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Abstract Actual existing multi-criteria decision-making

(MCDM) methods yield results that may be questionable

and unreliable. These methods very often ignore the issue

of uncertainty and rank reversal paradox, which are fun-

damental and important challenges of MCDM methods. In

response to these challenges, the Characteristic Objects

Method (COMET) was developed. Despite it being

immune to the rank reversal paradox, classical COMET is

not designed for uncertain, decisional problems. In this

paper, we propose to extend COMET using hesitant fuzzy

set (HFS) theory. Hesitant fuzzy set theory is a powerful

tool to express the uncertainty that derives from an expert

comparing characteristic objects and identifying member-

ship functions for each criterion domain. We present the

theoretical foundations and principles of COMET, and we

provide an illustrative example to show how COMET

handles uncertain decision problems both practically and

effectively.

Keywords Hesitant fuzzy sets � L–R-type generalized

fuzzy numbers � Multi-criteria decision making � The

Characteristic Object Method � COMET

1 Introduction

Together with the development of operational research, the

multi-criteria decision-making (MCDM) methods have

been observed as an alternative approach of assessment of

alternatives in the field of decision problems. In our daily

or professional lives, there are many conflicting criteria

that need to be evaluated in making decisions, and it is an

exactly task for MCDM methods [34]. Therefore, the use

of these methods allows for organizing and analyzing

complex decisions, based on mathematical principles and

rules. Research on multi-criteria decision support devel-

oped two main groups of methods, i.e., American and

European schools. Methods of the American school of

decision support are based on a functional approach, or

more accurately the utility or value function [3, 38]. These

methods use two types of relationships between alterna-

tives, i.e., indifference and preference, while they exclude

incomparabilities of variants [3]. In this family, we can

include the following methods: multi-attribute utility the-

ory (MAUT), multi-attribute value theory (MAVT), ana-

lytic hierarchy process (AHP), analytic network process

(ANP), simple multi-attribute rating technique (SMART),

utility theory additive (UTA), measuring attractiveness by

a categorical based evaluation technique (MACBETH), or

technique for order preference by similarity to ideal solu-

tion (TOPSIS) [9, 13–15]. These approaches are criticized

mainly by researchers from the European school. They

emphasize the fact that these methods do not take into
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account the variability and uncertainty of expert judge-

ments [7].

Methods of European school of decision support are

based on relational model, where the most frequently are

used relation of indifference, weak or strong preference,

and incomparabilities. These methods use outranking

relation in the preference aggregation process. This rela-

tionship is characterized by not transitive between pairs of

decision variants. Among the methods of the European

School most popular are ELECTRE family and PRO-

METHEE methods [11]. Additionally, we can indicate in

this group following methods: Novel Approach to Impre-

cise Assessment and Decision Environment (NAIADE),

ORESTE, REGIME, ARGUS, Treatment of the Alterna-

tives according To the Importance of Criteria (TACTIC),

MELCHIOR or PAMSSEM [15, 23].

Moreover, we can distinguish a number of methods

for connecting multi-criteria approach of American and

European schools decision support. We can indicate for

example following methods: EVAMIX, QUALIFLEX,

and group of PCCA methods (Criterion Pairwise Com-

parison Approach), i.e., MAPPAC, PRAGMA, PAC-

MAN and IDRA [11, 19, 20]. The last group is the set

of methods based strictly on the rules of decision

making. These methods use the fuzzy sets theory

(COMET) [37] and the rough set theory (DRSA) [12].

The methods in this group are built at the basis of

decision rules [16]. It is worth to notice that in many of

MCDM methods there is not taken into account the

uncertainty, imprecision and ambiguity of data [38, 41].

However, the most common solution to this problem is

to use granular mathematics, e.g., fuzzy sets theory

[8, 24] or interval arithmetic [48].

The Characteristic Objects Method, i.e., the COMET, is

a distance-based technique in dealing with MCDM prob-

lems [27, 35–37]. In methodological terms, it is a bit

similar to the TOPSIS method [4, 30], because we are also

using here reference points. However, we are using much

more the characteristic points and so we can more accu-

rately model the nonlinearity. The COMET method helps a

decision maker organize the problems to be solved, and

carry out analysis, comparisons and ranking of the alter-

natives, where the complexity of the algorithm is com-

pletely independent of the alternatives number. This

method takes into account the existence of a correlation

between components of MCDM function. Additionally,

comparisons between the characteristic objects (COs) are

easier than comparisons between alternatives. This is due

to Weber–Fechner law, which determines that if a differ-

ence between two objects is too small, then the people

cannot distinguish preferences between these objects

[18, 22, 40]. The final ranking of the COMET is obtained

on the basis of COs and their value of preferences. This

ensures that the COMET is free of rank reversal

phenomenon.

Since the introduction of fuzzy set theory by Zadeh [49],

many research achievements have been made to enrich the

fuzzy set theory. Interval-valued fuzzy set [50] and intu-

itionistic fuzzy set [2] are all well-known generalizations of

fuzzy set and are extensively applied in many fields. In the

practical applications, it is usually difficult to establish the

degree of membership of fuzzy set because of the time

pressure, lack of knowledge or data and some other rea-

sons. Torra [39] introduced the concept of hesitant fuzzy

set which permitted the membership having a set of pos-

sible values in order that hesitant fuzzy set can reflect the

human’s hesitancy more objectively than the other classical

extensions of fuzzy set. To accommodate more complex

environment, several extensions of HFS have been pre-

sented, such as interval-valued hesitant fuzzy set [5, 44],

hesitant triangular fuzzy set [47, 51], hesitant multiplica-

tive set [42], hesitant fuzzy linguistic term set [31], hesitant

fuzzy uncertain linguistic set [53], dual hesitant fuzzy set

[46, 54], generalized hesitant fuzzy set [28] and convex

hesitant fuzzy set [29]. Meng et al. [21] discussed multiple

attribute decision making under linguistic hesitant fuzzy

environment, and Farhadinia presented the distance and

similarity measures for hesitant fuzzy linguistic term sets

and extended hesitant fuzzy set to the higher order hesitant

fuzzy set [10]. The general state of the art and future

directions for HFS can be found in [32]. When analyzing

actual trends in MCDM research field, we can observe the

growing popularity of HFS extensions of classical MCDM

methods. For example, Zhang and Wei extended VIKOR

and TOPSIS methods [52], whereas ELECTRE extensions

with HFS are presented in [6, 25]. However, HFS has been

also used to provide the new methodology, e.g., a segment-

based approach [1]. It confirms the fact that HFS is a very

useful tool to deal with uncertainty.

In this paper, the COMET is extended to solve deci-

sional problems under uncertainty using hesitant fuzzy sets

(HFS). The main motivation is that when expert is defining

the membership of an element, the difficulty of establishing

the membership degree is not because he has a margin of

error (as in intuitionistic fuzzy sets), or some possibility

distribution on the possible values (as in type 2 fuzzy sets),

but because he has a set of possible values (as in HFS) [39].

This means that HFS can reflect decision hesitancy more

completely than other extensions of fuzzy sets. Therefore,

the paper presents theoretical foundations of the COMET

extensions using HFS to better reflect the uncertainty. It is

worth to notice that this connection eliminates the most

important and dangerous paradoxes in decision-making

areas.

Rest of the paper is organized as follows: In Sect. 2,

some basic preliminary concepts are discussed. In Sect. 3,
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we introduced the notion of COMET under hesitant fuzzy

environment. In Sect. 4, an example is given to show the

practical feasibility study of the modified COMET. In

Sect. 5, we conclude the paper.

2 Preliminaries

In this section, we recall some important concepts which

are necessary to understand our proposed decision-making

method. Torra [39] proposed a HFS, which is a more

general fuzzy set and permits the membership to include a

set of possible values.

Definition 1 [39] A hesitant fuzzy set A on X is a function

hA that when applied to X returns a finite subset of [0, 1],

which can be represented as the following mathematical

symbol:

A ¼ fðx; hAðxÞÞjx 2 Xg; ð1Þ

where hAðxÞ is a set of some values in [0, 1], denoting the

possible membership degrees of the element x 2 X to the

set A. For convenience, Xia and Xu [45] named hAðxÞ a

hesitant fuzzy element (HFE).

Definition 2 [39] For a hesitant fuzzy set represented by

its membership function h, we define its complement as

follows:

hcðxÞ ¼
[

c2hðxÞ
f1 � cg: ð2Þ

Definition 3 [45] For a HFE h, ScðhÞ ¼ 1
lh

P
c2h c; is

called the score function of h, where lh is the number of

elements in h and ScðhÞ 2 ½0; 1�: For two HFEs h1 and h2; if

Scðh1Þ[ Scðh2Þ; then h2 � h1; if Scðh1Þ ¼ Scðh2Þ; then

h1 � h2:

Xia and Xu [45] define some operations on the HFEs

(h; h1 and h2) and the scalar number k:

kh ¼
[

c2h
f1 � ð1 � cÞkg ð3Þ

h1 � h2 ¼
[

c12h1;c22h2

fc1 þ c2 � c1c2g ð4Þ

h1 � h2 ¼
[

c12h1;c22h2

fc1c2g ð5Þ

Definition 4 [55] Let L (and R) both be decreasing, shape

functions from Rþ ¼ ½;1Þ to [0, 1] with Lð0Þ ¼
x; LðxÞ\x for all x\1; Lð1Þ ¼ 0or ðLðxÞ[ 0 for all x

and Lðþ1Þ ¼ 0Þ (and the same for R). A generalized

fuzzy number is called L–R type if there are real numbers

m; a[ 0; b[ 0 and x ð0 6 x 6 1Þwith

l ~AðxÞ ¼
xL

m� x

a

� �
; x 6 m

xR
x� m

b

� �
; x > m

8
>><

>>:
ð6Þ

where m is called the mean value of ~A and a and b are

called the left and right spreads, respectively. The L–R

type generalized fuzzy number ~A is symbolically denoted

by ~A ¼ ðm; a; b;xÞLR. If x ¼ 1; then ~A is called L–R

type fuzzy number and simply denoted by
~A ¼ ðm; a; bÞLR:

For an L–R type generalized fuzzy number ~A ¼
ðm; a; b;xÞLR; if L and R are of the form

TðxÞ ¼
1 � x; 0 6 x 6 1

0; otherwise

�
ð7Þ

Then ~A is called a generalized triangular fuzzy number

denoted by ~A ¼ ðm; a; b;xÞT : Similarly for x ¼ 1; ~A is

simply called a triangular fuzzy number denoted by
~A ¼ ðm; a; bÞT :

A fuzzy number ~A is called an L–R type generalized

trapezoidal fuzzy number if there are real numbers

m1;m2; a[ 0 and b[ 0 with the following membership

function

l ~AðxÞ ¼

xL
m1 � x

a

� �
; x 6 m1

x; m1 6 x 6 m2

xR
x� m2

b

� �
; x > m2

8
>>>><

>>>>:

ð8Þ

where m1 and m2 are called the mean values of ~A and a; b
are called the left and right spreads, respectively. Sym-

bolically, ~A is denoted by ðm1;m2; a; b;xÞLR: The L–R type

generalized trapezoidal fuzzy number ~A ¼
ðm1;m2; a; b;xÞLR divides into three parts: left part, middle

part and right part. The left, middle and right parts include

the intervals ½m1 � a;m1�; ½m1;m2� and ½m2;m2 þ b�;
respectively.

If we take L and R to be of the form as mentioned in

Eq. 7, then ~A is called generalized trapezoidal fuzzy

number denoted by ðm1;m2; a; b;xÞT . A generalized

trapezoidal fuzzy number ~Aðm1;m2; a; b;xÞT is simply

called a trapezoidal fuzzy number denoted by
~Aðm1;m2; a; bÞT when x ¼ 1:

We know that L–R type fuzzy numbers are used to

present real numbers in a fuzzy environment and trape-

zoidal fuzzy numbers are used to present fuzzy intervals

that are widely applied in linguistic, knowledge represen-

tation, control systems, database, and so forth. Similarly,

the L–R-type generalized fuzzy numbers are very general

and allow one to represent the different types of
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information. For example, the L–R type generalized fuzzy

number ~B ¼ ðm;m; 0; 0;xÞLR with m 2 R ¼ ð�1;1Þ is

used to denote a real number ~B and the L–R type gener-

alized fuzzy number ~C ¼ ðm1;m2; 0; 0;xÞLR with m1;m2 2
R and m1\m2 is used to denote an interval ~C:

Definition 5 For a triangular fuzzy number ~A; we define

1. The support of ~A is Sð~AÞ ¼ x : l ~AðxÞ[ 0
� �

:

2. The core of ~A is Cð~AÞ ¼ x : l ~AðxÞ ¼ 1
� �

:

Definition 6 The fuzzy rule and the rule base:

1. The single fuzzy rule can be based on tautology modus

ponens [26, 43]. The reasoning process uses logical

connectives IF-THEN, OR and AND.

2. The rule base consists of logical rules determining

causal relationships existing in the system between

fuzzy sets of its inputs and outputs [33].

Definition 7 [17] A triangular norm (t-norm) is a binary

operation T : ½0; 1� 	 ½0; 1� ! ½0; 1� satisfying 8x; y;
z 2 ½0; 1� :

1. Tðx; yÞ ¼ Tðy; xÞ (commutativity),

2. Tðx; yÞ 6 Tðx; zÞ , if y 6 z(monotonicity),

3. Tðx; Tðy; zÞÞ ¼ TðTðx; yÞ; zÞ (associativity),

4. Tðx; 1Þ ¼ x (Neutrality of 1).

Throughout this paper, only the product is used as a t-norm

operator, i.e., Pðla1
ðxÞ; la2

ðyÞÞ ¼ la1
ðxÞ:la2

ðyÞ:

3 COMET for HFS

The classical COMET method is based on fuzzy sets the-

ory. However, this approach does not completely solve the

problem of the uncertainty of an expert’s judgements.

Sometimes, there is few possible values of membership

degrees for the attribute of an alternative. Additionally, an

expert’s judgements can be uncertain, especially when the

two characteristic objects are compared by an expert.

Therefore, the framework of hesitant fuzzy sets is pre-

sented as the extension of the classical COMET approach,

which can solve problems while account for the uncertainty

of an expert’s judgements.

Consider a MCDM problem in which the ratings of the

alternative evaluations are expressed as HFSs. The solution

procedure for the proposed MCDM approach is described

below.

Let Aj ðj ¼ 1; 2; . . .;mÞ be the set of alternatives, and

suppose a decision maker is asked to evaluate the given

alternatives with respect to several criteria

Ciði ¼ 1; 2; . . .; nÞ:Suppose the evaluation characteristic of

an alternative Aj ðj ¼ 1; 2; . . .;mÞ on a criteria Ciði ¼
1; 2; . . .; nÞ is represented by the HFE hij.

The ranking algorithm of the COMET has the following

five steps:

Step 1: Define the space of the problem as follows:

Let F be the collection of all L–R-type generalized

fuzzy numbers, and F1
i ; F

2
i ; . . .; F

q
i are different families of

subsets of F (9):

F1
i ¼ F1

i1;F
1
i2; . . .;F

1
ici

n o

F2
i ¼ F2

i1;F
2
i2; . . .;F

2
ici

n o

..

.

F
q
i ¼ F

q
i1;F

q
i2; . . .;F

q
ici

� �

ð9Þ

where collections are established for each criterion

Ci ði ¼ 1; 2; . . .; nÞ:
In this way, the following result is obtained (10):

C1 ¼ F1
11;F

1
12; . . .;F

1
1c1

n o
; F2

11;F
2
12; . . .;F

2
1c1

n o
; . . .; F

q
11;F

q
12; . . .;F

q
1c1

n on o

C2 ¼ F1
21;F

1
22; . . .;F

1
2c2

n o
; F2

21;F
2
22; . . .;F

2
2c2

n o
; . . .; F

q
21;F

q
22; . . .;F

q
2c2

n on o

..

.

Cn ¼ F1
n1;F

1
n2; . . .;F

1
ncn

n o
; F2

n1;F
2
n2; . . .;F

2
ncn

n o
; . . .; F

q
n1;F

q
n2; . . .;F

q
ncn

n on o

ð10Þ

where c1; c2; . . .; cn are numbers of fuzzy numbers in each

family Fb
i ð1 6 b 6 q; 1 6 i 6 nÞ for all criteria.

Suppose among all Fb
i ð1 6 b 6 qÞ, one of them is a

family of triangular fuzzy numbers (TFNs) Ft
i (say). The

core of each criterion is defined as the core of each Ft
i ð1 6

i 6 nÞ; i.e.

CðC1Þ ¼ C Ft
11

	 

;C Ft

12

	 

; . . .;C Ft

1c1

� �n o

CðC2Þ ¼ C Ft
21

	 

;C Ft

22

	 

; . . .;C Ft

2c2

� �n o

..

.

CðCnÞ ¼ C Ft
n1

	 

;C Ft

n2

	 

; . . .;C Ft

ncn

� �n o

ð11Þ

Step 2: Generate the characteristic objects:

The COs are obtained by using the Cartesian product of

all TFNs cores for each criteria as follows:

CO ¼ CðC1Þ 	 CðC2Þ 	 . . .	 CðCnÞ ð12Þ

As the result of this, the ordered set of all COs is obtained:

CO1 ¼ C Ft
11

	 

;C Ft

21

	 

; . . .;C Ft

n1

	 
� �

CO2 ¼ C Ft
11

	 

;C Ft

21

	 

; . . .;C Ft

n2

	 
� �

..

.

COs ¼ CðFt
1c1

Þ;CðFt
2c2

Þ; . . .;CðFt
ncn

Þ
n o

ð13Þ

where s ¼
Qn

i¼1

ci is a number of COs.
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Step 3: Rank and evaluate the characteristic objects:

Determine the Matrix of Expert Judgment (MEJ). This is

a result of comparison of COs by the knowledge of expert.

The MEJ structure is as follows:

MEJ ¼

~h11
~h12 � � � ~h1s

~h21
~h22 � � � ~h2s

..

. ..
. . .

. ..
.

~hs1 ~hs2 � � � ~hss

2

66664

3

77775
ð14Þ

where ~hij is HFE obtained in result of comparing COi and

COj by the expert. The more preferred CO obtains a

stronger hesitant degree denoted by HFE ~hs, and the second

object obtains a weaker hesitant degree denoted by HFE
~hw. If the preferences are balanced, the both objects get a

hesitant degree denoted by HFE ~hf . The selection of HFEs

~hs; ~hw and ~hf depends solely on the knowledge and opinion

of the expert and can be presented as follows:

~hij ¼ f ðCOi;COjÞ ¼

~hw; fexpðCOiÞ\fexpðCOjÞ
~hf ; fexpðCOiÞ ¼ fexpðCOjÞ
~hs; fexpðCOiÞ[ fexpðCOjÞ

8
><

>:

ð15Þ

where fexp is an expert judgement function.

Suppose ~Hi ¼ �s
j¼1

~hij; where each ~Hi is HFE.

Afterward, we get a vertical vector SJ of the Summed

Judgments where SJi ¼ Scð ~HiÞ ¼ 1
l ~Hi

P
c2 ~Hi

c (see Defini-

tion 3).

Finally, we use the same MATLAB code as used by

Sałabun in [37] to assign for each CO the approximate

value of preference. As a result, we get a vertical vector P,

where ith row of P contains the approximate value of

preference for COi

Step 4: The rule base:

Each characteristic object and value of preference is

converted to a fuzzy rule as follows:

IFCOiTHENPi ð16Þ

IFC Ft
1i

	 

ANDC Ft

2i

	 

AND. . .THENPi ð17Þ

In this way, the complete fuzzy rule base is obtained, which

can be presented as follows:

IFCO1THENP1

IFCO2THENP2

..

.

IFCOsTHENPs

ð18Þ

Step 5: Inference in a fuzzy model and final ranking:

Each alternative activates the specified number of fuzzy

rules, where for each one is determined the fulfillment

degree of the conjunctive complex premise. Fulfillment

degree of each activated rule corresponding to each ele-

ment of Fb
i ð1 6 b 6 q; 1 6 i 6 nÞ of same type sum to

one. The each one alternative is a set of crisp number,

which corresponds to criteria C1;C2; . . .;Cn. It can be

presented as follows (19), where the following condition

(20) must be satisfied.

Aj ¼ a1j; a2j; . . .; anj
� �

ð19Þ

a1j 2 C Ft
11

	 

;C Ft

1c1

� �h i

a2j 2 C Ft
21

	 

;C Ft

2c2

� �h i

..

.

anj 2 C Ft
n1

	 

;C Ft

ncn

� �h i

ð20Þ

To infer the final ranking of the alternatives corresponding

to each criterion, we proceed as follows:

a1j 2 C Ft
1k1

� �
;C Ft

1ðk1þ1Þ

� �h i

a2j 2 C Ft
2k2

� �
;C Ft

2ðk2þ1Þ

� �h i

..

.

anj 2 C Ft
nkn

� �
;C Ft

nðknþ1Þ

� �h i

ð21Þ

where for each j ¼ 1; 2; . . .;m, ki ¼ 1; 2; . . .; ðci � 1Þ;
ð1 6 i 6 nÞ:The activated rules (COs), i.e., the group of

those COs where the membership function of each alter-

native Aj ð1 6 j 6 mÞ is nonzero is

C Ft
1k1

� �
;C Ft

2k2

� �
; . . .;C Ft

nkn

� �� �

C Ft
1k1

� �
;C Ft

2k2

� �
; . . .;C Ft

nðknþ1Þ

� �� �

..

.

C Ft
1ðk1þ1Þ

� �
;C Ft

2ðk2þ1Þ

� �
; . . .;C Ft

nðknþ1Þ

� �� �

ð22Þ

The number of COs is obviously 2n and 1 6 2n
6 s:

Let p1; p2; . . .; p2n be the approximate values of prefer-

ence of the activated rules (COs) which were already cal-

culated in Step 3.

We denote the HFE at the point x 2 Aj ð1 6 j 6 mÞ as

hijðxÞ ¼ F1
ijðxÞ;F2

ijðxÞ; . . .;F
q
ijðxÞ

n o
ð23Þ

for each criterion Ci ði ¼ 1; 2; ::; nÞ:
Let Aj be HFE which is computed as sum of the product

of all activated rules, as their fulfillment degrees and their

values of the preference, i.e.
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Aj ¼ h1k1
ða1jÞ � h2k2

ða2jÞ � . . .hnknðanjÞ
	 


p1�
h1k1

ða1jÞ � h2k2
ða2jÞ � . . .hnðknþ1ÞðanjÞ

	 

p2 � . . .

h1ðk1þ1Þða1jÞ � h2ðk2þ1Þða2jÞ � . . .hnðknþ1ÞðanjÞ
	 


p2n

ð24Þ

The preference of each alternative Aj ð1 6 j 6 mÞ can be

found by finding the score of the corresponding HFE

Ajð1 6 j 6 mÞ as follows:

ScðAjÞ ¼
1

lAj

X

y2Aj

y ð25Þ

Rank the alternatives in accordance with the preference

values of each alternative. Greater the preference value,

better the alternative Aj ð1 6 j 6 mÞ.

4 Illustrative Example

In this section, we study the same problem as in [37]. The

decision problem is defined as a ranking of the electrical

resistance of 12 alternatives with respect to two criteria, the

electric current C1 and the potential difference C2: On the

basis of Ohm’s law R ¼ Potentialdifference
Current

¼ U
I
; the resistance

of an alternative can be easily obtained. This law is a

perfect reference for the true ranking of selected alterna-

tives. Table 1 presents the group of alternatives, values of

the potential difference, values of the electric current,

values of the resistance and the original ranking (a smaller

resistance is better), which is reference to the rest of the

ranking.

Suppose F1
1 ;F

2
1 and F3

1 are three different families of

subsets of F for the criteria C1 where

F1
1 ¼ F1

11;F
1
12;F

1
13

� �
¼fð0:1;0:1;1:5Þ; ð0:1;1:5;4:1Þ; ð1:5;4:1;4:1Þg

F2
1 ¼ F2

11;F
2
12;F

2
13

� �
¼fð0:1;0:1;0:1;1:3Þ; ð0:1;1:3;2:5;4:1Þ; ð2:5;4:1;4:1;4:1Þg

F3
1 ¼ F3

11;F
3
12

� �
¼f0:1934A2 �0:8224Aþ1:0247; �0:1934A2 þ0:8224A�0:0247g

ð26Þ

Similarly, suppose the families F1
2 ;F

2
2 and F3

2 of subsets of

F for the criteria C2 are:

F1
2 ¼ F1

21;F
1
22;F

1
23

� �
¼ fð3; 3; 15Þ; ð3; 15; 33Þ; ð15; 33; 33Þg

F2
2 ¼ F2

21;F
2
22;F

2
23

� �
¼ fð3; 3; 3; 13Þ; ð3; 13; 18; 33Þ; ð18; 33; 33; 33Þg

F3
2 ¼ F3

21;F
3
22

� �
¼ f�0:0038V2 þ 0:1359V � 0:3732; 0:0038V2 � 0:1359V þ 1:3732

ð27Þ

The graphs of L–R-type generalized fuzzy numbers of the

families mentioned above for both the criteria C1 and C2

are shown in Figs. 1 and 2, respectively. We can see that

each element from criterion domain has a set of possible

membership degree values. The expert identified three

membership functions for each criterion.

The set of cores of F1
1 and F1

2 are, respectively CðF1
1Þ ¼

f0:1; 1:5; 4:1g and CðF1
2Þ ¼ f3; 15; 33g: The solution of

the COMET is obtained for different number of COs. The

simplest solution involves the use of nine COs which are

presented as follows (27):

CO1 ¼ f0:1; 3g;CO2 ¼ f0:1; 15g;CO3 ¼ f0:1; 33g;
CO4 ¼ f1:5; 3g;CO5 ¼ f1:5; 15g;CO6 ¼ f1:5; 33g;
CO7 ¼ f4:1; 3g;CO8 ¼ f4:1; 15g;CO9 ¼ f4:1; 33g:

ð28Þ

To rank and evaluate the COs, suppose the expert gives his/

her assessments by providing the following HFEs:

~hs ¼ f0:8; 1g; ~hw ¼ f0; 0:2g; ~hf ¼ f0:5g ð29Þ

The matrix of expert judgement (MEJ) is given in Table 2.

On the basis of MEJ, the vector SJ is obtained as

follows:

SJ ¼ ½0:991219; 0:952583; 0:760839; 0:999996;

0:999552; 0:997900; 0:999999; 0:999983; 0:999900�T

ð30Þ

Normalize the vector SJ, we obtain a vertical vector P

which transforms to approximate values of the preference

for the generated COs as follows:

P ¼ ½0:25; 0:125; 0; 0:875; 0:5; 0:375; 1; 0:75; 0:625�T

ð31Þ

Each CO and the value of preference pi is converted to a

fuzzy rule, as follows:

Table 1 Original ranking of alternatives (by Ohm’s law)

Alternatives Current Voltage Resistance

A V X Original rank

A1 0.125 5 40 8

A2 0.125 10 80 9

A3 0.125 20 160 10

A4 0.125 30 240 11

A5 1 5 5 3

A6 1 10 10 5

A7 1 20 20 6

A8 1 30 30 7

A9 4 5 1.25 1

A10 4 10 2.5 2

A11 4 20 5 3

A12 4 30 7.5 4
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Fig. 2 Graphs of L–R-type generalized fuzzy numbers for the criterion C2

Table 2 Matrix of expert

judgment (MEJ)
CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 SJ

CO1 ~hf ~hs ~hs ~hw ~hw ~hw ~hw ~hw ~hw 0.991219

CO2 ~hw ~hf ~hs ~hw ~hw ~hw ~hw ~hw ~hw 0.952583

CO3 ~hw ~hw ~hf ~hw ~hw ~hw ~hw ~hw ~hw 0.760839

CO4 ~hs ~hs ~hs ~hf ~hs ~hs ~hw ~hs ~hs 0.999996

CO5 ~hs ~hs ~hs ~hw ~hf ~hs ~hw ~hw ~hw 0.999552

CO6 ~hs ~hs ~hs ~hw ~hw ~hf ~hw ~hw ~hw 0.997900

CO7 ~hs ~hs ~hs ~hs ~hs ~hs ~hf ~hs ~hs 0.999999

CO8 ~hs ~hs ~hs ~hw ~hs ~hs ~hw ~hf ~hs 0.999983

CO9 ~hs ~hs ~hs ~hw ~hs ~hs ~hw ~hw ~hf 0.999900

S. Faizi et al.: Decision Making with Uncertainty Using Hesitant Fuzzy Sets 99

123



IF A
0:1 AND V
3 THEN P
0:25

IF A
0:1 AND V
15 THEN P
0:125

IF A
0:1 AND V
33 THEN P
0

IF A
1:5 AND V
3 THEN P
0:875

IF A
1:5 AND V
15 THEN P
0:5

IF A
1:5 AND V
33 THEN P
0:375

IF A
4:1 AND V
3 THEN P
1

IF A
4:1 AND V
15 THEN P
0:75

IF A
4:1 AND V
33 THEN P
0:625

ð32Þ

In respect of Model (32) for the alternative

A1 ¼ f0:125; 5g, we have nine rules (COs), but the acti-

vated rules are CO1; CO2; CO4; CO5: The approximate

values of preference of corresponding COs are

p
1

 0:25; p

2

 0:125; p4 
 0:875; p5 
 0:500: Since

0:125 2 ½CðF1
11Þ;CðF1

12Þ�; 5 2 ½CðF1
21Þ;CðF1

22Þ�: The cor-

responding HFE A1 and the preference value of the alter-

native A1 are given, respectively, as follows:

A1 ¼ p
1
ðh11ð0:125Þ�h21ð5ÞÞ�p

2
ðh11ð0:125Þ�h22ð5ÞÞ�p4ðh12ð0:125Þ�

h21ð5ÞÞ�p5ðh12ð0:125Þ �h22ð5ÞÞ

ð33Þ

ScðA1Þ ¼
1

lA1

X

y2A1

y ¼ 0:3513 ð34Þ

Table 3. presents the detailed preference values and rank-

ings for considered alternatives by using the TOPSIS

method, the classical COMET (TFNs) and the proposed

extension (HFSs). Calculation details for TOPSIS and

classical COMET are presented in [37]. We can see that

extended and classical COMET have very similar rankings.

Differences are observed in the order of alternatives pairs

A10 � A11 and A1 � A8. The reason is that the range of

uncertainty for membership values of these two alterna-

tives was quite high, e.g., difference between the highest

and lowest membership values from h22 for A11 is equal to

0.1443. This fact may explain the observed differences in

rankings. However, it is natural that increasing level of

uncertainty makes it difficult to find the optimal ranking. In

the presented example, the ranking obtained by TOPSIS

method is definitely worse than the other. Additionally, we

calculate the most popular measures of similarity degree

between each obtained ranking and reference ranking (re-

sults are presented in Table 4). The all measures show the

same relationship between rankings, i.e., Spearman’s q,

Kendall’s s and Gamma c values are the highest for the

classical COMET and the worse for TOPSIS. This com-

parison confirms that rankings obtained by using classical

and extended COMET are better than ranking obtained by

TOPSIS.

Table 3 Comparison of results between TOPSIS, COMET (using TFNs and HFNs) and the original ranking

Alter Original rank by

Ohm’s law

Pref. values using

TOPSIS

Pref. values using

TFNs

Pref. values

using

HFSs

Ranking using

TOPSIS

Ranking using

TFNs

Ranking using

HFSs

A1 8 0.5000 0.3027 0.3513 6 9 8

A2 9 0.4396 0.1754 0.2231 7 10 10

A3 10 0.2554 0.1039 0.1897 9 11 11

A4 11 0.0000 0.0377 0.0452 11 12 12

A5 3 0.5697 0.6647 0.5645 4 5 5

A6 5 0.5097 0.4937 0.4419 5 6 6

A7 6 0.3192 0.3971 0.381 8 7 7

A8 7 0.1515 0.3162 0.3061 10 8 9

A9 1 1.0000 0.9493 0.7866 1 1 1

A10 2 0.8649 0.8451 0.6703 2 2 3

A11 3 0.6422 0.7004 0.6889 3 3 2

A12 4 0.5000 0.6029 0.6248 6 4 4

Table 4 Comparison of rank correlation measurement (in respect of

original ranking)

Measure of rank correlation

The used method Spearman’s q Kendall’s s Gamma c

Classical COMET 0.9877 0.9692 0.9619

Proposed extension 0.9702 0.9077 0.9008

TOPSIS 0.9017 0.8125 0.8000
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5 Conclusion

The main contribution of the paper is a proposal of the

new extension of the COMET method of decision making

under uncertainty. For this purpose, the hesitant fuzzy set

theory is used, which is a generalization of fuzzy set

theory. The hesitant fuzzy set theory is a useful tool to

deal with uncertainty in decision-making problems, which

is proved by many scientific papers. This approach rep-

resents the situation in which different membership

functions are considered possible in respect of decision

situation.

The paper presents a theoretical foundation of proposed

approach, which ensures that a new extension is free of

rank reversal phenomenon and allows for making deci-

sions under imperfect information from experts. This

approach facilitates a decision making under uncertainty

because it permits establishing a membership degree as a

set of possible values. The proposed approach is also

included in accordance with actual research trends in the

terms of methodological backgrounds (actuality of HFS in

decision making) as well MCDM methods development

directions.

The result of the presented numeric example is com-

pared with the TOPSIS method and the classical COMET

approach. Despite the fact that uncertainty appeared in the

expert’s answers, the final ranking is very convergent to the

original. This means that the hesitant fuzzy set can reflect

decision hesitancy more completely than the classical

fuzzy sets.

During the research, some improvement areas have been

identified. The future work directions should concentrate

on:

– Practical exploitation of the application areas of

proposed extension and wider comparison of the

obtained results with classical COMET method.

– Searching for more accurate dealing with uncertainty

data (i.e., data that contain noise that makes it deviate

from the correct, intended or original values).

– Preparing a complete, COMET based, decision support

system with knowledge base, including practical cases.
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