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The purpose of this article is to develop some general aggregation operators (AOs) based on Einstein’s norm operations, to
cumulate the Fermatean fuzzy data in decision-making environments. A Fermatean fuzzy set (FFS), possessing the more flexible
structure than the intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS), is a competent tool to handle vague information
in the decision-making process by the means of membership degree (MD) and nonmembership degree (NMD). Our target is to
empower the AOs using the theoretical basis of Einstein norms for the FES to establish some advantageous operators, namely,
Fermatean fuzzy Einstein weighted averaging (FFEWA), Fermatean fuzzy Einstein ordered weighted averaging (FFEOWA),
generalized Fermatean fuzzy Einstein weighted averaging (GFFEWA), and generalized Fermatean fuzzy Einstein ordered
weighted averaging (GFFEOWA) operators. Some properties and important results of the proposed operators are highlighted. As
an addition to the MADM strategies, an approach, based on the proposed operators, is presented to deal with Fermatean fuzzy
data in MADM problems. Moreover, multiattribute decision-making (MADM) problem for the selection of an effective sanitizer
to reduce coronavirus is presented to show the capability and proficiency of this new idea. The results are compared with the

Fermatean fuzzy TOPSIS method to exhibit the potency of the proposed model.

1. Introduction

In decision sciences, it is an important aspect to find the
ranking order of the alternatives corresponding to different
attributes according to the preferences of the decision-
making experts. Therefore, selection of various attributes of
the alternatives is a very complex task. These decisions
cannot be interpreted by the exact data so the need of a
powerful model was raised to handle the ambiguous data.
For that issue, Zadeh [1] initiated the innovative idea of
tuzzy set (FS) which served as the backbone of the FS theory.
FS permits the experts to describe their satisfaction level
(membership degree) regarding performance of a member
within the unit interval. Although, the FSs provide the
grounds to the uncertain assessments but they were not
adequate enough to describe the NMD. To overcome the
limitations of FS, Atanassov [2] introduced a more

dominant model, namely, IFS which has both MD p and
NMD » with condition ¢ + v < 1. The theory of IFS was felt to
be inept and insufficient to represent the inexact data as
there are a lot of problems where the sum of MD and NMD
is exceeded by 1. To reduce such type of complications,
Yager [3] delivered the idea of PFS with condition
p* + v* < 1. However, PFS has also some limitations if MD of
an element is 0.8 and NMD is 0.7, then sum of square of
these values is greater than 1. Then, Yager [4] developed the
theory of g-rung orthopair fuzzy set (q-ROFS) with con-
dition y? + 11 < 1. Recently, Senapati and Yager [5] gave the
concept of FES as a generalization of IFS and PES.

The worthwhile theory of AOs is widely applied to decision-
making scenarios for the sake of data aggregation and to identify
the best alternative from the possible choices. Xu [6] gave the
idea of intuitionistic fuzzy (IF) AOs. The concept of generalized
AOs for IFS was developed by Zhao et al. [7]. Rahman et al. [8]
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introduced Pythagorean fuzzy (PF) AOs. Zhao and Wei [9]
studied the Einstein hybrid AOs under IF environment. The
idea of IF aggregation using Einstein operations was discussed
by Wang and Liu [10]. The induced interval-valued IF Einstein
AOs were developed by Cai and Han [11]. Garg [12] studied the
generalized PF Einstein weighted arithmetic AOs. Garg [13] also
proposed the generalized PF Einstein weighted geometric AOs.
The Pythagorean Dombi fuzzy AOs with applications were
discussed by Akram et al. [14]. Shahzadi et al. [15] proposed the
decision-making approach using PF Yager AOs. Liu and Wang
[16] expressed g-rung orthopair fuzzy (q-ROF) weighted AOs.
Wei et al. [17] studied weighted Heronian mean AOs under
g-ROF information. g-ROF power Maclaurin AOs were de-
veloped by Liu et al. [18]. Jana et al. [19] studied Dombi AOs for
g-ROFS. Liu and Liu [20] proposed g-ROF Bonferroni mean
operators. Joshi and Gegov [21] studied the confidence levels
q-ROF aggregation operators. Akram and Shahzadi [22] de-
veloped the hybrid decision-making model under g-ROF Yager
AOs. Liu et al. [23] extended the concept of prioritized weighted
AOs for complex g-ROFS. Senapati and Yager [24] studied
subtraction, division, and Fermatean arithmetic mean opera-
tions over FFS. The idea of Fermatean fuzzy (FF) weighted
averaging/geometric operators was also given by Senapati and
Yager [25]. For more information and applications, the readers
can refer to [26-59].

The motivations of this article are described as follows:

(1) The judgement of a perfect alternative in an FF
environment is a laborious MADM problem. The
prevalent model, possessing the more space than the
IF model and PF model, vigorously elaborates the
imprecise decisions for the selection of best
alternative.

(2) As Einstein AOs are the simplest and quite creative
approach for dealing with DM affairs, basically, this
article directs Einstein AOs in FF surroundings to
face complex issues.

(3) The outcomes based on conclusion are quite accurate
under Einstein AOs when it is put on to the reality-
based MADM problems in FF data.

(4) The proposed operators are keen to provide the
optimal solution not only for FF environment but
also to work efficiently for IF and PF environment.

The contributions of this article are described as follows:

(1) The feasibility of FFNs is merged with the aggre-
gation skills of Einstein norms to establish more
powerful, multiskilled, and practical AOs which can
be deployed to aggregate FF data and to get more
accuracy in decision-making scenarios

(2) The dominant properties as well as the notable re-
sults of the proposed operators are highlighted

(3) An algorithm is studied to handle complex realistic
problems with FF data

(4) A MADM problem for the selection of an effective
sanitizer to reduce coronavirus is discussed by using
proposed operators
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(5) A validity test is discussed for the approval and
authenticity of proposed theory

(6) At the end, the benefits and characteristics of the
proposed work are discussed by comparison analysis

The remaining paper is as follows. In Section 2, we recall
the concept of FFS and related score functions. Section 3
provides Einstein operational laws for FFNs. In Sections 4
and 5, we study the FFEWA and FFEOWA operators, re-
spectively, and related properties to them. In Sections 6 and
7, we present the idea of GFFEWA and GFFEOWA oper-
ators, respectively. In Section 8, we propose an algorithm for
our new model and discuss a MADM problem for the se-
lection of a good sanitizer to reduce the coronavirus. Section
9 provides the validity criteria to prove the consistency of the
proposed work. Section 10 gives the comparison analysis of
proposed theory with the FF TOPSIS method. In Section 11,
we have concluded the results related to the proposed model.

The list of acronyms in research paper is given in Table 1.

2. Preliminaries

In this section, we recall some basic definitions including
IFS, PFS, FFS, and score functions related to FES.

Definition 1. (see [2]). An IFS I on nonempty set 7" is given
by

I ={{x,p; (x),v;(x))}, (1)

where y;: 77— [0,1] and v;: 7 — [0,1] specify MD
and NMD of an element x € 7/, respectively. @;(x) =1 -
yr (x) — vy (x) is indeterminacy degree (InD) of an element
xe?.

Definition 2. (see [3]). A PES P on nonempty set 7 is given
by

P ={{x,up(x),vp(x))}, (2)

where pp: 7 — [0,1] and vp: 77— [0, 1] specify MD
and NMD of an element, respectively. @p(x)=

\/1 - (ﬂp(x))z - (vp(x))2 is InD.

Definition 3. (see [5]). An FFS &% on nonempty set 7" is
given by

R ={(x, g (%), v (X))}, (3)
where pg: 7 — [0,1], vg: 7 — [0,1], and @g(x) =

1= (4 ()’ = (45 (x))° specify MD, NMD, and InD,
respectively. FFNs are components of the FES.

Definition 4. (see [5]). The score function and accuracy
tunction for FFN & = (uy,v4) are represented by

S(R) = ;43% - v;, where S(%) € [-1,1],
A (R) = ‘ué? + 1/392, where &/ (%) € [0, 1].
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TaBLE 1: List of acronyms.

(14 (e 0)) = (1= (s (0

Acronyms Description

FS Fuzzy set (1+ (ug (9c))3)A +(1- (g (x))3)l

IFS Intuitionistic fuzzy set

PES Pythagorean fuzzy set ") ¥

q-ROFS g-rung orthopair fuzzy set Ny (1 + (ug (x)) ) —( (v (%)) )

FES Fermatean fuzzy set < BV A

FFN Fermatean fuzzy number (1 + (4 (%)) ) +( (v (x)) )

AOs Aggregation operators (5)
MADM Multiattribute decision-making 3 A

FF TOPSIS Fermatean fuzzy TOPSIS V2 (72 ()

\3/(2 - (v (36))3)/1 +(7/92 (36)3)}L

Definition 5. (see [5]). Consider two FFNs %, = <;4921, v@1>

and %, = <y@2,v@2>. Then, < V2(vg (x)))L
(1) If S(#,) <S(R,), then R <R, i/(l + (g (x))3)* (o9 (x))s)A
(2) If S(R,) >S(R,), then #,>R,.
(3) If S(#,) = S(X,), then Thus,
() If A (R,)<d(R,), then R <A,. , 3 3 A
(b) If A (B,) > A (R,), then B,>R,. (1+ (2 0)’)' =(1= (1 (2))°)
() If A (R)) = A (R,), then X, ~ R,. (1 +(pg (x))3) +(1 - (pa (x) 3)]L
3. Einstein Operational Law of FFNs 3 (6)
5 A
In this section, we present concepts of the Einstein t-norm + V2 (7)) <1.
and ft-conorm operations for FFNs and some of their {/ B 3\ 3\
properties. The Einstein operations on FFNs are defined as (2 (v () ) +( (v () )
follows.
Furthermore,
Definition 6. Let R = {(u,v), R, = (u;,7), and %, = , 3\A A ?
(43, 7,) be FENs and A > 0; then, 1 v ’ (1 + (42 (%)) ) _(1 ~ (42 (%) )
B )
(3) T = (v tin) (14 (2 )) (1= (42 0)")
(il) R AR, = (minfuy, p, }, max{v,,}) 3 (7)
(iif) P2,V %, = (max{u;, p,}, min{v},1,}) V2 (vg (x))A

+ =0,

{/(z — (12 (0)) + (v (0

(i) 2107, = ([t + )/ (1t - g - ]
i+ -9 -e(-))

W) B0, = <(#1 1+ (=) -e(1 - @), fF 4y (x) = 75 (x) = 0 and
\/(vl+1/2)/(1+v1 R ( T T\
(14 (g (0)7) =(1= (4 (0)°)
(vi) 1, %= A ((L+p3)' = (1= (143 + (1-p3)),
V1 <\/ I u u u (1 + (‘[,12 (x))3)/\ +(1 B (‘u@ (x))3)l
(2 2+ (02))) (®)
N gr — Lamrrioo 3 331 3
(vii) 2 <(\/ZH NE@=w)+ @), . V2 (vg (x))A -1

3 P! p Y
YA+ = (=149 + (1= ) i/(z_(vg(x)f)H(vQ(xP)A

Theorem 1. Let R = (g, vg), Ry = (), and Ry = iff (ug (x))* + (v4(x))* = 1.
(45, v,) be three FENs; then, Ry = R @R, and Ry =L - R Thus, #, = A-,% is an FEN for 1> 0. O
are also FFNs.

Theorem 2. Let A, A}, A, >0; then,
Proof. Since A >0and % is an FFN, therefore,OSpLgZ (x)<1, : _
07 (<1, and 0 (i (V) + (g (<L _then, (i) #,0.%, = R0 R,
1- (pg (x) 2 (ng (X)) >0, 1- (v4(x))’ 2 (g (x))* >0, (i) R, ® Ry = R © R,
and (1 - (pg (%))’ ) > (Ve (x))%; then, (iii)) A - (R0 R,) = L. R &\ R,
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(iv) (%, 0989532))L = %?@59?2 is equivalent to
W) A ROA, - R = (A +A) R 3 3 R B
i) Bh & R = FhHR) R 6. :< () - (1rm) -(1-m) - (1-m)
e (1+p)-(1+@)+(1-p) - (1-w)
Proof
(1) \S/ZVI'SVZ >
3 3 3 3 3/°
R 3 3 \/(2—1/1)-5(2—1/2)+v1 R
R0, %, :< flf L > (11)
Ltpy - oy \3/1 +(1 —v?)-s(l —v;)

Take a= (1+4]) - (1+43), b= (1-p)  (1-3),
c=v-7,andd = (2-7])-&(2—-); then,

:<3 #;"—Hi X V2 N >
\1+.“§'g!4? {/1+(1—v§)-e(1—vi) R\ ®: R, <\a+ m (12)

= R,0,R,. By the Einstein FF law,
)

(i)

3 3 3
(S V1%
R®.R, = ,
e < L -t q1+(1_v§).e(1_v;)>

(10)

(R 0.R,) =1 <\a+ m

:<3 (1+((a-b)/(a+b)) -(1-((a-b)(a+b)) 2 (V2erd+e) >
(1+((a-b)(a+b)) +(1- ((a- b)/(a+b)))”</(2_ 2/ (d+ o) + 20/ (d +0)

(13)
AN+ S
:<3 (L+) -1+ @) -(1-) (1= ) Pt A >
() () (1 ) () o) ez ) () )
On the other hand,
1. B :<3 (1+4) -(1-4) N2 > < b,
Ao e o)~ ehes)
(14)
v :<3(1+#2)A—(1—FS)A NeEs _/ fa—b,
o (1+P‘§)A+(1_M;)M\3l(2—v;)A+(v2)A a,+ by Jdy + ¢,/
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where  a;=(1 +,ul) , b, =(1 #1) , (1/1)
d1 = (2_7’1) > Gy = (1 +‘le) > b ( )/1’ Cz = (’Vg)/\;
and d, = (2 - 1/2)A therefore,

atmem) (o) s tes)

22/3 3

<[ (al—b (a, +b))) +((a, - by)/ (a, + b)) ¢ o6l (dy+¢y) - (dy +63) >
N1+ (@ =01)/ (@) +8)) - (@ = b,)/ (a, +b,)) 1+ (1= e/ (dy +6)). (1~ 20,/ (d; +2)))

3
< a, -2, - b -, 2 V261 - 6 >
‘11 a4 +by - by \/dl'edz‘“:l'ecz

>

(@) (1+@) + (- @) (1 -2) 2= ) 2= w) ()3

[ O P N L )
)A

(15)
Hence, A - (R 8. %,) = A+ R ®A - R,. (v) For A;,4, >0,
Y Y
g (Are) (k) > < b {2
17 et — 4
\(1+#3)h +(1_ #3)/\1 i/(z a, +b;’ \/d—-i-c1
(16)
A, A,
2 (T R (s C A e
2« \(1+y3)/12+(1_ Hs)lz {/(2_ q/3))tz+(v3))tz a, +b, d, +c,
where a , = (1+y ", b,=0~-pu 3, c, = (v, and
d, =2~ ), foroz—lz
(A R)o (A, - K by P 3a2_b2> e,
a1 +b3fd| +¢, \/az +b, Jd, +¢,
_<3[ ((a, byl (a, + b)) + ((ay ~ b,)/ (a, + by)) 2 e - ool (dy + 1) (ds +0)) >
N1+ (@ =8,/ (a, +8,)) - (4, = b,)/ (@, + B,)) Yr+(-Qe/(d +¢) - (1- 26/ (dy + )

al 4y~ by - by V2¢) - 6
al saz +b,- b, Vdy - dy ¢y 6

_< 3 (1 +#3)A1+)lz _(1 _‘u3)/\1+’\2 \3/51})\1+)t2 >
(1 +‘u3)/\1+/12 +(1 _ #3))11%2’ i/(Z B V3)/11+)Lz +(vi))tl+)tz
= +4,y) - &
(17)



Hence, A, - , Z®A, - X = (A, +1,) - Z&.
Similarly, others can be verified. O

Theorem 3. Let %, = (u,v,) and R, = (u,,7,) be FFNs;
then,

(i) FENRE = (RN, R,

(ii) RN R = (BNR,)

(iii) R 0, RS = (R, ® R,)°

(iv) R ® RS = (R,0,R,)

V) (BN R,)0,(RNR,) = R 0. R,

(vi) (R \V,R,)8 (R NR,) = R 8. R,

Proof. 1t is obvious. |

Theorem 4. Let R, = (uy,v,), R, = (U, 7,), and Ry =
(us,v3) be three FENs; then,

(i) (BN RINRy = (RNRBINV (RN RS)

(i) (RNRIN Ry = (R VRN (R Rs)

(iii) (RN, R)®,Ry = (R0, RV, (Ry®, R

(iv) (B NR)O Ry = (R,0,R )N, (Ry®,R5)

V) (RN, R)® Ry = (R, ® RN, (Ry® Ry)

(Vi) (BNR,)® Ry = (R0, RIN (R, ® R3)

Journal of Mathematics

Proof. 'The proof is trivial, so we omit it. |

4. Fermatean Fuzzy Einstein Weighted
Averaging Operators

The Einstein weighted averaging operators under FF envi-
ronment are defined here.

Definition 7. Let & , = <‘uJ-, vl-> (/=1,2,...,9) be a col-
lection of FFNs and w ; be the weight vector (WV) of & ;
with w,>0 and Y’ _, w , = 1; then, FFEWA operator is a
mapping @ — @ such that

FFEWA (R, Ry>.. ., R,) = w, - F1OW, - . R, Dw, - R,

(18)

If w,=(1/3), V7, then FFEWA operator becomes
FFWA operator:

1
FFA (R, B> .. .» R,) = 5 (R,0,%,0,---0,%,). (19)

Theorem 5. Let &, = (u,,v,) be FENs; then, the aggre-
gated value by using equation (18) is

(20)

3 9'_ 1+ 3‘ w, _ 3
FFEWA (%, Ryr ..., R,) = [ (1+u)™ 115
I1 T,

PYARE

Proof. Use the mathematical induction to prove equation
(20).
When 5 =2,

FFEWA (%, %,) = v, - R, ®,w, - R,. (21)

(1) BIT o )
- (1 + ‘u;) 7 \3/1‘[;,:1 (2 - vi)wf + Hi‘:l (vfl»)w"

By Theorem 1, both w, - %, and w, - ,%, are FFNs and
value of w; - , % ®,w, -, %, is an FEN. By using (vi) in
Definition 6,

(Lem)" ~(1-m)"

20!

e = <3\(1 +‘u?)w1 +(1- y?)wl, §/(2 - vi)wl +(v?)w‘>’

(22)

w, - R =<3 (1rm)"-(1-)"
2o \(1 i) +(1- )" {/(2— 1) +(1)"

2952 >
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Then,

FFEWA (%, ®,) = w; - (R, 0w, - R,

Le(((rewd)™ = (=) ()™ (1= w)™)) (1) (1= ) ) (1) ™ (1= ) ™))

(v =) + ()™ ) - (VB - ) +(2)) >
\/1 2v1w‘/ 2- v?) ! +(v1)w1))) - E(1 —(27/2"’2/((2 - vz)wz +(v§)w2)))

_ w ((r)” (=) W)™ (1= p0)™)) ()™ —(1 ) (L4 1)" +(1-12)"))
/

R (TR R o )
(L)) (1= ) (= ) ) e ) ) )

(23)
Thus, equation (20) is true when 4 = 2. Suppose result is true for 5 = k:
w k 3 wJ
1+ 115, (1 - 2
FFEWA (%, s, ) = < 2 “J)wl M “i)w; : diehy 3 > (24)
IT- 1(1+'“.1) +H1’=1(1_l"1) {/H;:l (2_ VJ') +H;‘:1 (VJ') !

(1 + #iﬂ)wkﬂ +(1 - lf‘iﬂ)wm, \3/(2 - vzﬂ)wk“ +(vi+1

5| TR+ 3\W kel 3\Ws k1w,
:< A0+ )  -TH5(-w)™ Vallm/ >
kil 3\ k 3\ @, /"
55 ()™ + TS (- ) ST 2 - 7)™ + A ()™
Thus, the result is true for 4 = k + 1. Hence, equation  where equality holds iff R, =R, =--- = R,.
(20) holds, V3. O
Theorem 6. If %, <yl J> are FFNs, then FFEWA
Lemma 1. Let &, = <yaz-,v1->,w1->0, and ZJ \w, =1 (R, Ry, s R,) zs also an FFN.
then,

s 3 Proof Smce R, <;,t > are FFNs, so 0<y ,,v ,<1and
w. Vi 2
[1R < Zl w R, (26) o< W+ <1, “Therefore;
=
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w w .,
[T (18)" T, (=) oI ()
[a (Vi)™ + T (1= 43)™ a2 7)7 + T4 (7)™
El 3\W¥ 3 3\ W
B 2 HJ'=1 (1 B A“Dz‘) ! (27) < 2 HJ'=1 (1 — ‘“J') ’ (29)
a (L) + T (1= 43)™ [ (Vi)™ + T (1= 1)
J 3 3
31—1_[(1—#1)151 <[[(1-4)" <
Z=1 z=1
Also (1+y )>(1—/,¢ )ﬁ]—[ 1(1+“Dz) sz‘=1 Also,
(1-u )>0 Therefore 5 p 3\w,
. 21T~ (v ) ’
3 \Ws Z=1\"/
, o o, [10)"20= o w20,
HJ‘:I (1 + ‘“J’) J B HJ‘:I (1 B //ll-) J» >0. (28) 2=1 H;‘:l (2 B VJ') + Hi’zl (vz‘)
[ (1+6)™ + T (1- )™ (30)
Thus, 0<p <1 Thus, 0 < vgpgwa < 1. Moreover,
> U< fpppwa < 1.
Moreover,
e () IEAGR) R
FEEWA T VEFEWA = w, w w, w;
[m (Vi)™ + T (1= 45) ™ T (22 2) ™ + T ()™
3 3\¥s 3 3\W,
<1- ZHJ:l (1 _A“,z') + 2H1’=1 (1 —,141-) (31)
ML (L) A T (1= ) T (14 2) ™ + T (1= )™
Z=1 B, Z=1 #; z=1 #; z=1 #y
=1
Hence, FFEWA € [0, 1]. Therefore, FFEWA \ Hi‘:l (1 + .“i) - Hi‘:l (1 - .“;)w/
(B, Ry, ..., R,) € FEN. O o (146 + 1T (1= )™
Corollary 1. The FFEWA and FFWA operators have the (33)
relationship: 3 ﬁ s
<\|[1- 1-y,.) ' = u,<u
FFEWA (R, &y, ..., R,) <FFWA (R, Ry ..., R,). fl( 7) =0
(32)
equality holds iff y; =y, =--- = u,.
Also,
Proof Let FFEWA (R, %y ..., R,) = () = RP 5
and FFWA (%, %,,..., R,) = (Ug>Vq) = R. Since
[T )+ Tl =)™ < 300y (L) +
Zi-:l (1- ‘u;)w; = 2, then from equation (27), we obtain
3\Ws 3\Ws
2 H;':l (VJ) > 2 Hi 1 (VJ)
H;‘:l (2 - Vi') S H;’:l (Vi‘) g zg 1 J( )+ ZJ 1wy J
(34)

> : v, w”':>3 21‘[;’21(3)’” )
> 150 anmz—v) O L
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equality holds iff v, = v, =--- = v,. FFEWA (%), R,, ..., R,) = FFEWA(R|, Ry, ..., R,).
Thus,
. . (37)
3 3
CS)(‘%I;) :(/"{;@) _(7}{;?) < (ug)" - (va)" = 8(A). (39 Hence,
If §(%P)< S (R), then FFEWA (%, %5, ..., R,) <FFWA (%), R,, ..., R,),
FFEWA (%, R, ..., R,) <FFWA(R|, Ry, ..., R,). (38)
(36) equality holds iff #, = %, =--- = &,. O

If 5(9#‘) = S(),  that g, () -
(4g)’ = (v4)’, then by condition ygz <pg and >'V5ga Example 1. Let %, =(0.8,0.5), %, =(0.9,0.4),
thus, the accuracy function o (%F)= ([1@) - (7};?) =  R;=10.6,0.7), andT%4: (0.8,0.7) be four FFNs and
(#92)3 _ (V@)3 — d(%) ThllS, w = (04, 02, 02, 02) 5 then,

FFEWA (%, By, Ry, R ):<3 [T (L) ~ T (1-4)™ V27, >
T NN (1) T (= 1) T (2= )7 + T (7)

149-0.48 V2x0.55
\ ,3\F =(0.80, 0.55).
1.49 + 0.48’ V/1.80 + 0.16

(39)

Now,

FEWA (R, By, Ry R

3 4 - , (40)
=< 1- H (1-4)" ]_[ (v,)") =<0.80,0.55), SFFEWA (%), &y, B3, Ry) < FFWA (R, Ry, Ry R

2=1 Z=1

R~ <FFEWA (R, Ry, ..., R,)<R". (42)

Proposition 1. Let % , = <‘u Y > be FFNs and w , be the

WV of & ,, such that w, € [0, l]andzllw =1

(iii) Monotonicity: when R <P .,V 7, then
(i) Idempotency: if R, = R, = (s v,) for all 7, then

FFEWA (%), B, ..., R,) = R, (41) FFEWA (%, %5, ..., R,) <FFEWA (P, P,,..., P,).

(43)
(ii) Boundedness: let &~ = (min, (yl) max (v ) and
R* = (max, (4,), min (v, )) then,

Proof. (i) As R, = (uy7,) are FENs, V 7, then

FFEWA (%, %5, ..., R,) = <\
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(ii) Consider f(x) = ((1 -x)/(1+x)), x € [0,1], then (1+ /,tj)max)) <((1- ,ui-)/ 1+ /{31‘)) <((1- A"li',min)/(1+

frix)=-(2/(1+ x)? )< 0, so f(x) is a decreasing function 3 9)), forall /. Letw, € [0,1] and ¥’ _ w , = 1, and we
(DF) As i min —MJ <.“J max? VJ =12,...,4, then ﬁl,mm 7 7 Zﬂz_l ’
ave

f(nul max)<f(1u1) <f(1u1 min vaz’ that IS, (( ALlJ max)/

(1 _Aui',max)wj < (1 _‘ui')wj < (.1 _#932_,mm>w;

I+ :"{fz, max \1+ ll/li C\1+ :ufz, min '
w w, w .

liI l_xufz',max ! < ﬁ l_tufi ’ < li[ 1 _nufz}min ’

a\1+ R RS N7 T AN

7=1

1- Mfz, max Zlﬁlwl < - 1- ‘ufz o < 1- ﬂi, min lelw;
1 3 - 3
=

1+nuJ 1+!"J’,min
3 w 3
< li[(l_nl’ll> ’ < 1_#;[,min
7=1 ‘“J 1+#J',min

4 1-— 3\ Ws
= (e TI(5) < 2
+Auc1‘,max 7=1 ‘ul 1+Auaz',min

Thus, Consider g(y) = (2 - »)/y), y € (0, 1] theng (y)
" (2/y2) ie., g(y) isa DF on (0, 1]. Since vl min Sv <v1 I
o 3 Hizl(l +/4J) sz':l (1 —/4,31‘) ‘ <u (46) Y 7, then g(vJ max)<g(” )< 9(”1 mm) Y7, that is, ((2-
o \Hi’:l (1 +Hi) ’ + Hfl':l (1 - ‘ui) g o vjz',max) J max) - ((2 'V )/V )< ((2 vJ mll‘l) J mln) Then
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(47)
(2 | ()
VR
2 1+ Hiﬂ ((2 - VJ)/VJ') ’ 2
3 2 3
<
V) S -y )
ﬁ’)}3 < 2 < v3
Z>min = 3 3 3 \W, — "/, max
1+ HJ=1 ((2 - VJ)/’/.J') g
3 3\W,
=y < anui (VJA) ’ <
,min = 3 3 - ="/ max
L (2 ) T ()
3 2 J_ wg’
ﬁ’yoz’,minS P \/—31_[i:1 vl 5 3 \W _VJ. max:
; ; 5
\/HJ':I (2 h vaz') T+ I_Lz’:l (VJ') ’
Let FFEWA (%), %,,...,R,) = R = (g, V) then, FFEOWA (%, %,,..., R,)
from equations (46) and (47), (50)
=w; '5%9(1)69.9’1)2 : y%g(z)@s o BWw, '5%9(4)’

in S < max’
Umin SHgp SH (48)

Voin €V < Venass where (p(1),0(2),...,0()) 1is the permutation of
min max (DZ = 1, 2, ey .j) such that Q%Q(Jlfl) 2«%9(1), VGZ =
1,2,...,4

where ., = min l{y J»}, Umax = Max {‘u J} Vmin = Min
{vl} and v,,,, = max {v,}. So, § (%) = ,u@ - v% S#fnax -
mm - §(<%+) and (%) Au% - ’V% Aumm
V2 = S(R7). As S(R) <S(X") and S(R)>S(R7), so

R~ <FFEWA(R,, %y, ..., R,) < R". (49)

(iii) It is similar to (ii), so we omit it. O

5. Fermatean Fuzzy Einstein Ordered Weighted
Averaging Operators

Definition 8. Let % ; = </,t v1> bea fam1ly of FFNsand w ,
be the WV of %, with w,>0 and Z _w, =1; then,
FFEOWA operator is a mappmg @’ — @ such that

Theorem 7. Let &, = (u,,v,) be FFNs; then, the aggre-
gated value by using FFEOWA is an FFN and

FFEOWA (%,, %y, ..., R,)

(Il Y T (1)
o (144, )+ e (1- /‘Z(z))w’f (51)

\/—HJ 1 9(,2) >

\3/1_[;:1 (2 - 1}9(.1)) + H; 1 ( 9(.1))%}
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Proof. It is similar to Theorem 4.
We give some properties without their proofs. O

Corollary 2. The FFEOWA and FFOWA operators have the
relation:

FFEOWA (%, &y, . .., R,) <FFOWA (R, R,, ..., R,).
(52)
Example 2. Let = (0.6,0.7), X, = (0.8,0.7),

R5 = (0.6,0.9), and%4— (0.9,0.4) be four FFNs and w =
(0.3,0.3,0.2, 02) as

S (R,) =(0.6)’ - (0.7)° = -0.13,
§(%,) = (0.8 - (0.7)° = 0.17,
(53)
8 (%) = (0.6)° - (0.9)° = -0.51,
S (R,) = (0.9 - (0.4)° = 0.67.

Journal of Mathematics

Since §(R,) > S(R,) > S (R,) > S (R;), therefore

%9(1) = @4 = (09, 04),
R =%, =(0.8,0.7),

0(2) 2 (54)
1%9(3) = ‘%1 = (06, 07),

%9(4) = %3 = (06, 09)

Thus, by applying the FFEOWA operator, we obtain

T (1 650)

~I5= (1

FFEOWA (%, R,, R, Ry) =<

3/1 44-049 ~/2x0.66
1.44 + 0.49 ¥/1.62 + 0.66

Now,

FFOWA (B, Ry, Ry R,

3 4 4
(=TT #0)™ T (o)™ ) = 00,060,

7=1 7=1

=>FFEOWA (R, R,, B3, R,) <FFOWA (R |, Ry, R3, R,).

(56)

Proposition 1. Let % , = <‘ugZ J> be FFNs and w , be the
WV of % ,, such thatw € [0,1] andzsz \w, —1

(i) Idempotency: if R ; = R, = (hy» v, ) V.1, then

FFEOWA (%, &5, ..., R,) = R,. (57)
(ii) Boundedness: let B~ = (minJ« (yl~),max1-(v1.)) and
R = (max , (4 ), min (v ,)); then,

R~ <FFEOWA (R, &y, ..., R,)<R". (58)

(iii) Monotonicity: when R, <P ;YA then

3 w,
_”Q(J')) \/—Haz 1% ,,Z) >
4 30 \Ws 4 30\, w,
HJ‘:I (1 + /"Q(J’)) + HJ‘:I (1 - “e(z)) \/Hi‘:l (2 - J)) + HJ =1 ( )

> =¢0.79,0.55).

(55)

FFEOWA (%, #,, ..., R,) <FFEOWA (%, %,,..., P)).

(59)

6. Generalized Fermatean Fuzzy Einstein
Weighted Averaging Operators

Definition 9. Let % , <y v > be a collection of FENs and
w , be the WV of% w1thw >0 andz - W, = 1; then,
GFFEWA operator s a mappmg @ —>a such that

) =(@n(w, - 2)"
(60)

GFFEWA (%, %,, . ..

where 1> 0.
Particularly,

(i) If A = 1, then GFFEWA becomes FFEWA

(1) If w= ((1/3), (1/3),. (1/4)) then GFFEWA
(R Ry .., R,) = ((1/4) B 1%*)”

Theorem 8. Let £ , J-> be FFNs and w ; be the WV
of &, with w, > 0 and f -y W, = 1; then, the aggregated
value by applymg the GFFEWA operator is an FEN and
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3\

%{Hi':l {(2 - #j)k + 3(}43)/1}“{1 -1, {(2 B Iﬂ)k +(#J) }wl }yu

<j(nﬂ f= ) e s oot fe- ) )} ) (M fe- )+ o) | - T - ) - ('] )

1/A

g
<
|
=
1;
——
—
—
+
<
w | N
~
Z =~
|
—
—
|
Ke‘*’
~
=~
——
g
<
S~
=

Proof. Since

L 24 m
“Ermr e

T (1 (2((2-)" (1))

(62)

Therefore,

(63)
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When A =1, then

Journal of Mathematics

M (1+45)™

M (103)™ + T (1= 45) ™02

7. Generalized Fermatean Fuzzy Einstein
Ordered Weighted Averaging Operators

Definition 10. Let & , = <‘uJ, v,) be a collection of FFNs
and w , be the WV of% with w, >0 and Y7 w, = 1;
then, the GFFEOWA operator isa mapplng @’ — @ such

that

ST (1) T (1-18)™ >
5 El 3| d w, J w (64)
HVJ/QH( i) +H(”i‘)
-1 =1 Z=1
GEREOWA (%, ..., ) =0, (w, - 1))
(65)
where 1> 0.

Theorem 9. Let % ; = </4; J> be FFNs and w ; be the WV
of R, with w,; > 0 and Z W, =1; then, the aggregated
value by applymg the GFFEOWA operator is an FFN and

w w,y 134

W{Hizl {(2 ’f‘gm)A *3(1‘3<1>)A} ST ‘[(2 ’P‘Sm)A ’(!‘Sm)/\} }

GFFEOWA(&?,,%Z,...,9@)—<w

w,\ A w w,\ 1A

(H'i:l {(2 - P‘Zm)l + 3(“3(1))?% +3114 ‘[(2 - P’Zm)A - (/‘Zm)l} /> +(l_l}:1 {(2 - “3(;))A + 3(“3(1))1} s ., {(2 - I‘Smy - (“SMY} )

Proof. It is similar to Theorem 6, and we can prove it. [

\(H; {(1 +79<1J)A +3(1 - vgu))A}W/ +3HV1‘:1 {(1 +Vg(1))A - (1 - vé(z)))\}%)“ +<ijl {(1 +“/@<1J)A 3(1 Vg(nz))A]> -

w

: (Hizl{(“”gm) *3(1 VLm)A}w/*31—12:1{(””9(;/>)A (1 ”gm)A}%)m*(n;1{(“Ku )A 3(1 "gm)A}%*nizl{(l”ow)l (1 Vom)l}%)m >

H;:l {(1 +Vg(g))A (1 7 (1))/‘}%)”/\

GFFEOWA (%, %y, ..., R,) =<

8. MADM Problem Using FF Information

To handle an MADM problem under FF environment, let
K ={FK, K, ..., K} beaset of possible alternatives and
F={752...,7,} beaset of possible attrlbutes chosen
by the decision maker Letw = (w;,w,, ..., w,)" bethe WV

(66)
When A = 1, then
o (L) T (1- )™ V2TTm %l >
[Tt (Vg 00) ™ + T (1= #00) ™ Ty (2= 7)™ + [T (730) ™
(67)

w1th w,>0 and yw,=1.  Suppose that

= (H1/> V1 Imxs 18 the FF dleasmn matrix (FFDM), where

yl and v, are the MD and NMD of the alternatlve K, for
the attrlbute J - respectively, where 0 < .”1 +v <1

The following Algorithm 1 is used to solve tﬁe MADM

problem with FEN based on using the GFFEWA operator.
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(1) Input: selection of suitable alternatives and attributes.
(2) Use the FFDM and GFFEWA operator:
ALGORITHM 1
B, = GFFEWA (11, Ko - > K1)
w, S 1/30
< %{Hflzl{(27#13.1'))‘+3(ny’)/‘} 7HJ':1{(27#I31’) (‘ulag))l]' }
N 5 w, 4 w, 1/ , w, 4 w, 1/
J(HFI{(Z—H?J-)A”(#?J)A} s3] i) - ()} ) (a3} - oo - ) - )} )
w, i PN ; o, PN
(n; ]{(m, b +3(1_V,J)*} #3111, {(m;l)*_(l_v;l)*} ) _(nﬂ {(1+v, )us(l_v;l)*} -, 1(1+1/11) _(I_V;J.)‘} )
w, S w, 1/ , w, w, 1/
N e s 20 )} omma oen) == )} ) (e faon ) 0= ) - e faon) -0- ) ])
(68)

for overall preference values &B;(I =1,2,...,m) of
the alternatives %.
(3) Use the score function & (%;)(I=1,2,...,m) for

the ranking of alternatives. If score values are equal,
then compute the accuracy functions &/ (%;) and
rank according to these values.

Output: the alternative containing maximum score
value will be the decision.

8.1. Selection of an Effective Sanitizer to Reduce Coronavirus.
Hand sanitizer is a liquid or gel mostly used to reduce in-
fectious agents on the hands. Alcohol-based hand sanitizers are
preferred for hand washing in most healthcare settings. The
Centers for Disease Control and Prevention (CDC) advise the
people to wash hands with soap and water to restrain the
spread of infections and decrease the endanger of getting sick.
In shortage of soap and water, CDC suggests people to use an
alcohol-based (at least 60 percent) hand sanitizer. According to
the World Health Organization (WHO), in this pandemic
situation of coronavirus, good hygiene and physical distancing
are the best ways to protect ourself and everyone around us
from coronavirus. This virus spreads by a person who has the
disease and also spread by touching a sick person. We cannot
isolate ourselves entirely to prudent from coronavirus. So, good
hand hygiene can be the final barrier between us and the
disease. WHO recommends alcohol-based hand sanitizers to
remove the novel coronavirus. Alcohol-based hand sanitizer
works to prevent the proteins of microbes—including bacteria
and some viruses—from functioning normally. Hand sanitizers
must contain ethanol, isopropanol, n-propanol, or a combi-
nation of these alcohols. All are effective against viruses such as
the novel coronavirus.

Demand of a hand sanitizer is increased in such critical
situation of COVID-19. Due to increasing demand, it is
difficult to get good and effective hand sanitizers in local

markets. Increasing demand has also led to low quality hand
sanitizers entering the market. The main motive of this
application is to select an effective sanitizer to mitigate
transmission of coronavirus by applying the GFFYWA
operator. Let # = {F# |, #,, K5, #,} be a set of sanitizers.
Let 7 = {7, .7, 75} be a set of three attributes for the
evaluation of an effective sanitizer, where

JF1: represents quantity of ethanol,
£, represents quantity of glycerol, (69)
JF5: represents quantity of hydrogenperoxide.

(1) The FFDM is shown in Table 2.
(2) The weights assigned by the decision maker are

w, = 0.60,
w, = 0.25,
w3 = 0.15, (70)

3
Y w
Z=1

We use the GFFEWA operator for the selection of an
effective sanitizer.

Step 1. For performance values 9B, of sanitizers, use the
GFFEWA operator for A = 1:

B, = (0.64,0.48),
B, = (0.46,0.28),
B, = (0.72,0.31),
B, = (0.77,0.34).

(71)

Step 2. Calculate the scores &' (9;) of FFNs 3, and rank the
sanitizers:
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TaBLE 2: FFDM.

Journal of Mathematics

TaBLE 3: Reconstructed FFDM.

& 7 72 73 d 71 'z 73
K, (0.6, 0.7) (0.6, 0.2) (0.8, 0.4) H, (0.6, 0.7) (0.6, 0.2) (0.8, 0.4)
H, (0.4, 0.2) (0.6, 0.4) (0.3, 0.6) H, (0.3, 0.4) (0.5, 0.4) (0.2, 0.8)
K, (0.8, 0.3) (0.5, 0.3) (0.6, 0.4) K, (0.8, 0.3) (0.5, 0.3) (0.6, 0.4)
K, (0.7, 0.5) (0.8, 0.1) (0.9, 0.6) K, (0.7, 0.5) (0.8, 0.1) (0.9, 0.6)
(%) =0.15, TaBLE 4: Distance of alternatives from FFPIS and FENIS.
S (A,) = 0.08, 72) D(#;,$™) D(Z,$7)
72
0.46 0.29
S (%,) =0.42. 0.18 0.21
0.09 0.32
The ranking of sanitizers is
K> HK>F >, (73)

Step 3. Therefore, %, is the best sanitizer.

9. Validity Test

For the validity and authenticity of MADM methods, Wang
and Triantaphyllou [53] developed testing criteria, given as
follows:

(i) Criterion 1: a MADM technique is valid if the most
desirable alternative remains same on changes a
nonoptimal alternative with some other poor or
weak alternative, without changing the respective
decision criteria

(ii) Criterion 2: the transitive property should be fol-
lowed by a valid MADM technique

(iii) Criterion 3: the ranking result of alternatives should
not change on splitting the problem into the smaller
subproblems and by applying the same MADM
technique on subproblems

Now, we discuss the validity of our proposed MADM
technique by testing the above criteria.

(1) Validity test by criterion 1: if we replace the decision
values of a nonoptimal alternative %, by %,, then
the new DM is given in Table 3.

By applying the GFFEWA operator for A =1 and
score function, the score values of alternatives are

S (%,) =0.15,
S(B,) = -0.03,8 (B;) = 0.34, S (B,) = 0.42.

The ranking of sanitizers is H,> % ;> K, >H,,
which is the same as the original ranking order, and
the best sanitizer is % ,. Thus, our presented MADM
model fulfills the test criterion 1.

(2) Validity test by criteria 2 and 3: for the validity of
proposed algorithm, using criteria 2 and 3, we split

the problem into the smaller subproblems
{H 1 Fopy Kb AT > H 3o H o} and {Hp, Hy, Ko}

By utilizing the proposed technique, the ranking
orders of alternatives in these subproblems are
K >KE >Kyy Ky> K> K, and Fy > FH > H,,
respectively. The combined ranking of alternatives is
K> K> K| >HK,, which is the same as that of the
original ranking. Hence, the proposed MADM
technique is authentic and proficient under criteria 2
and 3.

10. Comparison Analysis

Here, we discuss the comparison of proposed theory with the
FF TOPSIS method [5]. The steps to find out the best al-
ternative by the FF TOPSIS method are

(1) Table 2 represents the FF decision matrix in which
each entry corresponds to an FFN.

(2) The FF positive ideal solution (FFPIS) &* and FF
negative ideal solution (FFNIS) &~ are

8T ={(0.8,0.3), (0.8,0.1), (0.9,0.6)},

. (75)
8§ ={(0.6,0.7), (0.5,0.3), (0.3,0.6)}.

(3) The distance between the alternative %, and FFPIS
S&* together with the FFNIS &~ are given in Table 4.

(4) The revised closeness degree of each alternative is

given as
E(H,) =-3.05,
E(H,) = —4.11,
E(H;) =-1.28, 70
&(H,) = 0.10.

(5) We get the following ranking list by arranging the
alternatives in the decreasing order with respect to
§(F)):

K> K> K| >K,. (77)

(6) H, is the best alternative.
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—o— GFFEWA operator
FF TOPSIS method

FiGure 1: Comparison of the GFFEWA operator and FF TOPSIS
method.

FIGURE 2: Flow chart for MADM problem using FF Einstein AOs
and FF TOPSIS method.

From the outcomes of proposed operators and FF
TOPSIS method, as shown in Figure 1, we conclude that
ranking lists obtained from both compared methods are the
same and the best alternative from both approaches is F#,.
The FF TOPSIS method is a good approach to solve DM
problems but there are many hindrances which can be
solved by using our proposed theory. The FF Einstein AOs
are more flexible and easy approach. A best alternative can
be obtained by a short process. The results from proposed
theory are more accurate and closest to original results.

The steps to solve any MADM problem by FF Einstein
AOs and FF TOPSIS method are shown in Figure 2.

10.1. Advantages and Limitations of Proposed Model. The
proposed model is superior than the IF and PF models
because it contains the space of IF and PF models. The cubic
sum of membership and nonmembership degrees is
bounded by 1 in the proposed model. The MADM
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approaches discussed in [10, 12, 13, 15] failed to handle the
proposed  application  because  0.9+0.6>1 and
0.92 + 0.62 > 1 but proposed approach covers all such situ-
ations. The results are more precise and accurate by using the
proposed model. However, there are some limitations of this
model. It cannot be applied in the situations where we take
the parameters for the evaluation of anything. It means this
theory lacks parametrization property.

11. Conclusions

An FFS is an extension of IFS and PFS which has more
flexible structure to solve decision-making problems owing
to the condition g’ +v* <1. Moreover, Einstein’s -norm
and t-conorm have more generalized structure that operates
efficiently to integrate the intricate information. The limi-
tations of existing operators and beneficial characteristics of
Einstein AOs motivated us to endeavor for the development
of a fruitful combination of Einstein AOs with FFNs.

A major contribution of the study is the development new
tremendous AOs, called, FFEWA, FFEOWA, GFFEWA, and
GFFEOWA operators. Some captivating properties of these
operators have been discussed. Another achievement of this
study is the establishment of a MADM technique on the basis
of the proposed operators to manifest the application of the
proposed operators. A MADM problem for the selection of an
effective sanitizer to reduce the coronavirus has been pre-
sented to demonstrate the potency of the proposed strategy.

The validity test has been discussed to unfold the
consistency of proposed work. A comparison analysis of
our proposed theory with the FF TOPSIS method has been
presented to exhibit the dominance of our proposed op-
erators over the FF TOPSIS method. In short, this article
builds up a tool that has the rich properties of Einstein AOs
and flexibility of the FF model. In future, our aim is to
develop some worthwhile AOs using the theoretical
foundations of Einstein norms for the Fermatean fuzzy soft
set.
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