time t1.
Consider the trend vector

δ(t, t− τ) = y(t)− y(t− τ).

For t < t1 and t ≥ t1 + τ the projections of the trend vector
onto the library are all equal to zero, because

δ(t, t− τ) = y(t)− y(t− τ) = 0

Instead for t1 ≤ t < t1 + τ , the trend vector is

δ(t, t− τ) = ΓΦ[σ(t)]−`
ΓT

s̄

UN

leading to a cluster of algorithm time instant of length τ
(or τ

f seconds), in which the maximum projection coefficient
will be almost one. A possible solution is thus to consider
a trend vector built using not two consecutive measures, but
considering measures separated by τ algorithm time istants

δ(t, t− τ) = y(t)− y(t− τ).

Assume that a topology change has happened at time t when
we have a cluster of algorithm time intervals of length τ ( τf
seconds). The former observations lead to the Algorithm 2
for topology detection with measurements noise and load
variation.

VI. RESULTS, DISCUSSIONS AND CONCLUSIONS

We tested our algorithm for topology detection on the IEEE
33-bus distribution test feeder [13], which is illustrated in the
Figure 1. In this testbed, there are five switches (namely S1,
S2, S3, S4, S5) that can be opened or closed, thus leading
to the set of 32 possible topologies T 1, . . . ,T 32. Because
of the ratio between the number of buses and the number
of switches, some very similar topologies can occur (for
example the topology where only S1 is closed and the one
in which only S2 is closed). In the IEEE33-bus test case,
Assumption 1 about line impedances does not hold, making the
test condition more realistic. Each bus of the network represent
an aggregate of five houses, whose power demand is described
by the statistical Gaussian model (11). We tested the entire
switch monitoring algorithm, in different situations. Firstly, we
consider the scenario in which the PMUs are affected by noise
and the loads are not time varying, and then we add different
levels of variation to them (associated with different measures
frequencies). We assume that the buses are endowed with high



Algorithm 2 Topology Change Detection with Uncertainty
Require: At each time t, we are given the variables σ(t− 1),

minimizer(t− 1), length cluster(t− 1)
1: σ(t)← σ(t− 1)
2: each PMU at each node j record voltage phasor measure-

ments yj(t)
3: the algorithm builds the trend vector δ(t, t− τ)
4: if ‖δ(t, t− τ)‖ < min norm then
5: δ(t, t− τ)← 0
6: minimizer(t) = 0
7: length cluster(t) = 0
8: else
9: the algorithm projects δ(t, t − τ) in the particular

library LP,σ(t) obtaining the set of values

C =

{
c[σ(t)]−`

=

∥∥∥∥〈 δ

‖δ‖
, g[σ(t)]−`

〉∥∥∥∥ , g[σ(t)]−`
∈ L

}
;

10: if max C >min proj then
11: minimizer(t) = arg min C
12: if minimizer(t) = minimizer(t− 1) then
13: length cluster(t)← length cluster(t− 1) + 1
14: if length cluster(t) = τ then
15: σ(t)← minimizer(t)
16: end if
17: else
18: length cluster(t)← 1
19: end if
20: end if
21: end if

Figure 1. Schematic representation of the IEEE33 buses distribution test case
with the five switches

precision devices, the µPMU [14], affected by Gaussian noise
such that TV E ≤ 0.05%. It also complies with the IEEE
standard C37.118.1-2011 for PMUs [10]. Furthermore, we vary
the number and position of PMUs, considering the case in
which every bus is endowed with a PMU, and the case in
which we have only 7 PMUs deployed, whose placements have
been chosen experimentally, after Monte Carlo simulations, as
the one that minimizes the algorithm errors. Further research
is needed to characterize a less onerous and more effective
placement strategy. The algorithm has been tested in each
condition via 10000 Monte Carlo simulations The results are
reported in Table III and Table IV. We can see that, expected,
the 33 PMUs scenario provides better performances. However
the results with 7 PMUs are very close, showing the possibility

Table III. RESULTS AFTER 10000 RUNS WITH 33 PMUS

SD [kV] non wrong decision total perc. of
detections detection errors errors errors (%)

0 0 50 50 100 1.00
0.184, (f = 1 Hz) 0 64 67 131 1.31
0.425, (f = 0.2 Hz) 17 131 152 300 3.00
0.604, (f = 0.1 Hz) 72 211 249 532 5.32

Table IV. RESULTS AFTER 10000 RUNS WITH 7 PMUS

Relative non wrong decision total perc. of
SD (%) detections detection errors errors errors (%)
0 0 56 56 112 1.12
0.184, (f = 1 Hz) 0 180 185 365 3.65
0.425, (f = 0.2 Hz) 31 199 209 441 4.41
0.604, (f = 0.1 Hz) 76 245 298 619 6.19

of a satisfactory implementation of the algorithm also in a more
realistic framework with few PMUs. Future developments
include a deeper study about PMUs placement, better load
characterization and further, analytic study of the thresholds
min norm and min proj that yield the best performances of
the algorithm.
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