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Summary 

The arrangement of transcription factor (TF) binding motifs (syntax) is an important 

part of the cis-regulatory code, yet remains elusive. We introduce a deep learning 

model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding 

profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif 

representations and identify soft syntax rules for cooperative TF binding interactions. 

Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate 

in a directional manner, which we validate using CRISPR-induced point mutations. Our 

model represents a powerful general approach to uncover the motifs and syntax of cis-

regulatory sequences in genomics data. 

 

 

 

Highlights 

● The neural network BPNet accurately predicts TF binding data at base-resolution. 
● Model interpretation discovers TF motifs and TF interactions dependent on soft syntax. 
● Motifs for Nanog and partners are preferentially spaced at ~10.5 bp periodicity. 
● Directional cooperativity is validated: Sox2 enhances Nanog binding, but not vice 

versa. 
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Introduction 

Understanding the cis-regulatory code of the genome is vital for understanding when and 
where genes are expressed and how genetic variation and somatic mutations affect disease. 
Despite extensive molecular efforts to map millions of putative enhancers in a wide variety of 
cell types and tissues1–3, identifying the critical bases that alter their regulatory information 
remains a major challenge. It is known that short sequence motifs are critical for the binding 
of sequence-specific transcription factors (TFs), but whether motifs are bound in vivo may 
depend on the combination and syntactic arrangements of other motifs nearby. For example, 
two or more strictly spaced motifs may form composite motifs that provide a platform for DNA-
mediated cooperativity between the corresponding TFs4. However, whether less strict (“soft”) 
motif spacing preferences exist and influence TF cooperativity is not clear. The precise rules 
by which combinations of motifs and their syntax form the cis-regulatory code remain to be 
elucidated. 
   
Experimental manipulations of enhancer sequences, such as mutations or synthetic designs, 
strongly support the existence of subtle motif syntaxe.g. 5–12. However, genome-wide analyses 
have rarely identified statistically over-represented motif syntax rules, questioning whether 
they exist and impose evolutionarily constraints on enhancer function13–17. When patterns are 
discovered computationally18–24, they are difficult to validate experimentally and the 
mechanism by which they might affect TF cooperativity is not clear. For example, over-
represented instances of strict motif spacings are sometimes associated with 
retrotransposons that contain multiple TF binding motifs19,20. Thus, the appearance of syntax 
may be the result of biases inherent to genome composition, rather than functional constraints 
on enhancer function.  
 
There is hence a critical need for a general method that can identify cis-regulatory motif syntax 
based on genome-wide experimental data. Recently, convolutional neural networks (CNNs) 
have been applied towards accurately predicting diverse molecular phenotypes including TF 
binding from DNA sequence25–28. The advantage of CNNs is that they can learn arbitrarily 
complex de novo patterns from raw sequences in the form of flexible predictive models 
composed of hierarchical layers of non-linear transformations, allowing them to capture 
sequence motifs and their higher-order organizational context without making strong prior 
biological assumptions. However, the complexity of these models makes them particularly 
challenging to interpret. While several ad hoc methods have been developed to visualize TF 
binding motifs from trained CNNs25,26,28–32, methods for extracting the rules by which motif 
syntax informs TF binding are lacking33.  
 
Another critical limitation of current methods is resolution. The standard approach for mapping 
motif instances bound by TFs in vivo is to extract bound regions from chromatin 
immunoprecipitation experiments coupled to sequencing (ChIP-seq) using peak-callers34–39 
and identify over-represented motifs in these sequences as position weight matrix models 
(PWM)40–43 .While CNNs are ideally suited to model TF binding from motif combinations and 
their syntax, current models have limited resolution. State-of-the-art CNN models of TF binding 
predict binary binding events25–27 or low-resolution continuous binding signal averaged across 
100-200 bp windows44. 
 
There is evidence that TF cooperativity can be detected in ChIP-seq experiments. For 
example, TFs sometimes bind indirectly to motifs of other TFs16,20,45–47. TF cooperativity is 
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even more apparent when the resolution of ChIP-seq is improved by adding an exonuclease 
digestion step (ChIP-exo)48. ChIP-exo methods such as ChIP-nexus generate base-resolution 
footprints precisely over the motif instances bound by the TF in vivo49,50 and these footprints 
differ between directly and indirectly bound motifs50,51. ChIP-nexus profiles have also provided 
evidence that TFs may help the binding of another TF nearby52. Although the full extent of TF 
cooperativity at the level of binding is not known, these results indicate that ChIP-seq data, 
and especially ChIP-nexus data, are a useful readout for cis-regulatory motif syntax, if the data 
are modeled at sufficiently high resolution.  
 
To discover motif syntax, we developed a novel CNN called BPNet that models the 
relationship between cis-regulatory sequence and TF binding profiles at base-resolution. To 
use a biological system with extensive prior knowledge, we studied the pluripotency TFs Oct4, 
Sox2, Nanog and Klf4 in mouse embryonic stem cells (ESCs) and generated ChIP-nexus data 
for maximal resolution. We trained base-resolution BPNet models on these ChIP-nexus 
profiles with high predictive performance, on par with the concordance between replicate 
experiments. We substantially expanded model interpretation methods to extract new motif 
representations that summarize their predictive influence on TF binding instead of statistically 
over-represented base frequencies. We then developed new methods that use the trained 
BPNet model as an in silico oracle to derive rules of TF cooperativity that depend on motif 
syntax.  
 
We find that strict motif spacings in the genome are mainly due to retrotransposons, but that 
TF cooperativity depends on preferential soft motif syntax that is in agreement with 
experimentally characterized protein-protein or nucleosome interactions in ESCs. We also 
observed unexpected rules of TF binding cooperativity, including a broad preference for 
Nanog to bind DNA with helical periodicity, and validate some of these results experimentally. 
These results suggest that end-to-end neural network models trained on high-resolution 
genomics data, coupled with a dedicated suite of interpretation tools, can serve as a powerful 
tool for discovering the critical bases within cis-regulatory sequences, obtaining predictive 
motif representations and identifying the underlying motif syntax associated with TF 
cooperativity. 
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Results 

BPNet predicts base-resolution TF binding profiles from DNA sequence 

 
 
Figure 1. BPNet predicts ChIP-nexus signal at base-resolution. A) ChIP-nexus experiments were 
performed on Oct4, Sox2, Nanog, and Klf4 in mouse embryonic stem cells. After digestion of the 5’ 
DNA ends with lambda exonuclease, strand-specific stop sites were mapped to the genome at base-
resolution. Bound sites exhibit a distinct footprint of aligned reads, where the positive (+) strand peak 
occurs many bases before the negative (-) strand peak. B) Profile heatmaps of Oct4 and Sox2 ChIP-
nexus data (red and blue for positive and negative strand respectively, color depth represents 
normalized signal intensity) at the top 500 Oct4-Sox2 motif sites. C) The average ChIP-nexus data 
(positive and negative strand at top and bottom) and ChIP-seq data (grey) at the top 500 Oct4-Sox2 
and Sox2 motif sites for Oct4 (red) and Sox2 (blue). The ChIP-nexus data have higher resolution and 
show less unspecific binding of Oct4 to the Sox2 motif. D) Architecture of the convolutional neural 
network (BPNet) that was trained to simultaneously predict the number of ChIP-nexus reads at each 
strand for all TFs from 1 kb DNA sequences. E) Observed and predicted ChIP-nexus read coverage of 
the positive strand (top) and the negative strand (bottom) for the Lefty enhancer located on the held-
out test chromosome 8. F) BPNet predicts the positions of local high signal in the profiles at replicate-
level accuracy as measured by the area under precision-recall curve (auPRC) at resolutions from 1 bp 
to 10 bp in held-out test chromosomes 1, 8 and 9. G) More convolutional layers (x-axis) increase the 
number of input bases considered for profile prediction at each position (receptive field) and this yields 
increasingly more accurate profile shape predictions on the tuning chromosomes 2-4 (measured in 
auPRC as above). 
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We performed ChIP-nexus experiments for Oct4, Sox2, Nanog and Klf4 in mouse ESCs and 
obtained genome-wide strand-specific base-resolution profiles for each TF (Figure 1A). As we 
have shown for previous TF ChIP-nexus data49, the profiles on known TF binding motifs 
showed consistent stereotypical footprints across various genomic regions, as illustrated by 
the binding of Oct4 and Sox2 to the composite Oct4-Sox2 motif53 (Figure 1B). These footprints 
not only had higher resolution compared to ChIP-seq data, but also displayed increased motif 
specificity. For example, the Sox2 motif showed a sharp ChIP-nexus footprint for Sox2 but not 
for Oct4, while ChIP-seq data showed binding signal for both (Figure 1C).  
 
Since enhancers typically contain autonomous sequences of <500 bp that can function outside 
its genomic context54,55, we trained BPNet on sequences of 1 kb. We identified 147,974 
genomic regions exhibiting statistically significant and reproducible enrichment of ChIP-nexus 
signal for Oct4, Sox2, Nanog or Klf4 and trained BPNet to predict the strand-specific ChIP-
nexus profiles of all four TFs. Each profile can be characterized by two coupled properties - 
the total signal (read counts) and the shape of the profile (base-resolution distribution of 
reads). We decided to explicitly model both since the profile shape is likely primarily 
determined by the local sequence context, while the total signal could be influenced by factors 
that we do not model, including chromatin state and higher-order chromatin organization.  
 
To accurately learn the relationship between DNA sequence and base-resolution binding 
profiles (Figure 1D), we designed BPNet as a CNN with the following properties. (1) It consists 
of multiple dilated convolutional layers44,56 with residual skip connections57,58 to learn 
increasingly complex predictive sequence patterns across the 1 kb sequence. (2) It uses multi-
task learning to jointly train on the ChIP-nexus profiles of all four TFs. (3) It uses experimental 
control data (PAtCh-CAP59) as an auxiliary input to prevent the model from learning sequence 
features associated with potential experimental biases in the data (Methods). (4) It uses a 
multi-scale loss function to separately optimize the predictions of ChIP-nexus profile shape 
and total read counts. The training of the BPNet model, tuning its parameters and testing of 
the prediction performance were performed on different sets of genomic regions (found on 
distinct chromosomes). We also confirmed that mappability of regions did not bias the 
predictions (Figure S1).  
 
To evaluate the predictive performance, we first inspected individual enhancers located on 
held-out test chromosomes such as those associated with the genes Lefty160, Zfp28161, and 
Sall162,63 and found that the predicted and observed ChIP-nexus profiles were noticeably 
similar, with highly concordant summits of footprints (Figure 1E and Figure S2A). We then 
systematically compared the positions of high ChIP-nexus counts between predicted versus 
observed profiles in all regions of the held-out test set. Strikingly, the positional concordance 
was on par with replicate experiments and substantially better than randomized profiles or 
average profiles at resolutions ranging from 1-10 bp (Figure 1F). These results show that 
BPNet accurately learned to predict the ChIP-nexus binding profiles of all four TFs from DNA 
sequence.  
 
To identify key components for the high prediction performance, we systematically varied the 
network architecture (Figure S2B,C). We found that the large number of convolutional layers 
was critical for predicting all four ChIP-nexus data sets and was particularly important for 
Nanog. This indicates that the learned sequence patterns required to predict ChIP-nexus 
profiles span over larger sequence regions beyond individual motifs64, especially in the case 
of Nanog (Figure 1G). We also found that prioritizing profile versus total count prediction during 
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training affected the prediction performance. While up-weighting the profile predictions 
improved the performance of the profile predictions, the performance for the total counts 
(Rs = 0.62) did not reach replicate-level performance (Rs=0.94), irrespective of up-weighting 
(Figure S2D,E). These results are consistent with our assumption that longer sequences or 
other measurements such as local chromatin state may be required to better predict total TF 
occupancy64, but that local sequence context (1 kb) is well suited to accurately predict the 
shape of ChIP-nexus profiles.  
 

A suite of model interpretation tools to identify TF binding motifs and 

genomic motif instances 

We next set out to extract the sequence features that were predictive of TF binding from the 
trained BPNet model. We extended our previously developed tool DeepLIFT65 to quantify the 
contribution of each base within an input sequence to the entire predicted ChIP-nexus profile 
of a TF on both strands (Figure 2A, Methods). For every input sequence, separate base-
resolution contribution scores were inferred for each of the four TFs.  
 
The TF-specific contribution scores are illustrated at the distal Oct4 enhancer where all four 
TFs show strong predicted footprints matching the observed ChIP-nexus footprints (Figure 2B 
top, Figure S3A). The contribution scores are particularly high at specific subsequences, which 
we call seqlets and which resemble TF binding motifs (Figure 2B middle). One prominent 
seqlet matches the composite Oct4-Sox2 motif, which has previously been mapped to this 
exact position in the Oct4 enhancer66. This motif has high contribution scores for Oct4 and 
Sox2, which are directly bound to the motif, and for Nanog and Klf4 at slightly lower levels 
(Figure 2B middle). This suggests that the Oct4-Sox2 motif is indirectly important for the 
binding of other TFs.  
 
Other seqlets did not readily match known motifs. For example, we found a TGAT sequence 
in the middle of the Nanog footprint (highlighted in Figure 2A middle), but it was unclear 
whether it is a Nanog motif since previous reports on its consensus have been conflicting47,67–

72. These results demonstrate the ability of contribution scores to highlight TF binding motifs, 
but indicate the need to identify and characterize the motifs more systematically. 
 
To systematically discover and summarize recurring predictive sequence patterns, we used 
TF-MoDISco, which uses sequences and their associated base-resolution contribution scores 
as input31. For each TF, TF-MoDISCo identifies seqlets from the contribution scores in all 
regions and then optimally aligns and clusters them into motifs (Figure 2C). For each cluster, 
a novel motif representation called contribution weight matrix (CWM) is derived by averaging 
the contribution scores of each of the four possible bases at every position across the seqlets. 
A more traditional position frequency matrix (PFM) representation, which contains the 
normalized base frequencies instead of the average contribution scores, is also calculated 
(see Supplemental Q&A on CWMs and PFMs/PWMs). 
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Figure 2. Transcription factor binding motifs can be accurately derived from BPNet and mapped 

to the genome using interpretation tools. A) DeepLIFT recursively decomposes the predicted TF-
specific binding output of the model and quantifies the contribution of each base of the input DNA 
sequence by backtracking the prediction through the network. B) Procedure for inferring and mapping 
predictive motif instances using the known distal Oct4 enhancer (chr17:35504453-35504603) as an 
example. From the predicted ChIP-nexus profile for each TF (top), DeepLIFT derives TF-specific profile 
contribution scores (middle). Regions with high contribution scores (called seqlets) resemble TF binding 
motifs. Seqlets are annotated by scanning the contribution scores with motifs discovered by TF-
MoDISco (bottom). C) To discover motifs, TF-MoDISco scans for seqlets, extends the seqlets to 70 bp, 
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performs pairwise alignments and clusters the seqlets. For each cluster, a motif is derived as 
contribution weight matrix (CWM), obtained by averaging the contribution scores of each of the 4 bases 
at each position across all aligned seqlets. The corresponding position frequency matrix (PFM) is the 
frequency of bases at each position. Motif instances are identified by scanning the CWM for each motif 
for high scoring matches across the profile contribution scores in the genomic regions. D) Example of 
a motif (N6) where the PFM differs from the CWMs. The PFM indicates that it is a repeat sequence 
(RLTR9E), while the CWM for each TF highlights the sequences that contribute to binding. E) Number 
of motif instances in thousands (k) found in the ~150,000 genomic regions for the 11 representative 
motifs. F) Histogram of the number mapped motif instances in thousands (k) found per region. G) 
Evaluation of the mapped motifs using independent data: regions that lose ATAC-seq signal in response 
to either Oct4 or Sox2 depletion (but not both) as defined by Friman et al., 2019. BPNet motif instances 
of Oct4-Sox2 and Sox2 (ranked by contribution scores) outperformed those obtained by HOMER and 
MEME (ranked by PWM match scores). H) A linear model based on the bottleneck layer of the trained 
BPNet model makes accurate quantitative predictions of the log fold-change loss in ATAC-seq signal 

upon depletion of Oct4 (𝛥Oct4) or Sox2 (𝛥Sox2). Results are shown with Pearson correlation coefficient 
(Rp) for the test chromosomes 1, 8, and 9 that were held out during training. See Figure S12B for a 
similar model based on motif instance features.  

 
TF-MoDISco discovered 51 motifs, but 18 of them had unusually long PFMs (> 40 bp) with 
high information content (30-100 bits) (Figure S4A, example in Figure 2D). This implies that 
the genomic instances of these motifs share near identical base composition across the entire 
length of the pattern (despite being discovered by uniquely mappable ChIP-nexus reads). 
Indeed, we found that the majority of them (>80%) overlapped with annotated repeat elements 
(Figure S4B). The most common were long-terminal repeats (LTRs) of endogenous 
retrotransposon viruses (ERVs), including those of the ERVK, ERVL and the ERVL-MaLR 
family (Figure S4C). Remarkably, the corresponding CWM representations of these long 
PFMs were quite different. Instead of long stretches of uniformly over-represented bases, the 
CWMs highlighted the shorter subsequences predictive of TF binding (Figure 2D, Figure S4C). 
This difference between CWM and PFM representations provides a means to discover and 
pinpoint bound motifs within retrotransposons.  
 
The remaining 33 motifs were all interpretable TF binding motifs, but contained subsets with 
subtle differences, leading us to select 11 representative motifs for further analysis (Figure 
S5). These motifs include the well-known Oct4-Sox2, Sox2, and Klf4 motifs, as well as the 
Zic3 and Esrrb motifs, which bind pluripotency TFs that we did not profile (Figure S5 and 
below). All motifs were overall robustly discovered by TF-MoDISCo from five different BPNet 
models trained on different subsets of ChIP-nexus peak regions (Figure S6).  
 
Using the 11 representative motifs, we then comprehensively mapped and labeled all 
predictive motif instances in the bound genomic regions. We scanned the base-resolution 
contribution scores of all regions and annotated predictive motif instances that had high 
contribution scores and high match scores to the CWM (Figure 2C and Figure S7). In total, 
we obtained 241,005 unique motif instances in the 147,974 genomic regions, with Klf4 motifs 
occurring most frequently (Figure 2E). Altogether, 72,696 regions (48.1%) have at least three 
motif instances and 20,352 regions (13.5%) have at least 5 motif instances (Figure 2F). These 
genome-wide motif annotations are in agreement with motif instances supported by previous 
independent validation experiments73–75 (Figure S3B,C,D) and provide a strong foundation for 
analyzing genome-wide motif syntax and characterizing known functional enhancers is mouse 
ESCs (Figure 2B bottom, Figure S8).  
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The motif maps derived from BPNet outperformed those obtained by traditional approaches 
such as PWM scanning (Supplemental Text, Figure S9). BPNet discovered motif instances 
more reliably than MEME40–43 or HOMER76 and correctly identified more motif instances 
supported by ChIP-nexus data on held-out test chromosomes from raw sequence, especially 
for the short Nanog motif (Supplemental Text, Figure S9). Unlike PWM-based motif scanning 
methods that compute match scores only using raw sequence, BPNet's CWM scanning 
method also incorporates the predictive contribution scores of bases, which are derived from 
the BPNet model accounting for the entire 1 Kb sequence context. Thus, the BPNet derived 
motif instances take favorable sequence contexts into account, which reduces the false 
discovery rate in unfavorable regions. We also found that training the model on base-
resolution profiles, instead of course-resolution binary (bound vs. unbound) labels was 
necessary for the BPNet’s CWM scanning approach to outperform PWM scanning 
(Supplemental Text, Figure S10, S11). 
 
Our method also outperformed traditional methods when using an independent, previously 
published ATAC-seq data set77 for the evaluation. Regions with differential chromatin 
accessibility after induced depletion of Oct4 or Sox2 in mESCs (as defined by the authors) 
overlapped more highly with Oct4-Sox2 and Sox2 motif instances ranked by BPNet 
contribution scores, compared to motif instances ranked by motif scores from MEME or 
HOMER (Figure 2G, Figure S12A). These results support the high quality and biological 
relevance of the BPNet mapped motif instances relative to those obtained from traditional 
motif discovery and scanning methods. 
 
Finally, we found that sequence features derived from the BPNet TF binding models can also 
accurately predict quantitative changes in ATAC-seq signal after Oct4 and Sox2 depletion. 
Specifically, linear models trained using the sequence features encoded in the final 
convolutional layer of the BPNet model were able to accurately predict differential accessibility 
(Figure 2H). These models outperformed linear models trained using only the inferred motif 
instances (Figure S12B). These results indicate that the complete sequence representation 
learned by BPNet encodes predictive features beyond linear, additive effects of the motif 
instances. Hence, we set out to identify higher-order sequence features such as motif syntax.  
 

Discovery of composite motifs and indirect binding footprints 

As a first step to identifying motif syntax, we inspected the motifs identified by TF-MoDISCo 
for composite motifs, the simplest form of motif syntax. Indeed, we not only discovered the 
Sox2 motif and the monomeric Oct4 motif81, but also the composite Oct4-Oct4 motif (Figure 
3A), a near-palindromic motif that resembles the MORE and PORE motifs bound by Oct4 
homodimers82,83. This motif has not previously been shown to be bound in ESCs in vivo, but 
is known to be important during neuronal differentiation84. Finally, we rediscovered the Oct4-

Sox2 motif, in which the bases with high contribution scores correspond to the specific DNA 
contacts made by the heterodimer (based on the Oct1-Sox2 crystal structure)53,85,86 (Figure 
3A right). Thus, we discovered composite motifs that are consistent with known structural data.  
 
We did not identify the less well-studied composite Sox2-Nanog motif71 and found no evidence 
that this motif was bound in our ChIP-nexus data (Figure S13A). Instead, we identified three 
Nanog motifs: Nanog, Nanog-alt and Nanog-mix, the latter of which is partially redundant with 
the first two. All have a main footprint around a TCA core sequence (Figure 3B). Nanog 
resembles the Nanog motif identified previously by a thermodynamic model from ChIP-seq 
data72. Consistent with direct binding, a closely matching sequence (GCCATCA) is bound by 
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Nanog in an EMSA gel shift assay72. Nanog-alt and Nanog-mix contain the sequence to which 
monomeric Nanog is bound in a crystal structure (AATGGGC)78. Given these two separate 
direct DNA contacts, the observed Nanog binding footprint likely represents Nanog binding as 
a homodimer87. But since Nanog-alt contains an additional GG to the left (Figure 3B), we 
cannot rule out the existence of an unknown Nanog binding partner (but it is not Sox2 or Pbx, 
see Figure S13B,C). 
 

 
Figure 3. Discovery of composite motifs and indirect binding footprints. A) The Oct4, Oct4-Oct4, 
Sox2 and Oct4-Sox2 (left) were identified by TF-MoDISco as separate motifs, highlighting its ability to 
identify composite motifs. The CWM of the Oct4-Sox2 composite motif correlates with the structure of 
Oct1 and Sox2 bound to the Oct4-Sox2 motif (right). For visualization, the amino acids of Oct1 and 
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Sox2 that contact DNA are shown as solid, and the atoms in the DNA bases, shown as colored spheres, 
are sized according to the contribution scores shown in the CWM below (right). B) Nanog ChIP-nexus 
binding footprints were associated with three Nanog motif variants (shown as CWM). For all motifs, the 
strongest footprint was found at the TCA sequence (blue). The CWM of Nanog-mix (N5) and Nanog-alt 
(N4) contain a sequence that matches the sequence AATGGGC bound by Nanog in a crystal structure 
(grey)78. The CWM of Nanog-alt contains GG (pink). C) The discovered representative short motifs 
contain known motifs, new motifs (***), and known motifs new in this context (*). From left to right: motif 
ID, motif name, CWM, PFM. All sequence logos share the same y-axis. The B-box mediates RNA 
polymerase III transcription79,80 and is associated with high levels of Oct4 binding upstream and 
downstream of tRNA (Figure S15C,D). D) The average contribution score of the motif for each TF is 
shown as color from white to dark blue. The highest score may indicate the TF that binds directly. E) 
The TF’s average ChIP-nexus footprint (read count distribution on the positive strand at the top and 
negative strand at the bottom in a 200-bp window) better indicates whether the motif is directly bound 
(sharp profile, marked with grey background), indirectly bound (fuzzy profile) or not bound at all. The 
footprints for each TF share the same y-axis. 

 
The majority of composite motifs, however, came from retrotransposons. This is consistent 
with previous observations that retrotransposons may contain multiple ancestral TF binding 
sites88–92 (Figure S14A). Among all motif pairs, the top 1% most frequent distances mapped 
in 83% to ERVs and were often larger than 20 bp (Figure S14B,C), which exceeds the typical 
distance between motifs found in composite motifs that promote TF cooperativity93,94. This 
suggests that over-represented strict motif spacings alone are not a reliable indicator for 
functional motif syntax.  
 

We next analyzed whether the 11 motifs showed evidence for mediating cooperative TF 
interactions in the absence of strict motif spacings (Figure 3C). By inspecting the contribution 
scores (Figure 3D), we found that many motifs were predicted to contribute to the binding of 
other TFs. Moreover, we discovered motifs of pluripotency TFs that we did not profile, 
including the Zic3 and Esrrb motifs, which we validated with additional ChIP-nexus 
experiments (Figure S15). Thus, BPNet predicts that Oct4, Sox2, Nanog, and Klf4 frequently 
bind with the help of motifs from other TFs.  
 
One explanation for this observation is that TFs may be indirectly recruited to motifs of other 
TFs50,51. We therefore inspected the average ChIP-nexus binding footprints of all TFs at all 
motifs (Figure 3E). We found that directly bound TFs have very sharp average ChIP-nexus 
footprints (marked in grey in Figure 3E), but that TFs also showed broader, more fuzzy 
footprints, which we attribute to indirect binding. The level of indirect TF occupancy correlated 
with the contribution score for the TF (Figure 3D,E), suggesting that the indirect footprints are 
predicted by BPNet. 
 
Notably, the indirect footprints tended to occur in an asymmetric or directional manner (Figure 
3D,E). For example, Nanog was bound indirectly to the Sox2 motif, but Sox2 was not detected 
on the Nanog motif. Since Sox2 and Nanog have been shown to physically interact with each 
other71,95, this suggests that these TFs indeed cooperate in some way, but not through a 
composite motif. We therefore set out to analyze more systematically how motif pairs influence 
cooperative binding, which would represent a means to identifying functional motif syntax.  
 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2020. ; https://doi.org/10.1101/737981doi: bioRxiv preprint 

https://doi.org/10.1101/737981
http://creativecommons.org/licenses/by-nc/4.0/


11 

Using BPNet as an in silico oracle reveals cooperative TF interactions 

 
 

Figure 4. In silico analysis of motif interactions reveals TF cooperativity and motif syntax. A) 
Motif A is inserted into 128 different randomized background sequences and the average profile for TF 
A is predicted by BPNet. The footprint’s summits are then recorded as a reference point (dotted lines) 
and the height (hA) is measured at this position. Motif B is then inserted at a specific distance from Motif 

A into a new set of random sequences and the average predicted profile height at the reference summit 
position (dotted lines) is measured (hAB). To quantify the interaction between motifs as a function of 
distance (d), the fold-change of TF binding (hAB /hA) is shown after correcting hAB for shoulder effects or 
indirect binding footprints from the nearby motif (Figure S16A). B) In the genomic in silico motif 
interaction analysis, naturally occurring instances of Motif A and Motif B as determined by CWM 
scanning are used. The average predicted profile height and position of TF A is measured in the 
presence of Motif B (hAB). Then the sequence at Motif B is replaced with random bases, and the 
predicted profile height of TF A is measured at the reference point in the absence of Motif B (hA at dotted 
lines). The same corrected binding fold-change hAB /hA as a function of d is used to quantify the 
interaction. C) Examples from the synthetic in silico analysis showing protein-range interactions 
involving Nanog and Sox2 (left) or nucleosome-range interactions exerted by the Oct4-Sox2 motif 
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(bound by Oct4) on the binding of Sox2, Nanog or Klf4 on their respective motifs (right). Results are 
shown for the +/+ orientation of the two motifs. D) Similar results are obtained in the genomic in silico 
mutagenesis analysis using the average of all motif orientations. E) Quantification of the results shown 
in D as heat map. The distances < 35 bp is shown as representative for protein-range interactions, while 
70-150 bp is shown as representative for nucleosome-range interactions. F) Odds by which two motifs 
are found within a specified distance from each other divided by the odds the two motifs would be found 
in the proximity by chance (observed by permuting the region index). * denotes p-value < 10-5 using 
Pearson's Chi-squared test (Methods). 
 
To systematically extract rules of TF cooperativity, we developed two approaches that 
interrogate the trained BPNet model in silico like an oracle. In both approaches, we measured 
how the binding of a TF to its motif is enhanced by a second motif dependent on the distance 
between them (Figure 4A,B, Figure S16). We focused on the motifs most strongly bound by 
each of the four TFs: Oct4-Sox2 (bound by Oct4), Sox2, Nanog, and Klf4. The first approach 
uses synthetically designed sequences (Figure 4A), while the second uses naturally occurring 
non-overlapping motifs in genomic sequences with and without perturbations (Figure 4B). 
  
In the synthetic approach, Motif A is embedded in random DNA sequences, and the BPNet 
model is used to predict the fold-change in binding of TF A due to the addition of Motif B at a 
range of distances relative to the Motif A (Motif B -> Motif A, Figure 4A, Movie S1). The 
procedure is then repeated by anchoring Motif B and predicting the fold-change in binding of 
TF B as a function of distance to Motif A (Motif A -> Motif B, Figure 4A). The robustness of the 
results was confirmed by the reproducibility of the patterns across five models trained 
independently on different subsets of regions (Figure S17). 
 
Using the synthetic approach on all pairwise interactions between the four motifs, we observed 
specific and distinct interaction patterns which were similar across all motif strand orientations 
(Figure S16B,C). For example, predicted Nanog binding at the Nanog motif was strongly 
enhanced when another Nanog motif was nearby, but interestingly, this enhancement 
exhibited a periodic pattern as a function of the distance between the motifs (Figure 4C). A 
similar periodic enhancement of Nanog binding to its motif was observed when a Sox2 motif 
was nearby. The magnitude of this interaction was strongest at close distances (< 35 bp), 
which means it could be mediated by protein-protein interactions between Sox2 and 
Nanog71,95 or DNA-mediated allostery4,96. For larger distances between motifs, the increased 
binding of Nanog rapidly diminished, but was nevertheless still elevated further away in the 
presence of a Sox2 motif (but not a Nanog motif). This was not true the other way around 
since Sox2 binding to its motif was not enhanced by a nearby Nanog motif (Figure 4C). Thus, 
BPNet predicts that Sox2 and Nanog interact and that this interaction is directional, consistent 
with the indirect footprints we observed.  
 
We also observed interactions consistent with an effect associated with nucleosomes. In the 
presence of Oct4-Sox2, the predicted binding of Sox2, Nanog, and to a lesser extent Klf4, was 
still enhanced at nucleosome-range distances of 150 bp (Figure 4C). Interestingly, Oct4 and 
Sox2 have been characterized as pioneer TFs, which can bind nucleosomes and make the 
region more accessible for other TFs73,97,98. Our observed interactions suggest therefore that 
Oct4-Sox2 is a strong pioneer motif. Consistent with this hypothesis, these interactions were 
also directional: the Oct4-Sox2 motif greatly increased the predicted binding of other TFs, 
while the motifs of the other TFs did not substantially affect the predicted binding of Oct4. 
These differences in distance and directionality among all interactions can also be 
summarized as a heat map using the distance intervals of < 35 bp and 70-150 bp (Figure 4E).  
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In the genomic in silico approach, we used the original genomic sequences and predicted the 
binding profile of TF A to Motif A before and after replacing Motif B with a random sequence 
(Motif B -> Motif A) and vice versa (Figure 4B, example in Figure S18A). We again observed 
that most motif-pair interactions were directional, rather than reciprocal (Figure S18B,C,D). 
Overall, the interaction patterns were very similar to the synthetic approach, albeit of lower 
magnitude (Figure 4D, Figure S18D). The smaller effect sizes might be due to the variation in 
affinity of the motif instances present in the genome since the synthetic approach used the 
best matching sequence for each motif. It is also possible that motif perturbations can be 
buffered by additional motifs that are present in genomic sequences, but not in the synthetic 
context. In summary, both in silico approaches yielded similar results and pointed to protein-
range and nucleosome-range cooperative interactions. 
 
With these measurements of predicted TF cooperativity, we asked whether naturally occurring 
spacings between motif pairs in genomic regions might support soft motif syntax. We removed 
retrotransposons containing strictly spaced motifs and analyzed whether motif pairs co-occur 
more frequently than expected by chance at certain distances (Figure 4F, Figure S12B). The 
Nanog motifs were most strongly over-represented at short distances to Sox2 and other 
Nanog motifs (< 35 bp), consistent with their protein-range interactions. At nucleosome-
distance (70-150 bp), the Oct4-Sox2 motif still co-occurred with Nanog, consistent with its 
pioneering role. Although BPNet is designed to capture potential motif interactions up to 1 kb 
apart, we did not identify significantly over-represented motif pairs beyond 150 bp (Figure 4F). 
Taken together, we detected genome-wide soft preferences for motif spacings that correspond 
to some extent with detected cooperative binding interactions and thus are likely functionally 
relevant motif syntax. 
 

Nanog binding has a strong ~10.5-bp periodic pattern 

The most remarkable soft motif syntax we observed was a ~10.5 bp periodicity associated 
with Nanog. We first observed periodicity in the full-length CWM of the Nanog motif, which 
showed flanking A/T bases in a periodic pattern (Figure 5A). This pattern is not seen in the 
corresponding PFM representation, suggesting that the A/T bases are not statistically over-
represented, but when present, contribute strongly to the Nanog binding predictions. The 
strong periodic pattern is confirmed in the individual contribution scores of Nanog motif 
instances, shown as heat map and average contribution scores (Figure 5B). A Fourier power 
spectrum analysis of the contribution scores around the Nanog motif revealed strong 
periodicity averaging around 10.5 bp (+/- 0.3 bp) (Figure 5C), which falls within the observed 
10-11 bp periodicity of the DNA helix observed in vitro and in vivo99–102. This helical periodicity 
was also found for other motifs important for predicting Nanog binding, including Nanog-mix, 

Nanog-alt, Sox2, Oct4-Sox2 and Zic3. But the same motifs did not predict periodic binding for 
other TFs, suggesting that the helical periodicity is specific for Nanog binding (Figure 5D), 
consistent with its behavior in the in silico interaction analysis. 
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Figure 5. Pervasive helical periodicity between Nanog and partner motifs A) The CWM, but not 
the PFM, of the main Nanog motif has periodically occurring contributing bases in the flanks (example 
in enlarged window). B) A heat map of the contribution scores of the individual Nanog instances also 
show this periodic pattern, the average of which is shown below. C) A Fourier power spectrum of the 
average contribution score around Nanog motif instances (after subtracting the smoothed signal) 
reveals an average periodicity of 10.5 +/- 0.3 bp. D) Fraction of the power spectrum with 10.5 bp 
periodicity of the average contribution scores for each TF (around each motif discovered for the TF) 
shows that the helical periodicity is specific for Nanog binding. Important motifs are labelled; unlabeled 
high-scoring motifs are from retrotransposons. E) The pairwise spacing of Nanog motif instances in all 
possible orientations also show a periodic pattern (++ includes the -- orientation). F-H) Heterologous 
motif combinations of Nanog with Sox2, Oct4-Sox2 and Zic3 also show a preferred spacing with the 
same periodicity. The distance between two motifs is always kept positive by placing the second motif 
in the pair downstream of the first motif in the pair. All 4 motif orientations are considered: + denotes 
the motif lies on the forward strand and - denotes the motifs on the reverse strand. I-K) Nanog ChIP-
nexus signal at the reference summit position for each motif instance (Figure S16A) averaged across 
every motif pair (blue dots), with the smooth curve fit (B-splines) depicted as a red line and the fit error 
bars depicted with the blue ribbon. Nanog on average binds higher when Nanog motifs have the 
preferred spacing.  

 
To obtain further evidence of this periodicity, we tested whether Nanog’s preferred syntax was 
naturally found in genomic DNA sequence. Indeed, the pairwise distance between our mapped 
Nanog motif instances showed a strong helical spacing preference for a multiple of ~10.5 bp, 
independent of motif orientation (Figure 5E, Figure S16B). This periodicity was reproducibly 
inferred from five independent models on different subsets of the binding data (Figure S19A). 
Despite being present in genomic DNA, the pattern had not been discovered previously47,67–
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72, presumably because traditional motif discovery and scanning methods only weakly reveal 
this pattern and only when specifically searching for it (Figure S9G). 
 
The in silico interaction analysis also predicted enhanced periodic binding cooperativity of 
Nanog in the presence of other motifs. In support of this, the mapped genomic instances of 
Nanog with either Sox2 or Oct4-Sox2 also showed strong preferred distances of helical 
periodicity regardless of motif orientation (Figure 5F-G). This was also true for the distances 
between Nanog and Zic3, indicating that Zic3 is an additional interaction partner (Figure 5H). 
Furthermore, the Nanog ChIP-nexus profiles themselves also showed this periodic pattern. 
The average Nanog signal at Nanog motifs was higher when an interacting motif was present 
with preferred helical spacing (Figure 5I-K, 5-fold validation in Figure S19B, Figure S20). This 
signal in the original data likely explains how BPNet was able to learn the preferred binding 
pattern of Nanog during training.  
 
The helical periodicity suggests that Nanog binding is enhanced when the relevant partner 
motifs are found on the same side of the DNA. Since Nanog physically interacts with Sox271,95 
and preferentially interacts at protein-protein distance in our in silico interaction analysis, it is 
possible that Nanog engages in cooperative protein-protein interactions similar to those 
observed for the lambda and lac repressors103,104. Alternatively, the helical periodicity could be 
due to preferred binding of Nanog to nucleosomal DNA from the solvent surface, which has 
been observed for some homeodomain TFs105,106.  
 
Altogether, we identified helical periodicity as a strong cis-regulatory motif syntax for Nanog, 
a biophysical parameter that BPNet was not explicitly trained on. This result demonstrates the 
power of neural networks to discover novel patterns de novo without making explicit prior 
assumptions about the nature of the sequence features. 
 

CRISPR mutations validate the motif syntax between Nanog and Sox2 

To experimentally validate the motif syntax identified by BPNet, we performed targeted point 
mutations in mapped motifs and compared the observed changes in the ChIP-nexus profiles 
to those predicted by BPNet (Figure 6). Since the most striking motif syntax was the helical 
periodicity of Nanog and the directional cooperativity with Sox2, and since the Nanog motif 
had been uncertain before47,67–72, we selected a genomic region that has a Nanog and Sox2 
motif, as well as periodic Nanog binding. Using CRISPR/Cas9 and homologous 
recombination, we performed two-base substitutions in either the Sox2 motif (TTG to AGG) or 
the Nanog motif (TGA to GGC). We then performed Sox2 and Nanog ChIP-nexus experiments 
on wild-type and mutant ESCs, using three independently derived clones per motif mutation 
as biological replicates. All biological replicate experiments were highly correlated and 
possessed indistinguishable normalized binding across known enhancers (Figure S21).  
 
We then examined how the binding profiles were affected by the mutations. As expected, 
mutating the Sox2 motif specifically abolished the corresponding Sox2 binding footprint 
(Figure 6A). However, mutating the Nanog motif did not affect Sox2 binding (Figure 6B), while 
mutating the Sox2 motif strongly affected Nanog binding (see Figure S21B for a quantification 
of the total signal). Nanog binding was almost completely lost near the Sox2 mutation and still 
reduced at the nearby Nanog motif (Figure 6C).  
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Figure 6. CRISPR mutations in a Sox2 and Nanog motif validate BPNet’s predictions. (A-D) A 

Sox2 motif (blue shade) and Nanog motif (light brown) in a selected genomic region were mutated 
through CRISPR/Cas9 and homologous recombination in mouse ESCs. Predicted and observed ChIP-
nexus profiles (+ strand on top, - strand at bottom) in reads per million (RPM) are shown for wild-type 
cells (teal line) and mutant cells (scarlet line) across 300 bp (chr10:85,539,550-85,539,850). A) Upon 
mutating the Sox2 motif, the Sox2 footprint is lost as predicted. B) In contrast, mutating the Nanog motif 
does not noticeably affect Sox2 binding. C) Consistent with directional cooperativity, the Sox2 mutation 
does however affect Nanog binding, which is reduced throughout the region as predicted. D) Similarly, 
mutating the Nanog motif not only abrogates the Nanog footprint, but also results in reduced binding 
nearby as predicted.  

 
This directional cooperativity is strikingly consistent with the results from the in silico interaction 
analysis performed across all genomic sequences (Figure 4D) and with the asymmetry 
observed in the indirect binding footprints of Nanog and Sox2 (Figure 3C). In addition, the 
short-range cooperativity of Nanog was confirmed. Namely, when the Nanog motif was 
mutated, not only was the corresponding footprint of Nanog abrogated as expected, but the 
surrounding periodic Nanog binding was also reduced as predicted (Figure 6D).  
 
Altogether, these results confirm that the derived syntax rules are predictive and applicable to 
individual examples. This demonstrate that BPNet can be used to derive novel, testable 
biological hypotheses on how the cis-regulatory motif syntax influences TF binding. 
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Discussion 

Here we introduced BPNet, a versatile and interpretable deep learning tool to learn TF motifs 
and the rules of syntax that best predict genomics data at base resolution. To leverage the 
unprecedented resolution of BPNet and showcase its ability to reveal novel biological insights, 
we applied it to ChIP-nexus data in mouse embryonic stem cells. The results were not only 
consistent with previous findings, but provided a remarkably clear picture that revealed new 
details and principles underlying cis-regulatory motif syntax. For example, we found that TF 
binding is guided by soft syntax rules, which follow clear distance or spacing preferences 
consistent with protein-protein interactions16,107, or nucleosome-mediated cooperativity108. 
These soft syntax rules have not been observed before, but represent an intermediate 
between the strict motif syntax associated with the original enhanceosome model109,110 and 
the very flexible syntax suggested by the billboard model14. The resulting TF cooperativity was 
often directional, extending beyond the hierarchical requirement observed for pioneer TFs 
73,108. Finally, we observed a strong preference for Nanog to bind with ~10.5 bp helical 
periodicity. Helical phasing has long been thought to be a possible element of the cis-
regulatory code21,23,103,104,109,111–114. Our finding that the helical spacing is motif-encoded and 
TF-specific provides a clear guidance for this feature in future studies.  
 
As we will outline below, BPNet represents a new paradigm for discovering relevant motifs 
and syntax rules underlying the cis-regulatory code. Since it is based on inferring predictive 
patterns using deep learning, it is a radical departure from classical methods, which are based 
on learning over-represented sequence patterns. In order for BPNet to outcompete classical 
methods, it required several important design innovations (Results, Methods and 
Supplemental Q&A), as well as extensive quality control and rigorous evaluations to ensure 
that the method works as intended (Supplemental text, Supplemental Q&A). However, the 
result is not just an improvement over previous deep learning methods, but represents the 
most powerful and general computational approach to date for deciphering the cis-regulatory 
code from a variety of genomics assays. 
 
The most important innovation was the development of tools that make the trained BPNet 
model interpretable. For the longest time, computational models in regulatory genomics have 
grappled with an inherent tradeoff between prediction accuracy and interpretability, but the 
BPNet framework enables both. The key to its interpretability was to distill information from 
the entire neural network, rather than trying to directly interpret the millions of cryptic, partially 
redundant parameters of the trained model. This allowed us to obtain predictive motif 
representations and derive context-aware predictive motif instances. Importantly, by using 
BPNet as an in silico oracle, we systematically predicted the effect of mutated sequences or 
synthetic sequence designs, which enables us to extract the rules by which motif syntax 
influences TF cooperativity. Such precise oracle predictions, which are not possible with 
classical models, allow less scalable in vivo experiments such as the CRISPR editing 
experiments to be performed on the most interesting and promising observations.  
 
The advantage of BPNet over classical methods is that it detects motifs and their rules of 
syntax in a fundamentally different way. Classical methods for motif discovery rely on motifs 
being over-represented over background sequences40–43. Similarly, existing approaches to 
infer syntax rules use summary statistics of over-represented co-occurrence patterns1,19,115. 
These methods have limited statistical power to test individual features present in complex 
cis-regulatory sequences (Supplemental Q&A). By contrast, BPNet’s vast network capacity 
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allows it to learn complex predictive rules agnostically based on their ability to accurately 
predict relevant experimental profiles, without explicitly defining features a priori. This allows 
the discovery of relatively rare but nonetheless predictive motifs (e.g. Oct4-Oct4), as well as 
predictive syntax features that were not certain to be relevant such as helical periodicity or the 
direction of TF cooperativity. 
 
BPNet’s approach of modeling the entire cis-regulatory sequence is also inherently better 
suited for deciphering the combinatorial requirements for TF binding in vivo. Traditionally, the 
gold standard for a TF binding site is that it has strong affinity for the TF in in-vitro experiments. 
Likewise, scoring motif instances using PWM models relies on statistically significant 
sequence matches. In both cases, a selection is typically made using arbitrary thresholds, 
before the role of motif combinations and syntax is considered115,116. However, our results 
suggest that in vivo, TF binding to a motif instance is by itself a highly cooperative process 
that depends on neighboring motifs and syntax. Indeed, in a given cis-regulatory context, low-
affinity motif instances can be an important element of the cis-regulatory code10,52,117. The fact 
that BPNet discovered subtle predictive patterns that are not necessarily strong matches to 
PWM motif models (e.g. the predictive bases in the flanks of Nanog motifs) and outperformed 
classical methods for identifying motif instances that are relevant in vivo (Figure 2G-H, 
Supplemental text) suggests that modeling the predictive contribution of motif instances 
dependent on cis-regulatory context is a powerful new approach for discovering cis-regulatory 
code.  
 
Finally, BPNet is designed to be a general and versatile end-to-end approach adaptable to a 
number of genomic assays. It is ideally suited to learn from high-resolution genomic data, but 
its base-resolution output is still beneficial for lower resolution data since it does not discard 
any information present in the training data profiles. For example, we successfully trained 
BPNet models on ChIP-seq profiles for the same TFs and obtained motifs that were highly 
similar to those from the ChIP-nexus models (Supplemental text: Figure S11). The number 
and accuracy of motif instances was lower than those from ChIP-nexus profiles models, but 
better than those from models trained using course-resolution binary binding labels 
(Supplemental text: Figure S11). Similarly, we found that BPNet can also accurately model 
base-resolution DNase-seq profiles118. These results suggest that applying BPNet to existing 
compendia of ChIP-seq, DNase-seq and ATAC-seq data, such as those generated by 
ENCODE will improve the systematic mapping of cis-regulatory motifs and their rules of syntax 
in a variety of cellular contexts. To foster the broad application of BPNet, we have made the 
entire software framework available with documentation and tutorials.  
 
Altogether, the BPNet modeling framework promises to change future research. Learning 
motifs and syntax rules for a variety of genomic assays in many cell types will pave the way 
to a more complete understanding of the cis-regulatory code and how specific bases influence 
the various molecular steps associated with enhancer function. At the same time, these 
models provide a unique opportunity to pinpoint causal quantitative trait and disease-
associated genetic variants and understand the molecular mechanisms by which they alter 
gene regulation. Ultimately, the ability to decipher cis-regulatory information will unlock an 
enormous amount of information underlying organismal development, its maintenance and 
opportunities for therapeutic intervention of diseases.  
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Supplemental Q&A 

Q1. What are the key innovations in the design of the BPNet model compared to 

previous deep learning models of TF binding? 

1) BPNet is the first neural network architecture designed to model continuous base-
resolution binding profiles from ChIP-nexus/exo and ChIP-seq experiments as a function 
of DNA sequence. This in contrast to all previous deep learning approaches that model 
binding data as binary binding events or continuous binding signal summarized at low-
resolution (100-200 bp). 

2) BPNet introduces a new multi-scale loss function to separately optimize the predictions of 
ChIP-nexus profile shape and total read counts. 

3) BPNet introduces a new approach to automatically correct binding profiles for assay 
biases and prevent the model from learning spurious sequence patterns that explain assay 
biases. Specifically, BPNet can use a control experiment as an auxiliary input. The model 
is fit to the ChIP-nexus/ChIP-seq binding profiles using both the sequence and the control 
experiment track. The model automatically learns to regress out the signal that can be 
explained by the control track.  

Q2. What are the enhanced model interpretation methods introduced in the BPNet 

framework to infer motifs and motif syntax? 
1) Several neural network feature attribution methods (e.g. in-silico mutagenesis, input gated 

gradients, DeepLIFT, integrated gradients and GRAD-CAM) have been previously applied 
to deep learning models of TF binding to infer contribution scores for each base (feature) 
in an input sequence to a scalar binary or continuous binding prediction. Here, we 
introduce the first approach to infer base-resolution contribution scores for input 
sequences with respect to profile outputs from sequence-to-profile models. Specifically, 
we adapted our DeepLIFT method for profile outputs. Previously, these contribution scores 
have typically only been used to visualize anecdotal examples of sequence motifs in 
specific case study sequences or to score non-coding genetic variants. Here, we provide 
the first genome-wide analysis of contribution scores and show convincingly how they can 
accurately identify predictive motif instances genome-wide, outperforming traditional motif 
discovery and scanning approaches. 

2) The typical approaches used to derive motifs from deep learning models of genomic 
sequence include visualizing the convolutional filters directly or deriving position weight 
matrices (PWMs) from subsequences that activate convolutional filters in the first layer. 
These approaches have several drawbacks since neural networks learn representations 
in a distributed fashion i.e. no single filter is guaranteed to capture a complete motif and 
there is significant redundancy in the patterns learned by different filters. Hence, 
interpreting filters directly often results in deriving incomplete motif patterns and many 
partially redundant motifs. Another drawback is that deriving PWMs that simply capture 
base frequencies results in a fundamental loss of information with regard to the predictive 
base contributions, as well as any interaction effects between bases within and across 
motifs. The TF-MoDISco algorithm we use here is fundamentally different in that it 
reconstructs less redundant and complete motif representations from the base-resolution 
contribution scores instead of individual filters. We show that TF-MoDISco is able to learn 
several novel motifs missed by other approaches for four highly studied pluripotency 
transcription factors. 

3) We are the first to highlight the fundamental difference between contribution scores and 
base frequencies to derive motif representations. We introduce the contribution weight 
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matrix (CWM) representation, which is conceptually similar to the PWM but records the 
average contribution rather than frequency of bases in a motif. Using transposable 
elements, we show very clearly the advantage of the CWM over the PWM representation. 
PWMs highlight the entire transposable element, whereas the CWM representation only 
highlights the predictive subsequences corresponding to the motifs bound by the TFs. 
Furthermore, the CWM motif representation for Nanog highlights the helical pattern in the 
flanks of the motif, whereas the equivalent PWM representation does not. 

4) We develop new methods to identify predictive motif instances by scanning contribution 
score profiles with CWMs (derived using only sequence and the BPNet model without 
using the measured binding profiles). We show that this new motif scanning approach 
outperforms PWMs even when restricting the regions to be close to the peak summit or 
when augmenting the ChIP-nexus summit position for BPNet (Figure S9B). Further, the 
CWM scanning approach shows the most dramatic improvements for short motifs with 
complex periodic patterns such as the Nanog motif. 

5) Finally, we combine all of these innovations in the in-silico oracle approach for discovering 
motif syntax. We develop two new approaches - one based on using simulated sequences 
and one based on perturbing real genomic sequences to derive robust, global rules 
learned by the models of how motif syntax influences transcription factor binding 
cooperativity. We show that these two approaches complement each other and support 
each other's findings. We are the first to show that high performance neural networks of 
regulatory DNA sequence learn ab-initio subtle but critically important syntactic patterns, 
e.g. the pervasive 10.5 bp helical periodicity displayed by Nanog. We are also the first to 
show that neural networks can learn preferred soft spacing constraints between motifs that 
are predictive of cooperative binding. The ability of neural networks to learn these higher-
order, non-linear patterns has long been known, but to our knowledge, no one has 
previously shown robustly that deep learning models of genomic sequences can 
successfully capture these higher-order patterns and that they can be extracted to reveal 
biologically meaningful information. Not only can we predict these patterns, but we now 
also validate the extracted syntax experimentally, by performing point mutations using 
CRISPR/Cas9 and analyzing the change in TF binding with ChIP-nexus experiments. The 
results clearly confirm that the periodic Nanog binding depends on the Nanog and the 
Sox2 motifs (but that Sox2 binding does not depend on the Nanog motif). 

 

Q3. What is the conceptual difference between classical motif discovery methods like 

MEME/HOMER and BPNet’s motif discovery method? 

Traditional motif discovery methods (e.g. MEME, HOMER) are based on identifying 
statistically over-represented patterns in bound sequences relative to a background set of 
sequences. Our method does not rely on the frequency of sequence patterns in a foreground 
set of sequences relative to a background set. Instead it learns sequence patterns that are 
predictive of the binding profiles. Frequent patterns that have no predictive value are not 
learned and rare patterns that have predictive value are learned. Thus, while patterns have to 
be present across multiple sequences to have predictive value, our ability to discover them is 
not simply based on over-representation. This is exactly why we can learn several less 
frequent motifs predictive of ChIP-nexus footprints, while traditional methods that primarily 
focus on over-represented patterns miss these motifs.  

The contrast between frequency of patterns and their predictive contribution to the 
output is the fundamental difference between the contribution weight matrix (CWM) 
representation that we introduce, and the classical frequency-based position frequency/weight 
matrix (PFM/PWM) representation (PWMs are log-odds of PFMs normalized against 
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background frequencies). The case study of transposable elements best highlights this 
fundamental difference. The PFMs highlight the entire over-represented retrotransposon 
sequences. However, the CWMs highlight the specific predictive bases within the 
retrotransposons, which is a clear advantage over traditional methods. 
 
Q4: How is the BPNet oracle approach for syntax discovery different from classical 

methods? 

Previous methods derive summary statistics of over-represented or evolutionary conserved 
patterns of motif or TF peak co-occurrence and spacing from bound and unbound genomic 
sequences1,19,115. While these summaries are useful, they suffer from several issues. First, it 
is difficult to estimate the marginal effect of each property of cis-regulatory syntax (e.g. spacing 
between two motifs) due to systematic confounding from other syntactic properties (e.g. 
presence of other motifs, homotypic and heterotypic motif density) and background sequence 
composition of genomic sequences. Second, the number of genomic instances that sample 
each syntactic property may not be sufficient to obtain robust statistics. Finally, it is difficult to 
make conclusions about the impact of an over-represented syntactic property on cooperative 
TF binding without systematic perturbation experiments. These issues are typically resolved 
experimentally by performing in vitro binding experiments using libraries of carefully designed 
synthetic sequences that sample desired properties of interest 6,17,112,119,120.  

Our in silico oracle approach that uses designed synthetic sequences mimics this 
experimental approach since the model is trained to predict experimental in vivo binding 
profiles. However, the model can sample substantially larger numbers of synthetic constructs 
by smoothly varying syntactic properties while accounting for sequence backgrounds. The in 

silico mutagenesis experiments on genomic sequences not only provide additional support for 
conclusions derived from the synthetic sequences, but also reduce the likelihood of making 
unreliable conclusions about “out-of-distribution” syntax properties that are never found in the 
genome.  

By mimicking the experimental approach in silico, the oracle approach allows one to 
home in on precise hypotheses that can be tested using less scalable in vivo experiments 
such as the CRISPR editing experiments we present. Furthermore, the oracle approach is 
very general and will be useful to systematically study further syntactic properties and their 
joint effects in the future (e.g. trade off between affinity, motif density and spacing). These 
kinds of interactions would be very difficult to infer from explicit parameters in computational 
models. 
 
Q5. Can we use CWM motifs to identify motif instances in sequences that do not have 

experimentally measured ChIP-nexus profiles? 

Yes. The CWM scanning approach can be used to identify motif instances in any query 
sequence. The procedure requires two components - the input sequence and the BPNet 
model. These are the same two components also used for traditional PWM motif scanning 
(the PWM happens to the “model” in that case). The BPNet model predicts the output binding 
profile from the raw input sequence using a forward pass. That “predicted output” is then used 
to infer a contribution score profile across the input sequence using backpropagation 
(DeepLIFT). The CWM (also derived from the DeepLIFT contribution scores with respect to 
predicted profiles from all training set sequences) is then used to scan the contribution score 
profile of the input sequence. Nowhere in this procedure do we use the measured ChIP-nexus 
profiles. All components are derived just from the raw sequence using the model and the 
interpretation methods. 
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Q6. Can BPNet be used to predict TF binding in new cell types not used in training? 

Not with the current model directly. Transcription factors typically have different genomic 
occupancy profiles across different cellular contexts. The direct binding motifs for most TFs 
are generally consistent across cell types. However, the higher-order syntactic rules and 
cooperative interactions with motifs of other TFs vary across cell types. A model that uses only 
DNA sequence as input and is trained on binding profiles of a TF in a one cell type will learn 
sequence features that are specific to that cell type. Because the DNA sequence of a genome 
is the same across different cell types, a sequence-only model of TF binding cannot predict 
different genome-wide TF binding landscapes in new cell types not used in training. However, 
the primary use-case for BPNet framework is not prediction of TF binding in new cellular 
contexts. Rather, we designed BPNet to enable inference of context-specific sequence 
determinants of TF binding. BPNet models could be extended to take as input sequence and 
cell-type specific information such as chromatin accessibility or histone mark profiles. These 
multi-modal models trained to account for differences in training and test cell type regulatory 
syntax are likely to generalize across cell types. 
 
Q7: What were the rigorous evaluations and independent validations that support the 

statistical robustness and biological validity of results? 

First, we performed extensive quality control analyses on our ChIP-nexus data, ensuring high 
reproducibility, sensitivity and antibody specificity (Methods). Second, we corrected for assay-
specific biases by explicitly modeling control datasets (Methods) and excluded any discernible 
influence of mappability artifacts on BPNet’s predictions (Figure S1). Third, we showed that 
independently trained models using different subsets of the binding data produced highly 
consistent results, including the motif syntax rules (Figure S9B, S16, S19), thereby minimizing 
the possibility of artifacts due to memorization or over-fitting to the training data. Fourth, we 
found that the derived motif syntax rules were internally consistent. They were inferred from 
both synthetic and genomic DNA sequences (Figure 4) and the directionality was consistent 
with the indirect binding footprints observed in ChIP-nexus data (Figure 3). Nanog’s helical 
periodicity was also found in the ChIP-nexus data, the raw contribution scores, as well as the 
spacings between motifs (Figure 5). Fifth, the sequence representation learned by BPNet from 
TF ChIP-nexus data transferred seamlessly to accurately predict independent, previously 
published experiments, i.e. the changes in chromatin accessibility after TF depletion (Figure 
2G-H). Finally, we performed CRISPR-induced point mutations in two binding motifs and 
showed that the changes in ChIP-nexus profiles are in remarkable agreement with BPNet’s 
predictions and inferred syntax (Figure 6). These careful controls and evaluations provide 
confidence in the ability to use BPNet as a generic toolkit for deriving biological insights about 
syntactic properties of regulatory DNA from ChIP-nexus and ChIP-seq experiments.  
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Materials and methods 

Experiments and data processing 

Cell culture 

Mouse R1 ESCs were cultured on 0.1% gelatin-coated plates without feeder cells. Mouse 
ESC medium was prepared by supplementing N2B27 medium (1:1 mix of DMEM/F12 with 
GlutaMax supplemented with N2 and Neurobasal medium supplemented with B27, Invitrogen) 
with 2 mM L-Glutamine (Stemcell Technologies), 1x 2-Mercaptoethanol (Millipore), 1x NEAA 
(Stemcell Technologies), 3 µM CHIR99021 (Stemcell Technologies), 1 µM PD0325901 
(Stemcell Technologies), 0.033% BSA solution (Invitrogen) and 107 U/ml LIF (Millipore).  

ChIP-nexus experiments 

For each ChIP-nexus experiment, 10 million mouse ESCs were used. Cells were washed with 
PBS and cross-linked with 1% formaldehyde (Fisher Scientific) in PBS for 10 min at room 
temperature. The reaction was quenched with 125 mM glycine. Fixed cells were washed twice 
with cold PBS, resuspended in cold lysis buffer (15 mM HEPES (pH 7.5), 140 mM NaCl, 1 mM 
EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.5% N-lauroylsarcosine, 0.1% sodium deoxycholate, 
0.1% SDS), incubated for 10 min on ice and sonicated with a Bioruptor Pico for five cycles of 
30 s on and 30 s off. The ChIP-nexus procedure and data processing were performed as 
previously described 49 except that the ChIP-nexus adaptor mix contained four fixed barcodes 
(ACTG, CTGA, GACT, TGAC) and that the PCR library amplification was performed directly 
after the circularization of the purified DNA fragments (without addition of the oligo and BamHI 
digestion). For each ChIP, 5 µg antibody was coupled to 50 µl Protein A or Protein G 
Dynabeads (Invitrogen). The following antibodies were used: ɑ-Oct3/4 (Santa Cruz, sc-8628), 
ɑ-Sox2 (Santa Cruz, sc-17320), ɑ-Sox2 (Active Motif, 39843), ɑ-Nanog (Santa Cruz, sc-
30328), ɑ-Klf4 (R&D Systems, AF3158), ɑ-Klf4 (Abcam, ab106629), ɑ-Esrrb (Abcam, 
ab19331), ɑ-Pbx 1/2/3 (Santa Cruz, sc-888), and ɑ-Zic3 (Abcam, ab222124). At least two 
biological replicates were performed for each factor to obtain coverage of at least 100 million 
reads per TF. Single-end sequencing was performed on either an Illumina HiSeq instrument 
(50 cycles) or NextSeq 500 instrument (75 cycles) according to the manufacturer's 
instructions. 

PAtCh-Cap experiments 

For each PAtCh-Cap experiment, 10% of sheared chromatin sample volume from 10 million 
mouse ESCs was used as input. Chromatin was prepared as described for ChIP-nexus. 
PAtCh-Cap was performed as previously described 59. 

ChIP-seq experiments 

ChIP-seq experiments were performed as previously described 121 with 10 million mouse 
ESCs per ChIP. For each ChIP, 5 µg of the following antibodies were used: ɑ-Oct3/4 (Santa 
Cruz, sc-8628), ɑ-Sox2 (Santa Cruz, sc-17320), or ɑ-Nanog (Santa Cruz, sc-30328). At least 
two biological replicates were performed for each factor. Single-end sequencing was 
performed on either an Illumina HiSeq instrument (50 cycles) or NextSeq 500 instrument (75 
cycles) according to the manufacturer's instructions. 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2020. ; https://doi.org/10.1101/737981doi: bioRxiv preprint 

https://doi.org/10.1101/737981
http://creativecommons.org/licenses/by-nc/4.0/


27 

Mutation of binding motifs using CRISPR/Cas9 

 
CRISPR/Cas9 technology was used for engineering mouse R1 ES cells. The predicted Nanog 
motif on chr10: 85,539,756-85,539,765 (mm10) was mutated from CTGATGGCT (wild-type) 
to CGGCTGGCT (mutant). The predicted Sox2 motif on chr10: 85,539,634-
85,539,643 (mm10) was mutated from CCTTTGTTCC (wild-type) to CCTAGGTTCC (mutant). 
GuideRNA target sites were designed using CCTop target predictor tool 122. The target sites 
were selected by evaluating the predicted on-target efficiency score and the off-target potential 
123. To generate the specific point mutations, a single stranded DNA oligonucleotide (ssODN) 
donor was designed containing ~40 nucleotides of homology from the targeted cut site. A 
ribonucleoprotein (RNP) complex was formed by combining 90 pmol of sgRNA (ordered as 
Alt-R sgRNA; IDT, USA) and 10 pmol of Cas9 HiFi protein (IDT) and hybridizing for 10 min at 
room temperature. The RNP was combined with 100 pmol of ssODN donor and delivered to 
cells by Neon electroporation (1500 V, 10 ms, 3 pulses; Neon Transfection System, 
Model MPK5000, Life Technologies). Single cells were screened for the expected mutations 
through sequencing paired-end on an Illumina MiSeq instrument (250 cycles). On-target indel 
frequency and expected mutations were analyzed using CRIS.py 124. Only clones with the 
intentional mutation and sequence alignments above 90% were chosen for future 
experiments. 
 
Per target site, three monoclonal cell lines were selected and used to perform ChIP-nexus: 
clones B07, B09 and F10 for the mutant Nanog motif, and clones B07, B11 and C10 for the 
mutant Sox2 motif. In addition, at least two biological replicates of wild-type mouse R1 ES 
cells were prepared and used as control. ChIP-nexus was performed with 20 million ES cells 
and 5 µg ɑ-Nanog (Abcam, ab214549) or ɑ-Sox2 (Active Motif, 39843) per experiment as 
described above. Single-end sequencing was performed on an Illumina NovaSeq instrument 
(100 cycles) according to the manufacturer's instructions to obtain a coverage of about 
400 million reads per experiment.  

ChIP-nexus data processing pipeline 

Random barcodes and fixed barcodes were trimmed off the reads and reassigned to FASTQ 
labels using nimnexus (v0.1.1). The adapters were then trimmed using cutadapt (v1.8.1) 125. 
Next, the reads were aligned with Bowtie (v1.1.12) 126,127 using the command bowtie --

chunkmbs 512 -k 1 -m 1 -v 2 --best --strata to the mouse genome assembly 

mm10. Mapping stats were computed using SAMtools flagstat (v1.2) 128. Reads were filtered 
using SAMtools view to remove unmapped reads and mates, non-primary alignments, reads 
failing platform or vendor quality checks, and PCR or optical duplicates (-F 1804). Reads with 
poor mapping quality (MAPQ < 30) were also removed. Reads aligned to the same position 
with the same barcode, CIGAR string and the SAM flag were de-duplicated using nimnexus 
dedup (v0.1.1). The total number of final (filtered) aligned reads was 243M for Oct4, 140M for 
Sox2, 214M for Nanog and 176M for Klf4. The final filtered BAM file was converted to tagAlign 
format (BED 3+3) using bedtools `bamtobed` (v2.26) 129. Cross-correlation scores were 
obtained for each file using phantompeakqualtools (v1.2) 130. BigWig tracks containing the 
strand-specific number of aligned 5' read ends (pooled across all replicates) were generated 
using bedtools genomecov -5 -bg -strand <+/->, followed by bedGraph to BigWig 

conversion using UCSC bedGraphToBigWig 131. 
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Peaks were called using MACS2 (v2.1.1.20160309) by extending 5’-ends of reads on each 
strand using a 150 bp window (±75 bp) and then computing coverage of extended reads 
across both strands (shift=-75, extsize=150). For each TF, peak calling was performed on 
filtered, aligned reads from each replicate using a relaxed p-value threshold of 0.1 and 
retaining the top 300,000 peaks as described in 130. Relaxed peak calls were also similarly 
obtained from pseudo-replicates, which were obtained by pooling filtered, aligned reads from 
all replicates for a TF and randomly splitting the pooled reads into two balanced pseudo-
replicates. We used the Irreproducible Discovery Rate (IDR) framework to obtain reproducible 
peaks across the true-replicates and pseudo-replicates 132. The larger of these two sets of IDR 
peaks (in terms of number of peaks) was defined as the “IDR optimal set” of peaks for each 
TF. Peaks overlaping the blacklisted regions listed in 
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-
mouse/mm10.blacklist.bed.gz were excluded. We obtained 25,849 IDR optimal peaks for 
Oct4, 10,999 for Sox2, 56,459 for Nanog and 57,601 for Klf4. Regions of 1 kb in length 
centered at peak summits from these "IDR optimal peak sets" were used as inputs to BPNet. 
 
We computed several quality control metrics to evaluate enrichment and reproducibility of our 
ChIP-nexus datasets based on the ENCODE TF ChIP-seq pipeline and quality control 
standards 130 (Supplemental table 1). We computed the fraction of reads in IDR optimal peaks 
(FRiP) as an estimate of enrichment. All our samples had uniformly high FRiP scores. We also 
computed the "rescue ratio" i.e. the ratio of the number of IDR optimal peaks from pseudo-
replicates to the number of IDR optimal peaks from the true replicates, as an estimate of 
reproducibility. For all four TFs, ChIP-nexus samples had Rescue Ratios < 2 and had tens of 
thousands of reproducible peaks indicating high reproducibility of the datasets. The IDR 
optimal peaks from ChIP-nexus data also showed strong overlap with IDR optimal peaks from 
corresponding ChIP-seq data targeting the same TFs. 
 
The nim-nexus code is available at https://github.com/Avsecz/nimnexus/. The ChIP-nexus 
pipeline performing the described steps (e.g. turning the raw reads in the FASTQ format to 
BigWig coverage tracks and the called peaks) is available at 
https://github.com/kundajelab/chip-nexus-pipeline. A detailed pipeline specification is 
available at 
https://docs.google.com/document/d/1h9lZ0GyVWd02RCmtaFWSaSFzrcNHoH_OgyPHMp
U7b04. 

ChIP-seq data processing pipeline 

ChIP-seq datasets were processed using the ENCODE ChIP-seq pipeline 
https://github.com/ENCODE-DCC/chip-seq-pipeline2/releases/tag/v1.2.2. The ChIP-seq 
pipeline is identical to the ChIP-nexus pipeline described above except that it uses the SPP 
peak caller 34 and doesn't use barcodes for read de-duplication. 
 

BPNet: base-pair resolution deep learning model 

Architecture 

BPNet is a sequence-to-profile convolutional neural network that uses one-hot-encoded DNA 
sequence (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]) as input to predict single 
nucleotide-resolution read count profiles. We use 1000 bp DNA sequence as inputs and 1000 
bp strand-specific read count profiles for ChIP-nexus TF binding experiments as outputs. The 
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length of the input sequence and output profiles can be easily adjusted as needed for more 
general use cases. 
 
The architecture of BPNet can be compartmentalized into two parts: the body and multiple 
task-specific output heads. The separation of the BPNet body and head components makes 
the architecture more flexible, allowing the features learned in the body to be used for the 
prediction of multiple outputs. 
 
The body of BPNet consists of a sequence of convolutional layers with residual skip 
connections and ReLU activations 58. The first convolutional layer uses 64 filters of width 25 
bp to scan the 1 kb region for relevant sequence motifs. This layer is then followed by 9 dilated 
convolutional layers (64 filters of width 3 in each layer) where the dilation rate (number of 
skipped positions in the convolutional filter) doubles at every layer. To preserve the base-pair 
resolution, pooling is not used in the architecture. Thanks to a large receptive field achieved 
by dilated convolutions, the BPNet body is designed such that the output prediction at any 
position in the genome is a function of sequence patterns within +/-1034 bp around the position 
hence covering the whole input sequence. The model can learn a wide variety of predictive 
sequence patterns de novo including multiple sequence motifs, their positional preferences 
and motif combinations with different spacing and orientation constraints. The output of the 
final convolutional layer within the BPNet body (also referred to as the bottleneck activation 
map) serves as input for TF-specific output heads.  
 
There are 2T output heads where T is the number of predicted tasks (e.g. TFs). For each task, 
we use two output heads: i) a deconvolutional layer (filter width=25, typical ChIP-nexus 
footprint width) predicting the strand-specific probabilities of observing a particular read at a 
particular position in the input sequence and ii) a global average pooling layer followed by the 
fully connected layer predicting the total number of read counts aligned to the input sequence 
for each strand. This design allows the network to decouple learning the ‘shape’ (probability 
profile) of the binding profiles from the total occupancy (total read counts) over the entire input 
sequence. We note that for the sake of simplicity Figure 1D only shows the profile heads and 
not the count heads. The training occurs for all TF ChIP-nexus experiments together in a multi-
task fashion. BPNet architecture (without bias correction) can be implemented in the Keras 
framework (v2.2.4) as follows: 
 
  
import keras; import keras.layers as kl; from bpnet.losses import multinomial_nll 

tasks = ['Oct4', 'Sox2', 'Nanog', 'Klf4'] 

 

# body 

input = kl.Input(shape=(1000, 4)) 

x = kl.Conv1D(64, kernel_size=25, 

              padding='same', activation='relu')(input) 

for i in range(1, 10): 

    conv_x = kl.Conv1D(64, kernel_size=3, padding='same', 

                       activation='relu', dilation_rate=2**i)(x) 

    x = kl.add([conv_x, x]) 

bottleneck = x 

 

# heads 

outputs = [] 

for task in tasks: 

    # profile shape head 

    px = kl.Reshape((-1, 1, 64))(bottleneck) 

    px = kl.Conv2DTranspose(2, kernel_size=(25, 1), padding='same')(px) 

    outputs.append(kl.Reshape((-1, 2))(px)) 
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    # total counts head 

    cx = kl.GlobalAvgPool1D()(bottleneck) 

    outputs.append(kl.Dense(2)(cx)) 

 

model = keras.models.Model([input], outputs) 

model.compile(keras.optimizers.Adam(lr=0.004), 

              loss=[multinomial_nll, 'mse'] * len(tasks), 

              loss_weights=[1, 10] * len(tasks)) 

 

Loss function 

Let  be the vector of length  of observed read counts for a particular strand and a particular 

task (i.e., transcription factor) along the sequence of length . Let  be the vector of length 

 of predicted probabilities along the sequence, such that  and let  

be the total number of observed counts and  the total number of predicted counts for the 
sequence. BPNet is trained using the following loss function for one particular sequence, 
strand and task: 
 

 
 
The first term evaluates the error in the shape of the predicted profile. It is the multinomial 
negative log-likelihood of observed base-pair read counts given the predicted probabilities and 
the total number of observed counts. The second term evaluates the squared error of the log 
total number of reads in the region. The total loss function is the sum of individual loss 
functions across both strands, all input sequences and all tasks (e.g. TFs). 
 
The key question is how to choose a good value for the hyper-parameter . In supplemental 
text (Relationship between the Poisson log-likelihood, mean-squared error and multinomial 

log likelihood), we show that if , where  is the average number of total counts in 
our training set, the profile loss and the total count loss will be roughly given equal weight. As 

we will see later, we will use  with  to upweight the profile predictions relative 
to the total count predictions. 
 

Controlling for biases 

Experimental assays such as ChIP-seq (and to a small extent also ChIP-nexus) have certain 
biases. These biases can be experimentally measured by performing control experiments 
such as input-DNA for ChIP-seq and PAtCh-CAP for ChIP-nexus 59. To prevent the sequence-
to-profile model from learning these non-informative bias signals, the model tries to explain 
the target experimental track using both the sequence-based model predictions and the 
control experiment track 
 

 
 

where  is some transformation of the control track with the requirement that 

 if the control track is 0 (i.e. bias not present). For the total count prediction 

head,  is simply , where  is the total number of reads from 
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the control experiment in the modeled local region. For the profile prediction head, 

 is a weighted sum of i) the raw counts and ii) a smoothed version of the raw 
counts using a sliding window sum of 50 bp. We use the sliding window to deal with typically 
very sparse data from the control experiment. During model training, the parameters of 

 are also trained to best explain the output using the control track. We note that 
this framework also easily integrates multiple control tracks as well as control tracks predicted 
from sequence using a bias model learned on other data such as deproteinized genomic DNA 
for DNase-seq 133. 

Training and hyper-parameter tuning 

We used ChIP-nexus profiles of Oct4, Sox2, Nanog and Klf4 TFs in mouse embryonic stem 
cells (ESCs) to train and evaluate BPNet ( 100 million reads per TF, pooled from multiple 
replicates). The ChIP-nexus datasets exhibited high replicate concordance, signal-to-noise 
ratios and strong overlap of peaks with corresponding ChIP-seq experiments targeting the 
same TFs. PAtCh-CAP experimental data were used as the control. For each TF, the ChIP-
nexus profile coverage is defined by the number of reads with the 5' end aligned to a specific 
position and strand. Regions of enrichment (peaks) were identified using MACS2 35 on 
smoothed read densities to obtain a ChIP-seq-like signal. We restrict model training and 
evaluation to 1 kb regions around the 147,974 peak summits of either of the four TFs in 
autosomes that ranked consistently across replicates genomic regions as measured by the 
irreproducible discovery rate (IDR) 132 threshold of 0.05. Regions from chromosomes 2,3,4 
(20%) were used as the tuning set for hyper-parameter tuning. Hyper-parameters were 
manually adjusted to yield best performance on the tuning set. Regions from chromosomes 
1,8,9 (20%) were used as the test set for final model evaluation. The remaining regions were 
used for model training. 
 
We implemented and trained all neural network models in Keras (v2.2.4) 134 (TensorFlow 
backend v1.6) using the Adam optimizer 135 (learning rate = 0.004) and early stopping with 
patience of 5 epochs. 

Profile evaluation metric 

ChIP-nexus profiles contain TF footprints characterized by local spikes with high read counts 
surrounding a valley (putative TF binding site) with low read counts. Typical measures of 
similarity such as Pearson or Spearman correlation are not well suited to these types of 
profiles. To quantify the ability of the model to accurately localize footprint positions, we use a 
binary classification formulation to evaluate how well the model can distinguish positions with 
high read counts from lower read counts within each ChIP-nexus profile in the test set regions. 
Positions with more than 1.5% of the total number of reads in each 1kb test set region were 
labeled as belonging to the positive class and positions with less than 0.5% of total read counts 
were labeled as belonging to the negative class. These two thresholds were manually 
determined by visually inspecting the ChIP-nexus profiles in peak regions from the training 
chromosomes. The number of negative examples far outnumber the number of positive 
examples. Hence, we used the area under the Precision-Recall curve (auPRC) to evaluate 
the performance of the predicted read probability profiles relative to these binary labels. To 
evaluate the predictive performance at lower resolutions, we applied auPRC on binary labels 
and the predicted profile probabilities summarized in 2-10 bp long contiguous bins as follows: 
a bin was labeled as positive if there was at least one position in the bin with a positive label. 
If all the labels in the bin were negative, the bin was labeled as negative. Otherwise, the bin 
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was labeled as ambiguous. For the predicted profile probabilities, the maximum value in the 
bin was used. 
 
We used profiles sampled from replicate experiments to compute a corresponding upper 
bound for the above mentioned profile evaluation for each TF. For each TF, replicate 
experiments were divided into two groups with approximately equal numbers of sequencing 
reads. Read count profiles from one group were used as ground truth and the read counts 
profiles from the other group were treated as a predictor similar to BPNet. The roles of the 
replicate groups were then swapped and the final predictive performance was averaged 
across both scenarios. Random baseline was obtained by using shuffled regions for model 
predictions. 
 

Model prediction analysis in unmappable regions 

Mappability of the mm10 reference genome with k-mers of length 24, 36, 50, and 100 bp as 
generated by 136 were downloaded from 
https://drive.google.com/drive/folders/0B1fks4X_Jjn5NDJjaE9TUmxrR28. We classified 
positions from the positive strand in the ChIP-nexus peaks into three groups: unmappable, 
mappable and ambiguous. For unmappable regions, we considered those that were not 
uniquely mapped by any k-mer of length up to 100 bp (value=0 in the provided uint8). For 
mappable positions, we considered those that were uniquely mapped with k-mers of lengths 
up to including 50 bp (value>0 and value<=50 in the provided uint8). The remaining positions 
(~1%) were considered ambiguous and were excluded from the analysis. These positions 
were namely uniquely mappable by k-mers of length between 51 and 100 bp, which may or 
may not be longer than the used ChIP-nexus reads which were 50 bp or 75 bp long. 
 

DeepLIFT contribution scores for sequence-to-profile models 

DeepLIFT is a feature attribution method for computing the contribution of each base (feature) 
in an input sequence to a specific scalar output prediction from a neural network model 65. 
DeepLIFT decomposes the difference between the output prediction based on an input 
sequence and the output prediction based on a neutral reference input sequence (see below 
for definition of reference) as an additive combination of contribution scores of all bases (D 
features) in the input sequence: 
 

 
where  is the contribution of feature  in input x to the model output prediction  compared 

to model prediction  based on the reference input . We note that  is a function returning 
a scalar. DeepLIFT was originally developed to compute the contribution scores with respect 
to a single scalar output e.g. predicted output read counts at a single position on a specific 
strand in a profile. 
 
For BPNet, the profile output head for a particular TF returns a 2D L x S tensor, where L is the 
sequence length and S is the number of output channels or strands for ChIP-nexus. Since the 
output of BPNet is a tensor and not a scalar, we needed to adapt DeepLIFT compute 
contribution scores with respect to the entire profile. 
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To compute base-resolution contribute scores with respect to the entire output profile, we 
define the profile contribution score of a base as follows: 
 

 
where  is the predicted probability values for position i and strand s, obtained by normalizing 
the profile predictions on the logit scale using the softmax function along the sequence axis: 

.  is the contribution score of the base with respect to the (scalar) profile 
prediction on the logit scale at position i and strand s. The rationale for performing a weighted 
sum is that positions with high predicted profile output values should be given more weight 
than positions with low predicted profile output values. The downside of such weighted sum 
formulation is that it would normally require the contribution scores to be computed L x S 
(=2,000) times for each 1 kb input sequence per TF. 
 
To drastically speed up this computation we exploit the backpropagation algorithm used in 
DeepLIFT and the additive decomposition of DeepLIFT scores. We define a new TensorFlow 
operation as follows: 
 

 
 
where Const denotes the tf.stop_gradients operation which treats the wrapped 

expression  as a constant. By applying DeepLIFT to  we obtain, in a single DeepLIFT 
backpropagation step, the desired result: 
 

 
 
Therefore, the computational cost of computing the profile contribution scores is drastically 
reduced. Pseudo-code of the described operation in TensorFlow code looks as follows: 
 
wn = tf.reduce_mean(tf.reduce_sum(tf.stop_gradient(tf.nn.softmax(f, dim=-2)) * f, 

axis=-2), axis=-1). 
 
We used all zeroes for the reference input  since it showed the highest correlation with in-
silico mutagenesis contribution scores. The in-silico mutagenesis contribution scores were 
computed as a weighted sum of the profile prediction changes at all profile locations after 
introducing a mutation at a particular position. We used the DeepExplain implementation of 
DeepLIFT (repository fork available at https://github.com/kundajelab/DeepExplain/, commit 
hash: 738c7145e915a7a48f3a4248d088bcc2e1a94614) together with TensorFlow v1.6 to 
compute DeepLIFT contribution scores. 
 

Motif discovery using TF-MoDISco 

We computed the DeepLIFT profile contribution scores for each TF in all 1 kb peak regions 
from the training, validation and test set chromosomes (i.e. peaks from all autosomes). A null 
distribution of contribution scores was generated by randomly selecting 4,800 peaks, 
extracting the sequences, shuffling them and computing the profile contribution scores for the 
shuffled sequences. We shuffled the sequences in such a way that dinucleotide counts are 
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preserved. We then ran TF-MoDISco (v0.5.1.1) on each TF separately using the 
corresponding contribution scores of the TF in all regions where the corresponding TF was 
bound. 
 
The TF-MoDISco algorithm 31 consists of three stages. In the first stage, the total contribution 
in sliding windows of length 21 (sliding_window_size) is computed, both for contribution 

scores from the real sequences and for contribution scores on the shuffled sequences. The 
distribution of sliding window scores on the shuffled sequences is used to define a 'null 
distribution' against which sliding windows from the real sequences that pass a FDR threshold 
of 0.01 (target_seqlet_fdr) are identified. Sliding windows are expanded on either side 

by 10 bp (flank_size) are selected in such a way that no two sliding windows overlap by 

more than 50%. The segments underlying these expanded sliding windows are termed 
'seqlets', and are provided to the next stage for clustering. A total of 145,748 non-overlapping 
seqlets were identified. We limited the total number of seqlets to 50,000 for each run of TF-
MoDISco in order to always satisfy the memory constraints (250GB). 
 
In the second stage, seqlets are clustered into motifs. First, a similarity for each pair of seqlets 
is computed using the seqlet contribution scores. For a given pair of seqlets, different possible 
alignments of the seqlets are considered, and for every alignment, the similarity of the 
contribution scores is calculated using a correlation-like metric called continuous Jaccard 31. 
The best similarity across all alignments is then taken to be the similarity of the seqlet pair. 
The similarities of the seqlets are provided to a clustering algorithm, after transforming the 
similarities in a way that grants robustness to the fact that different clusters can have different 
densities. The clusters are found using a Louvain community detection algorithm 137 that 
automatically determines the number of clusters by optimizing graph modularity. 
 
After the clusters have been identified, seqlets within a cluster are aligned to each other, and 
the coordinates of the seqlets are expanded to fill out any overhangs in the alignment. This 
kind of seqlet expansion makes it possible to discover motifs that are longer than the sliding 
window used for seqlet identification in the first stage. A Position Frequency Matrix (PFM) and 
a Contribution Weight Matrix (CWM) are computed from the aligned seqlets by averaging the 
base frequencies and the contribution scores respectively. The seqlet coordinates are then 
re-centered such that the region of highest contribution falls near the middle of the CWM. 
Because these seqlet coordinates can be slightly different from the original seqlet coordinates, 
the second stage is run a second time using the seqlets with the new coordinates, for added 
robustness. 
 
In the third and final stage, heuristics are applied to postprocess the motifs using the default 
TF-MoDISco settings for version 0.5.1.1. Clusters appearing to consist of two distinct motifs 
are split apart, following which clusters with highly similar motifs are iteratively merged. After 
all merging is complete, any clusters with fewer than 60 seqlets are treated as noise and 
disbanded, with their seqlets reassigned to larger clusters. Finally, motifs are expanded to the 
length of 70 bp and then trimmed down to their final lengths by removing flanking positions 
with an information content (IC) of less than 8% of the information of the base with the maximal 
information content in the motif. Motifs supported by less than 100 seqlets or with an 
information content smaller than 4 bits were discarded. The PFM information content is 
defined as: 
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where  is the PFM value at position  and base  and  is the background base probability 
138. We used the following background base probabilities: A=0.27, C=0.23, G=0.23, T=0.27. 

Identification of representative motifs 

To identify and pairwise align similar motifs detected across different TFs, we performed the 
following motif clustering approach. First, we obtained all possible pairwise alignments of two 
motifs (i.e. all possible offsets and strand combinations) and identified the smallest continuous 
Jaccard distance metric 31 on the PFM information content. We then generated a pairwise 
distance matrix and performed hierarchical clustering in scipy (v1.2.1) using the Ward variance 
minimization algorithm 139 (method='ward') and optimal leaf ordering 140. Since many of 

these motifs were similar or discovered multiple times by different TFs, we clustered the motifs 
(Figure S5B) and manually selected 11 representative TF motifs of interest.  

CWM scanning to identify motif instances 

To allow new sequences to be scored for motif instances similar to PWM scanning, we 
developed a method for scanning the contribution scores with the contribution weight matrix 
(CWM) from the TF-MoDISco motifs. We note that even though TF-MoDISco already identifies 
motif instances as seqlets, the detection of motif instances is not comprehensive since the 
number of considered seqlets (and hence the number of detected motif instances) was capped 
at 50,000 due to memory constraints. 
 
There are three key differences between PWM and CWM scanning. First, a CWM instead of 
a PWM is used. The CWM is obtained by averaging the contribution scores of all seqlets 
corresponding to a specific TF-MoDISco motif. Second, in CWM scanning, the contribution 
scores are scanned instead of the raw sequence. Third, we use a different similarity metric 

between the contribution scores and the CWM. Let  denote the CWM of 

length  and  denote the contribution scores for one-hot-encoded sequence  of 

length . The contribution score  for base  at position  is 0 if base  was not 

observed in the actual sequence (i.e. if ). We decompose the similarity metric between 
the CWM scanning position  of the contribution scores into two parts: i) the L1 norm of the 
contribution scores at positions between  and : 
 

 
 
and ii) the continuous Jaccard similarity measure between the CWM and L1 normalized 
contribution scores: 
 

 
 
where  is the continuous Jaccard distance metric defined in 31. At each position , the 

'match' score ( ) is computed for  and its reverse-complement version. The 
maximum of the two scores is used as the final 'match' score at each position. Note that we 
did not scan the 'hypothetical contribution' scores as performed by TF-MoDISco since we 
observed a higher number of false positives using that approach. 
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The 'match' score of a window in a target sequence represents its similarity to the CWM while 
the 'contrib' score determines its predictive value. 
 
Next, we need to determine thresholds on the CWM scanning scores to call motif instances. 
We use the original seqlets used by TF-MoDISco to construct the CWM as a reference of high 
confidence motif instances to calibrate the thresholds. We compute the 'contrib' and 'match' 
scores for all the original CWM seqlets at their respective locations. These seqlet scores 
provide us with reference distributions corresponding to high confidence CWM motif 
instances.  
 
We define a window in a target sequence as a motif instance if all three of the following 
conditions are met: 

1. At least 20% of the original seqlets have a 'match' score lower than the 'match' score 
of the window. We use this more stringent 'match' score threshold (20th percentile of 
seqlet score distribution) in order to more effectively discriminate between instances 
of similar motifs. We found that lowering the threshold further often resulted in windows 
being spuriously assigned to several similar motifs making downstream analyses more 
challenging. 

2. At least one of the original seqlets have a 'contrib' score lower than the 'contrib' score 
of the window. 

3. The log odds score of the window with respect to the PWM derived from the CWM is 
larger than 0. 

 
We note that CWM scanning across a target sequence does not use or need the 
experimentally measured TF ChIP-nexus profile associated with a target sequence. It only 
needs the target sequence and the trained BPNet model. The contribution scores across the 
target sequence used for CWM scanning are obtained from DeepLIFT by decomposing the 
model’s ‘predicted’ TF ChIP-nexus profile associated with the target sequence. However, the 
accuracy of motif instances could be further improved by using the experimentally measured 
and/or predicted ChIP-nexus footprints in addition to contribution scores. 
 
We called motif instances for all sequences in the union of 1 kb wide TF peak regions 
(147,974) from all four TFs. Since CWMs were obtained by running TF-MoDISCo separately 
for each of the four TFs, we scanned CWMs derived from each TF against contribution scores 
of each sequence to the corresponding TF’s predicted profile. E.g. CWMs discovered by 
running TF-MoDISco for the Oct4 prediction task, were used to scan base-resolution profile 
contribution scores of all the sequences with respect to Oct4 profile prediction. We used 
trimmed CWMs for scanning and scoring. We removed the motif instances of short motifs 
which overlapped any of the motif instances matching the long motifs (PFM information 
content IC>30). 

Transposable element analysis 

RepeatMasker annotations for mm10 obtained from 
http://www.repeatmasker.org/genomes/mm10/RepeatMasker-rm405-
db20140131/mm10.fa.out.gz were used to compute the overlap of seqlets with transposable 
elements (TEs). A seqlet was considered to overlap a TE if it was fully contained within at least 
one element defined in RepeatMasker annotation. Kimura 2-parameters distance 141 between 
the seqlet sequence and the consensus sequence of the motif was used to sort the seqlets in 
Figure S14A. This distance metric was re-implemented in Python and is equivalent to 
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dist.dna function from R's APE package with the model='K80' parameter 

(https://www.rdocumentation.org/packages/ape/versions/5.2/topics/dist.dna). 

Analysis of strict spacing constraints for motif pairs 

We obtained and filtered the 11 representative motif instances as described in the previous 
section using CWM scanning. We discarded Sox2 sites overlapping the Oct4-Sox2 motif and 
removed palindromic motif pair matches. Motif pairs were considered when spaced center-to-
center between 6 bp and 100 bp. Each motif pair was checked for overlap with RepeatMasker-
annotated ERVK, ERVL, ERVL-MaLR, or ERV1 genomic regions. For each motif pair, 
histograms were generated comparing the spacing between each motif pair instance and its 
ERV overlapping class. The frequency of motif spacing relative to both the motif pair and the 
ERV overlapping class was computed for motif pairs that occurred more than 500 times across 
the genome. 

TF-MoDISco motif validation  

TF-MoDISco returned three short motifs not matching the canonical Oct4, Sox2, Nanog, or 
Klf4 binding motifs. Two of these motifs matched TF binding motifs for Zic3 and Esrrb as 
reported in literature. To confirm their motif identity, we performed Zic3 and Esrrb ChIP-nexus 
experiments and plotted their binding across the TF-MoDISco Zic3-like and Esrrb-like motifs. 
In both cases, this confirmed their identity. We investigated Esrrb binding across the 1,000 
top-scoring genomic PWM-matches to the MA0141.1 Esrrb motif from JASPAR 142 to further 
verify that the PWM-matched Esrrb motif provided the same binding footprint as the TF-
MoDISco Esrrb motif.  
 
TF-MoDISco returned three Nanog motifs with sharp and specific Nanog binding profiles. 
Nanog showed differences in binding across these three Nanog motifs. In order to test whether 
a binding partner was involved, we analyzed the Sox2 and Pbx binding profiles across these 
three Nanog motifs. No binding partner was identified. 
 
Additionally, the reported binding motif of Pbx is similar to the identified Nanog motifs. To 
ensure that the Nanog motif was unique to Nanog, we analyzed Sox2, Pbx, and Nanog binding 
across the TF-MoDISco Nanog and Sox2 motif instances and the 1,000 top-scoring genomic 
PWM-matches to the PH0134.1 Pbx motif from JASPAR 142.  
 
One of the three short motifs did not appear to be a known TF motif important in ESCs. We 
queried the TRANSFAC database 143 using a motif identifier tool called TOMTOM from the 
MEME Suite 40. This revealed a match with sequences associated with TFIIIC subunits. Upon 
further inspection, this motif was revealed to be the TFIIIC B-box, a binding site that 
contributes to the recruitment of TFIIIC binding 144.  

TFIIIC B-box and tRNAs  

The TF-MoDISco-returned B-box was the only motif identified associated with Pol III. 
Consistent with this motif being a Pol III motif, we found that the TFIIIC B-box motif frequently 
overlapped with tRNA genes across the mouse genome. The tRNA genes were obtained from 
the tRNAscan-SE predictions stored in GtRNAdb 2.0 145. We then classified the B-box motifs 
based on their gene overlap and computed the copy number of the tRNAs overlapping with 
the mapped B-box motif instances based on amino acid anti-codons, separating methionine 
(Met) and activated methionine (iMet) as two separate amino acid classes.  
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Pairwise motif interaction analysis 

We studied the pairwise interaction between the following motifs discovered by TF-MoDISco: 
- Oct4-Sox2 (pattern 0 from Oct4, consensus=TTTGCATAACAA),  
- Sox2 (pattern 1 from Sox2, consensus=GAACAATGG),  
- Nanog (pattern 1 from Nanog, consensus=AGCCATCA),  
- Klf4 (pattern 0 from Klf4, consensus=CCACGCCC). 

We considered motif instance pairs (A, B) spaced at some distance d < 160 bp and compared 
BPNet ChIP-nexus profile predictions between 4 cases: where either Motif A or Motif B was 
replaced by a random sequence, where both were replaced by a random sequence or where 
both were left intact (Figure S18A). Motif instance pairs were either simulated in synthetic 
sequences or were detected by CWM scanning in sequences underlying ChIP-nexus peaks. 

Synthetic sequences 

For synthetic sequences, we first created 128 random background sequences of 1 kb in length 
by sampling the base at each position with equal probability. Next, we replaced the central 
bases by the consensus sequence of Motif A and similarly inserted Motif B d bases 
downstream of Motif A (d is the distance between motif centers). We used BPNet to predict 
the strand-specific ChIP-nexus profile for the primary TF of Motif A (e.g. Oct4 for the Oct4-

Sox2 Motif and Nanog for the Nanog motif). We averaged the predictions across the 128 
random background sequences to obtain the profile PAB. We repeated the same procedure by 
i) inserting only the Motif A in the center (PA), ii) inserting only the Motif B d-bases downstream 
of the center, and iii) not inserting any Motif and hence only averaging the predictions across 
random sequences (PØ). We used the predicted profile PA to determine the predicted summit 
(maximum) location within 35 bp of the Motif A center for each strand. The strand-specific 
summit location at Motif A was then used to determine the profile height in all 4 scenarios 
averaged across the two strands. We denote the average predicted profile summit height of 
the 4 different predicted profiles (PA, PB, PAB and PØ) by hA, hB, hAB, and hØ correspondingly.  
 
We define the corrected binding fold change by quantifying the influence of Motif B on Motif A 
as: (hAB - (hB - hØ)) / hA. 
 
A binding fold-change of 1 indicates that profile summit height of TF A is the same whether or 
not Motif B is present in the vicinity of Motif A. If the fold-change is higher than one, then the 
profile summit of TF A is higher compared to the case where Motif B is absent. The second 
term in the numerator (hB - hØ) corrects for predicted signal of TF A found near Motif B 
(“shoulder” effects). For homotypic motif interactions, a shoulder is present because ChIP-
nexus motif footprints have a low decaying signal surrounding the summits (Figure 4E). For 
heterotypic motif interactions, where the TF bound to Motif B is different from TF A, a shoulder 
may nevertheless be present if TF A is predicted to show an indirect binding footprint at Motif 

B (e.g. Nanog at the Sox2 motif, Figure 4E). By correcting for shoulder effects, we make sure 
that the measured interaction is not due to the indirect binding footprint at the nearby motif. 
 
We performed the analysis for all motif pairs, strand orientations and possible pairwise 
distances ranging from 11 bp to 160 bp. 
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Genomic sequences 

To compute the corrected binding fold-change of motif interactions in genomic sequences, we 
first obtained motifs instance locations in 1 kb ChIP-nexus peak regions using CWM scanning. 
We discarded motif instances from duplicated peak regions overlapping other peak regions 
by more than 200 bp as well as motif instances overlapping TEs (discovered by TF-MoDISco 
and mapped back to the genome using CWM scanning). Also, Sox2 motif instances 
overlapping the Oct4-Sox2 motif were discarded. For each motif pair, 4 model predictions 
were made: 
 
- PAB: the reference sequence of the whole interval in which the motifs were present 
- PA: motif instance B replaced by random sequence 
- PB: motif instance A replaced by random sequence 
- PØ: motif instances A and B replaced with random sequence 
 
We computed the profile heights at motif A profile summit locations in the same manner as for 
the synthetic sequences yielding 4 profile heights: hA, hB, hAB, and hØ. We added "pseudo 
counts" defined as the 20th percentile of the considered quantity to the shoulder-corrected 
profile height of the reference sequence: hAB - (hB - hØ) + PCAB as well as the profile height of 
the A-only sequence: hA + PCA. Next, we kept only the motif pairs where the shoulder-
corrected profile height of the motif was in the top 20% for both motifs. This ensured that only 
motif pairs showing a footprint were used. Finally the corrected binding fold-change was 
computed for each motif instance pair as: 

(hAB - (hB - hØ) + PCAB) / (hA + PCA) . 

 

We note that there are three main differences between the synthetic and genomic sequences. 
First, in genomic sequences, the background sequences were not random and may contain 
other motifs. Second, the "perfect" consensus sequence was used for injecting motifs in 
synthetic sequences, whereas for genomic sequences the motif instance sequences vary and 
do not necessarily match the consensus. Third, the distribution of motif pairwise distances in 
genomic sequences is not perfectly uniform as for the synthetic case, hence some pairwise 
distances might be under-represented. 
 

Co-occurrence likelihood of motif pairs 

We obtained and filtered motif instances as described in the previous section using CWM 
scanning. We discarded Sox2 sites overlapping the Oct4-Sox2 motif. To compute whether 
Motif A is located close to Motif B more frequently than expected by chance, we counted i) the 
number of times a motif instance A is close to motif instance B and ii) the number of times 
motif instance A is close to motif instance B if we shuffle all motif instances between peaks 
while maintaining the relative location within the peak. We constructed the following 2-by-2 
contingency matrix cm: 
 
cm = [[ # A not close to B (shuffled), # A not close to B], 
         [ # A close to B (shuffled),       # A close to B]] 
 
and applied the Pearson’s Chi-square test (chi2_contingency from scipy.stats) to obtain the 
p-value quantifying whether the odds-ratios (A close vs not close to B) between the observed 
and shuffled motif instances are significantly different. Finally, we use the odds-ratio to 
visualize whether A is closer to B more frequently than expected by chance:  
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5-fold cross validation for analysis of robustness of BPNet models 

To evaluate the reproducibility and robustness of our approach, we trained five BPNet models 
initialized with different random seeds on sequences from five different chromosome sets or 
folds. For each fold, we held-out the following validation and test set chromosomes: 

 Validation chr Test chr 

Fold 1 1,8,9 2,3,4 

Fold 2 2,3,4 10,11,12,13 

Fold 3 10,11,12,13 14,15,16,17,18 

Fold 4 14,15,16,17,18 19,5,6,7 

Fold 5 19,5,6,7 1,8,9 

 
Fold 1 uses the exact same validation and test chromosomes as the original BPNet. We used 
the exact same hyper-parameters as for the original BPNet model. TF-MoDISco and motif 
instance calling based on CWM scanning were run on the contribution scores for each of the 
five models. For each fold, the motifs most similar to the original 11 core motifs (Figure 3C) 
were determined by using the continuous Jaccard similarity metric for the PFM scaled by 
information content. Figures 5C, 6E-H and 6I-K were re-generated for all 5 BPNet models 
trained on different chromosome folds and their corresponding motif instances. 
 

Benchmarking alternative methods 

ChExMix 

ChExMix 19,50 is a state-of-the-art motif discovery and TF binding event calling method for 
ChIP-exo and ChIP-nexus data. ChExMix v0.3 with default parameters was run for each TF 
on the pooled BAM file containing reads of all the replicates for the corresponding TF. The 
same blacklisted regions (--exclude) as for peak calling in the ChIP-nexus pipeline were used. 
The following mm10 background file (--back) was used 
(http://lugh.bmb.psu.edu/software/chexmix/backgrounds/mouse.back). 

HOMER 

HOMER v2 76 was run on the 1 kb peak regions for each of the 4 TFs profiled by ChIP-nexus 
with the findMotifsGenome.pl command with the following command line arguments: -len 

12 -size 200. These specify the motif length (12) and the size of the considered regions 

around the peak summits (200 bp). Motif instances in the ChIP-nexus peak regions were 
determined using the findMotifsGenome.pl with the default arguments. 

MEME / FIMO  

MEME 40–43 version 5.0.2 was run on sequences extracted from the central 50 bp of the peak 
summits for the top 500 peaks. Command line arguments as specified by the MEMESuite 
webtool were used: -dna -revcomp -mod=anr -nmotifs=3 -minw=6 -maxw=50 -

objfun=classic -markov_order=0. FIMO version 5.0.2 was used to determine the motif 
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instances in the mm10 reference genome. We used the defaults for all parameters except for 
a less stringent p-value threshold of 0.001 (the default is 0.0001). 

PWM-ChExMix and PWM-BPNet 

Motif instances were also determined for PWMs discovered by ChExMix and BPNet. PWM 
score was computed using the numpy correlate function used to compute the dot-product 
score between the PWM and the one-hot-encoded DNA sequence. The following background 
probabilities were used to convert the PFM to PWM: A=0.27, C=0.23, G=0.23, T=0.27. 
 

BPNet-augm 
We used a sequence jittering approach to control for any potential implicit biases in the CWM 
scanning due to the colocalization of the summits of the ChIP-nexus profiles with the center 
of the input sequences used to train BPNet. For each of the original 1 kb peak regions in the 
test set, the predicted ChIP-nexus profiles were used to record the position of the predicted 
maxima (summit). Note that we never use the experimentally measured ChIP-nexus profiles. 
For each original 1 kb sequence, we obtained a jittered version by randomly selecting a 
position within +/- 200 bp of the original predicted summit and extracting the 1 kb sequence 
centered at this jittered center. We then used the model to infer base-resolution DeepLIFT 
profile contribution scores for the jittered sequence. We then scanned these contribution 
scores of jittered sequences with the CWMs.  

Evaluation of validity of motif instances using ChIP-nexus profile height 

We developed an approach to evaluate the validity of motif instances obtained from different 
motif discovery methods (TF-MoDISCo, MEME/FIMO, HOMER, ChExMix) and instance 
calling methods (CWM vs PWM scanning) in the absence of a ground truth set of motif 
instances. We expect true bound motif instances to exhibit colocalized ChIP-nexus footprints. 
Hence, we used the strength of the ChIP-nexus signal in the immediate vicinity of motif 
instances (as described below) as a surrogate measure of validity of motif instances. For all 
the methods, we removed all Sox2 instances overlapping the Oct4-Sox2 motifs. We also 
performed separate sets of analyses for motif instances located within +/- 100 bp and +/- 500 
bp of the ChIP-nexus peak summits.  
 
Given a set of motif instances of a motif (from each of the methods), we extracted the 
measured ChIP-nexus profiles centered at each motif instance. We computed an aggregate 
ChIP-nexus footprint of the motif by averaging the ChIP-nexus profile read counts (5' end 
positions) at each position across all motif instances. We recorded the distance of the maxima 
of the aggregate footprint on each of the strands from the center (where the motif instances 
are located). We call these ‘reference summit positions’ for the motif (Figure S16A). We then 
compute the ‘ChIP-nexus profile height’ of each motif instance as the total number of ChIP-
nexus read 5’ ends aligning to the reference footprint summit offset positions on both strands 
around the motif instance. It is important to note that we only compare ChIP-nexus profile 
height scores for motif instances from different methods within test set sequences. Using only 
the test set sequences ensures that BPNet derived motif instances are not implicitly using 
information from the measured ChIP-nexus profiles. 
 
For each motif, a motif instance is considered to be supported by a ChIP-nexus footprint if its 
‘ChIP-nexus profile height’ is greater than a predefined threshold. We selected this threshold 
to be the 90th percentile of the ChIP-nexus footprint height distribution over the motif instances 
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in the test chromosome called by CWM scanning on BPNet contribution scores. This stringent 
threshold minimizes cross-talk from ChIP-nexus signal originating from nearby motif instances 
since the ChIP-nexus footprint flanks have typically 10 times lower values than the summit 
itself. 
 

Analysis of ATAC-seq data measuring differential chromatin accessibility 

after induced depletion of Oct4 and Sox2 

ATAC-seq data processing 

Friman et al. 77 profiled chromatin accessibility via ATAC-seq in mESCs before and after 
induced depletion of Oct4 and Sox2. We downloaded the corresponding paired-end ATAC-
seq FASTQ files for both replicates of the Sox2 26h (ON & OFF) and the Oct4 S2iL (ON & 
OFF) from GSE134680 77. We processed the ATAC-seq data using the ENCODE ATAC-seq 
pipeline (v1.5.3) at https://github.com/ENCODE-DCC/atac-seq-pipeline. We trimmed 
adapters from the reads in the FASTQ files using cutadapt (v1.9.1) with parameters -e 0.1 

-m 5 125. Next, the trimmed reads were aligned to the mm10 reference genome assembly 

with Bowtie2 (v2.2.6) 126,127 using the parameters -X2000 --mm -k 5 (report up to 5 distinct, 

valid alignments). Mapping stats were computed using SAMtools flagstat (v1.2) 128. Reads 
were filtered using SAMtools v1.7 view to remove unmapped reads and mates, non-primary 
alignments, reads failing platform or vendor quality checks, and PCR or optical duplicates (-F 
1804) marked using Picard v1.126 MarkDuplicates. Reads mapping to more than 4 locations 
were discarded. For the remaining reads, the alignment with the best score is retained. The 
final filtered BAM file was converted to tagAlign format (BED 3+3) using bedtools `bamtobed` 
(v2.26) 129. 
 
Peaks were called using MACS2 (v2.1.1.20160309) by extending 5’-ends of reads on each 
strand using a 73 bp window (±36 bp) and then computing coverage of extended reads across 
both strands (shift=-36, extsize=73). Peak calling was performed on filtered, aligned 

reads from each replicate using a relaxed p-value threshold of 0.01 and retaining the top 
500,000 peaks as described in 130. Relaxed peak calls were similarly performed on pseudo-
replicates, which were obtained by pooling filtered, aligned reads from all replicates for each 
sample and randomly splitting the pooled reads into two balanced pseudo-replicates. We 
identified two types of reproducible peaks. First, ‘naive overlap peaks’ were defined as relaxed 
peaks obtained from pooled reads that overlapped relaxed peaks from both true replicates or 
both pooled-pseudoreplicates. Furthermore, we used the Irreproducible Discovery Rate (IDR) 
framework to obtain more stringent, rank consistent, reproducible peaks across the true-
replicates and pseudo-replicates 132. The larger of these two sets of IDR peaks (in terms of 
number of peaks) was defined as the “IDR optimal set” of peaks. Peaks overlaping the 
blacklisted regions from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-
mouse/mm10.blacklist.bed.gz were excluded. 

Models for predicting differential chromatin accessibility from derived types of 

sequence features 

The Sox2 26h (ON / OFF) ATAC-seq sample and the Oct4 S2iL (ON / OFF) samples were 
selected from GSE134680 77 to compute the differential ATAC-seq signal (log fold-change) 

upon the depletion of Oct4 or Sox2 in each of the 1 kb ChIP-nexus peaks. Let  represent 
the number of ATAC-seq 5' read ends aligned to the i-th ChIP-nexus peak 1 kb region when 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2020. ; https://doi.org/10.1101/737981doi: bioRxiv preprint 

https://doi.org/10.1101/737981
http://creativecommons.org/licenses/by-nc/4.0/


43 

Sox2 (TF, not motif) has been depleted and  when Sox2 has not been depleted. Let 

 represent the 10th percentile of the  distribution across all i. We define the 
differential ATAC-seq log-fold change signal as follows: 
 

 
 
For each of the depletion experiments, we trained separate linear models (LinearRegression 
from scikit-learn) to predict the differential ATAC-seq log fold change signal at specific regions 
based on two different sets of sequence features derived from the corresponding 1 kb input 
DNA sequences. We restricted to regions corresponding to ChIP-nexus peaks of the four TFs 
that also overlapped IDR optimal ATAC-seq peaks from the wild-type (unperturbed) condition. 
We used the same train/test split by chromosomes as for the original BPNet training. Regions 
from test set chromosomes 1, 8 and 9 were used to evaluate the performance of the model. 
Regions from validation/tuning set chromosomes 2, 3, and 4 were not used. Regions from the 
remaining chromosomes were used to train the models. We evaluated the performance of the 
models using the Pearson and Spearman correlation metrics. 
 
The first set of sequence features represent the complete sequence representation learned 
by the BPNet model trained on ChIP-nexus profiles of Oct4, Sox2, Nanog and Klf4. For each 
1 kb input sequence, we computed the bottleneck activation features from the original BPNet 
model averaged across the spatial axis followed by a log transformation yielding 64 features. 
 
The second set of features were derived from motif instances mapped to the 1 kb regions. For 
each 1 kb input sequence, we counted the number of motif instances of each of the 11 main 
TF-MoDISCo motifs. For each motif, we also computed the mean, maximum and sum of the 
motif match scores (PWM log odds) across all motif instances in the input sequence. We thus 
obtained a total of 44 sequence features. If no motif instances were mapped to a region, we 
set all the feature values for that motif to 0. We computed these features for motif instances 
mapped by BPNet and all other methods described in the previous section (i.e. ChExMix, 
MEME/FIMO, and HOMER). 

Overlap of motif instances from different methods with differentially accessible sites 

due to Oct4 or Sox2 depletion 

Friman et al. 77 profiled chromatin accessibility via ATAC-seq in mESCs before and after (ON 
and OFF, respectively) induced depletion of Oct4 and Sox2. After profiling, they classified 
differentially accessible states via peak calling and differential enrichment analysis between 
the ON and OFF ATAC-seq experiments for Oct4 and Sox2, annotating regions as Oct4-
dependent (OD), Sox2-dependent (SD), or Co-dependent (CD). First, we downloaded these 
annotated differentially accessible regions from GSE134652. Then, we collected the Oct4-

Sox2 and Sox2 motif instance sets mapped by BPNet, MEME/FIMO and HOMER as 
described above. For each motif set, we removed any Sox2 motif instance that overlapped 
with an Oct4-Sox2 motif instance. Next, we ranked each motif instance in decreasing order. 
BPNet motif instances were ranked by the weighted contribution scores. MEME/FIMO and 
HOMER motif instances were ranked by their respective motif match scores. Next, we 
computed the cumulative overlap fraction across each rank step for OD, SD, and CD regions 
using the following equation:  
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Given a ranked set of motif instances m of length N and a set of differentially accessible 
regions D (OD, SD, or CD), we counted the overlap occurrences, up to rank i. We then 
obtained the overlap rate by dividing by the differentially accessible set length |D|. When 
computing the overlap occurrences, if a region in D occurred more than once, only the first 
overlap was counted. The cumulative overlap fractions of ranked motifs were then compared 
between BPNet, MEME/FIMO and HOMER. 
 

Protein structure visualizations 

The structure of Sox2 and Oct1 bound to DNA in Figure 3A was rendered in VMD 146 using 
secondary structure information from STRIDE 147 and surfaces from SURF 148, based on the 
NMR structure 1O4X 149. This Sox2-Oct1-DNA model has been used as a homology model to 
build the Oct4-Sox2-DNA complex 149, and is therefore representative of the structure of that 
complex, though coordinates for that model have not been made available.  
  

Periodicity analysis using Fourier transform 

For each TF-MoDISCo motif of a TF, we identified the locations and sequences containing all 
the seqlets of the motif. We extracted base-resolution DeepLIFT profile contribution scores 
(w.r.t. to the TF’s profile prediction) across 200 bp sequence windows centered at each of the 
seqlets. We computed the average contribution score at each base across all the extracted 
contribution score profiles. We subtracted a smoothed version of the average contribution 
score (smoothing window of size 10) in order to correct for overall higher contribution scores 
in the center. We call this the corrected average contribution score profile of a motif. 
 
For each motif, we computed Discrete Fourier transforms of the corrected average contribution 
score profile using the Numpy (v1.16.1) function numpy.fft.rfft. Power spectrum was 

obtained by taking the squared absolute value of the returned Fourier coefficients. The finite 
length of the corrected average contribution score profiles, results in discrete frequency values 
from the Fourier transform. We used half of the difference between adjacent frequency values 
as an estimate of the error-bars (uncertainty) around the discrete frequency values value (e.g. 
Figure 5C).  
 

Software availability 

Code to reproduce the results of this manuscript is available at 
https://github.com/kundajelab/bpnet-manuscript. We also streamlined and generalized this 
code into a bpnet python package (https://github.com/kundajelab/bpnet/) with functionality to 

train and interpret base-resolution deep neural networks trained on the coverage tracks of any 
functional genomics assay. The ChIP-nexus data processing pipeline which includes read 
trimming, mapping, peak calling and generating the coverage tracks is available at 
https://github.com/kundajelab/chip-nexus-pipeline. The nimnexus software package for 
trimming and deduplicating ChIP-nexus sequencing reads is available at 
https://github.com/Avsecz/nimnexus/. 
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Supplemental text 

Comparison of motifs and motif syntax derived from BPNet and 

other methods 

PWM scanning and ChExMix 

 
 
Figure S9. BPNet and TF-MoDISco discover more motifs than ChExMix, MEME or HOMER as 

well as map motif instances with greater accuracy than PWM scanning. A) Motifs discovered by 
ChExMix, HOMER, and MEME for Oct4, Sox2, Nanog and Klf4 ChIP-nexus peaks that are closest to 
the 11 primary representative BPNet motifs (top row). Green checkmark denotes whether the 
discovered motif is similar to the BPNet motif. B) Number of motif instances located up to 500 bp (top) 
or 100 bp (bottom) away from the ChIP-nexus peak summits showing a strong ChIP-nexus footprint. 
Only motif instances in peaks from held-out test chromosomes (1, 8 and 9) were used for the evaluation. 
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(x-axis) top N motif instances from each of the methods were sorted in descending order of scores 
(PWM log odds score or CWM contrib score). For BPNet-augm, the center of the genomic region for 
which the contribution scores were computed was randomly jittered up to 200 bp away from the peak 
summit. This augmentation prevents BPNet from using the positional information of the peak summit. 
In the final column (Nanog replicate), the Nanog ChIP-nexus footprint was measured by a separate 
biological replicate using a different antibody (ɑ-Nanog from Abcam, ab214549), which was not used 
during training or evaluation. C) The pairwise spacing of Nanog motif instances located up to 100 bp 
away from the ChIP-nexus peak summits in all possible strand orientations (rows) for different methods 
and/or thresholds (columns). Results for all chromosomes are shown. 
 

Comparative evaluation of motif discovery 

To evaluate the extent and quality of motifs discovered by the BPNet framework in the light of 
previous methods, we compared our approach to ChExMix 50, MEME 40–43, and HOMER 76. 
We used each of these methods to discover motifs using ChIP-nexus peaks for each TF (Oct4, 
Sox2, Nanog and Klf4) (See Methods for specific parameters). For each of the methods 
(besides BPNet), we selected the motifs with the closest match to the 11 core TF-MoDISCo 
motifs discovered using BPNet (which were carefully analyzed and experimentally validated 
in this manuscript (Figure S9A)). We found that ChExMix, MEME, and HOMER individually 
discovered at most only 6 out of 11 motifs. They collectively found 9 out of 11 motifs. Only 
Oct4-Sox2, Sox2, and Klf4 motifs were discovered by all four methods. Zic3 and Esrrb motifs 
were only discovered by BPNet and HOMER. The B-box motif was only discovered by BPNet 
and MEME. We speculate that these motifs were missed by ChExMix due to the associated 
footprints being heterogeneous and fuzzy with relatively lower read coverage. MEME/HOMER 
may have missed some of these since they are not as over-represented as the primary motifs. 
Moreover, the other methods were limited in their ability to discover long TEs motifs with the 
default parameters. Although changing the parameters for the other methods may allow the 
discovery of some TEs, the dependence on these parameters makes it difficult for the methods 
to discover TEs alongside short motifs in a flexible and robust manner. Moreover, these other 
methods cannot highlight the short constituent motifs bound by the TFs within the longer TE 
motifs. These results suggest that the BPNet framework provides substantial improvements 
in motif discovery compared to ChExMix, MEME, and HOMER. 
 

Comparative evaluation of motif instances 

To evaluate the quality of the called motif instances in the genome in terms of their false-
positive rates, we compared the BPNet approach using CWM scanning to classical position 
weight matrix (PWM) scanning. To determine the false positive rate of the motif instances in 
the test chromosomes, we considered motif instances supported by strong ChIP-nexus 
footprints (‘ChIP-nexus profile height’ (See Methods) above the 90th percentile) as true 
binding sites (Figure S9B). Since the number of motif instances depends on the motif scoring 
threshold, rather than using a fixed threshold, we instead evaluated the true-positive fraction 
across the ranked list of motif instances. PWM scanning approaches only use the input 
sequences and the PWMs. CWM scanning uses TF-MoDISCo CWMs, the input sequence 
and DeepLIFT contribution scores to the predicted (not measured) ChIP-nexus profiles which 
are derived from the BPNet model. We performed motif instance evaluation only on 1 kb input 
sequences from the held-out (test) chromosomes, which were not used to train BPNet. Hence, 
both BPNet CWM scanning and PWM scanning approaches (FIMO and HOMER) do not 
implicitly or explicitly use the measured ChIP-nexus profiles to call or score instances. 
ChExMix uses the measured ChIP-nexus profiles to call motif instances. CWM based motif 
instances were ranked based on their ‘motif contribution scores’. PWM based motif instances 
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were ranked based on PWM match log-odds scores. We found that across matched number 
of ranked instances, CWM motif instances had substantially more overlap with strong ChIP-
nexus footprints (‘true positives’) and thereby exhibited a lower false positive rate compared 
to PWM based motif instances from FIMO and HOMER as well as ChExMix (Figure S9B, top). 
 
Since this evaluation was performed for motif instances in 1 kb sequences centered at ChIP-
nexus peak summits, most of the motif instances tend to be located near the center. To show 
that the improvement of BPNet is not primarily coming from the fact that it could prioritize 
motifs in the center higher, we computed the contribution scores with BPNet on sequences 
jittered +/- 200 bp around the peak summit (BPNet-augm). We found that this jittering resulted 
in negligible drop in performance, indicating that the superior performance of CWM scanning 
is not due to an implicit positional bias.  
 
Furthermore, we repeated the evaluation by restricting motif instances to the central 200 bp 
around the ChIP-nexus peak summits (Figure S9B, bottom). This scenario is commonly used 
with PWM scanning to reduce the false discovery rate, because true motif instances are more 
likely to be found closer to the peak summits. Even in this scenario, BPNet’s CWM scanning 
outperformed all other methods for all motifs. The only exception was Oct4-Sox2, where 
several PWM methods performed as well as CWM scanning, likely due to the high information 
content of this particular motif. The largest improvement of BPNet CWMs over PWM methods 
was seen for the short Nanog motif. Even though the CWM has the same length as the PWM, 
the base-resolution contribution scores scanned by the CWM are dependent on the entire 
sequence context of the motif within the 1 kb region and thus can integrate more contextual 
information relevant for TF binding. E.g. a Nanog motif instance can get a higher contribution 
score if it is present in the vicinity of other ~10.5 bp spaced Nanog motif instances. In contrast, 
the PWM scores sequence matches of each sliding window within the input sequence 
independently and is unable to account for the influence of surrounding nucleotides and motifs.  
 
Finally, we note that the superior performance of CWM scanning over PWM scanning is highly 
reproducible when evaluated based on independent ChIP-nexus experiments using a different 
Nanog antibody (Figure S9B, last column). Hence, our approach of scanning the contribution 
scores using the CWM (instead of the raw sequence using the PWM) greatly reduces the false 
positive sites while still following the familiar scanning procedure as with PWMs. These results 
highlight the advantages of using profile contribution scores and the novel CWM motif 
representation to identify motif instances associated with ChIP-nexus footprints. 
 

Comparative evaluation of helical motif syntax 

Next, we tested whether the ~10.5 bp helical Nanog-Nanog motif syntax discovered by BPNet 
could also be discovered using motif instances from the other methods (HOMER, MEME, 
ChExMix). We found that the methods showed substantially weaker signals of helical 
periodicity in the Nanog-Nanog pairwise spacing histograms across a range of distances 
(Figure S9C). For PWM scanning, the higher false discovery rate of motif instances likely 
attenuates the detection of Nanog's helical periodicity. For ChExMix, we observed a 
substantial depletion of helical periodicity for spacing < 40 bp compared to BPNet CWM 
scanning. This depletion at close proximity could be due to two reasons. First, the optimized 
likelihood of ChExMix is non-convex and hence the global optimum might be difficult to find 
and may strongly depend on the initial conditions. Second, the key assumption of ChExMix is 
that the tag distribution (representing the average profile) associated with a specific motif is 
constant. However, this assumption is an oversimplification since ChIP-nexus profiles 
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associated with a motif can change their form in the presence of motifs of other cooperatively 
bound TFs. Altogether, these results demonstrate that compared to previous approaches, the 
BPNet framework provides substantially improved sensitivity for detecting subtle, closely-
spaced, soft motif syntax since CWM scanning yields more accurate motif instances without 
relying on the measured ChIP-nexus profiles. 
  

BPNet’s profile regression yields more motifs and more accurate motif 

instances than binary peak classification 

A frequently used approach for training deep learning models is to treat the TF binding 
prediction problem as a binary classification task 25,26. In this approach, the training examples 
are sequences extracted from contiguous bins in the genome and the sequence label is 
positive if a TF binding peak overlaps the bin region (and negative otherwise). The purported 
benefits of such a labeling approach are as follows. First, the assay-specific biases may be 
already accounted for in the peak-calling process. Second, the resulting machine learning task 
– binary classification – is well understood. Hence the standard loss function such as binary 
cross-entropy and the standard evaluation metrics such as the area under precision-recall 
curve (auPRC) can be used. However, this course-grained binary summarization of the 
binding profiles discards valuable fine-scale information about signal strength and shape of 
the profiles. 
 
To investigate the benefit of training the BPNet model on the base-resolution ChIP-nexus 
profiles compared to lower resolution binary labels, we modified the BPNet architecture and 
replaced the output heads performing profile regression with output heads performing binary 
classification. The new output heads consisted of weighted global average pooling using 
spline transformation 150 and a dense layer followed by sigmoid activation. We trained the 
model on 1 kb input sequences sampled every 50 bp across the training chromosomes. 
Sequences were labeled positive if the central 200 bp of the sequence overlapped an IDR-
optimal peak. The predictive performance on the held-out tuning chromosomes (2, 3 and 4) 
was 0.25 auPRC on average across the 4 TFs after tuning the optimal learning rate (Figure 
S10A). We also observed that chromosome-wide training of the binary classification models 
took 3 times longer (Figure S10B) than BPNet, which is trained only on ChIP-nexus profiles 
from 147,974 peak regions. To ensure that the dilated convolutional layers are also 
appropriate for binary classification, we also trained and evaluated the Basset 29 and factorized 
Basset 151 architectures. After tuning the dropout rate with random search, we obtained a 
slightly lower auPRC of 0.24 for both models, suggesting that our original architecture with 
dilated convolutions was also a good fit for binary classification. Next, we asked whether the 
predictive performance of the binary classification model could be improved by adding another 
output head predicting the strand-specific ChIP-nexus profile as originally done by BPNet. 
Indeed, the classification performance increased for all TFs yielding an average of 0.31 
auPRC (Figure S10A). We conclude that the read profiles indeed provide additional 
information not captured by the binary labels. 
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Figure S10. BPNet trained to predict the ChIP-nexus profile is faster and yields more accurate 

motif instances than a binary classification model. A) Predictive performance of the binary 
classification models predicting the presence or absence of ChIP-nexus peaks from 1 kb DNA 
sequences evaluated across the held-out (tuning) chromosomes 2, 3, and 4. The model trained to 
classify the sequences is shown in orange and the model trained to also predict the ChIP-nexus profiles 
from DNA sequence in addition to classifying them is shown in blue. B) Training time of the binary 
classification model trained genome-wide and the sequence-to-profile model (BPNet) trained in ChIP-
nexus peaks. C) Detected motifs by TF-MoDISco using the contribution scores in ChIP-nexus peaks of 
the sequence-to-profile BPNet (profile reg.) or the binary classification model (binary class). A light color 
denotes a high number of seqlets for each motif. Motifs not discovered or motifs supported by less than 
100 seqlets are shown in black. Questionable motifs are displayed separately on the right. D) The 
number of motif instances (500 bp within ChIP-nexus peak summit) showing a ChIP-nexus footprint (y-
axis) within the top N motif instances with highest contribution scores (x-axis) from the held-out (test) 
chromosomes 1, 8 and 9. A site was considered to show a ChIP-nexus footprint if the number of reads 
at the position of the aggregate footprint summit (averaged across both strands) is higher than the 90th 
percentile value of all motif instances detected by the profile regression model for the corresponding TF 
(i.e. same as in Figure S9B). 
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We next asked whether the contribution scores of the profile regression model highlight 
additional motifs compared to those obtained from the binary classification model. For the 
binary models, we computed the DeepLIFT contribution scores for each TF task (pre-sigmoid 
activation) and ran TF-MoDISco with the same parameters in the same regions as previously 
done for BPNet. We clustered the discovered motifs based on their PFM similarity and 
manually assigned motif labels as done in Figure S5B. Using the contribution scores of the 
binary classification model, TF-MoDISco discovered 9 out of 11 main short motifs found by 
the profile regression model (Figure S10C, Supplemental Table 2). The 2 missed motifs, Oct4 
monomer and B-box, are hence not frequently used by the binary model to predict the 
presence or absence of the peak as they might co-occur with other more predictive motifs. 
Interestingly, a higher number of questionable motifs including GC sequence composition bias 
motifs, ambiguous motifs, and degenerate or noisy motifs were discovered from the 
contribution scores of the binary classification model. This suggests that the contribution 
scores of the binary classification model are noisier than for the profile regression model. 
Nevertheless, we note that the high reproducibility of the discovered motifs using two different 
model architectures trained on different labeling schemes for the same underlying data 
demonstrates the robustness of TF-MoDISco. 
 
To compare the accuracy of motif instances for the 4 cognate motifs discovered by TF-
MoDISco for both models (Oct4-Sox2, Sox2, Nanog and Klf4), we performed the instance 
ranking analysis on test set sequences, as for PWM scanning methods in Figure S9 
considering sites with strong ChIP-nexus profile heights (footprints) as ‘true’ binding sites. The 
contribution scores of both models yielded a similar recall of Oct4-Sox2 and Sox2 motifs 
supported by strong ChIP-nexus footprints (Figure S10D). Strikingly, the contribution scores 
of motif instances from the BPNet profile model recalled a much higher fraction of Nanog 
motifs with strong footprints as compared to those derived from the binary models (Figure 
S10D). Since the Nanog motif is frequently found in complex homotypic or heterotypic 
syntactic arrangements with Sox2, the ChIP-nexus profile shape contains rich information 
reflecting these motif arrangements. Since BPNet was trained on ChIP-nexus profiles directly, 
it is able to learn these subtle patterns and encode them in the contribution scores, thereby 
resulting in more accurate motif instances even on unseen sequences in the test set. 
Additionally, CWM scanning of contribution scores from the binary classification model is 
comparable to PWM scanning (MEME/FIMO), suggesting that BPNet trained on ChIP-nexus 
profiles is the key for accurate motif maps.  
 
Altogether, we observe that learning to predict the full ChIP-nexus profiles as done by BPNet 
instead of lower resolution binary classes reduces the training time by three fold, increases 
the number of discovered motifs with strong seqlet and biological support, reduces the number 
of spurious low motifs discovered and improves the accuracy of the called motif instances. 
Moreover, the profile predicted by BPNet assesses binding at individual motifs, which offers 
higher resolution to study the directionality of TF interactions mediated by motif syntax as 
shown in Figure 4. 
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BPNet can also be used to model and interpret transcription factor ChIP-

seq profiles 

 
 

Figure S11. The BPNet framework can be used to model and interpret TF ChIP-seq data. A) 
Observed and predicted read counts for BPNet trained on ChIP-seq data for the Zfp281 and Lefty1 
enhancers located on the held-out (test) chromosome 1. Reads mapping to the forward strand are 
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displayed in dark and reads mapping to the reverse strand in light. For the observed read counts, a 
sliding window of 50 bp was used to smooth the raw 5' end read counts (line). Raw counts are shown 
as points on the bottom at y=0. B) BPNet predicts the ChIP-seq profile shape better than the replicates. 
Multinomial-log likelihood given the observed number of total counts was used to evaluate the profile 
shape quality at different resolutions (from 1 bp to 10 bp windows) in held-out chromosomes 1, 8 and 9 
(Methods). A log-likelihood of 0 corresponds to the constant model. C) Total counts in the 1kb regions 
centered at the peak summits in the region can be predicted (blue) at a decent accuracy level as 
measured by Spearman correlation but do not surpass replicate performance (green). D) Observed and 
predicted read counts as well as the contribution scores of BPNet for the known Oct4 enhancer. As for 
A, the observed read counts are shown both as smoothed (line) and as raw counts (points at y=0). Motif 
instances derived by CWM scanning are highlighted with a green box. E) BPNet applied to ChIP-seq 
discovers the majority of the motifs identified by BPNet applied to ChIP-nexus data. The models 'ChIP-
nexus profile cr' and 'ChIP-seq profile cr' were trained on the union of the ChIP-nexus/seq peaks 
predicting Oct4, Sox2, and Nanog binding and were interpreted on the intersection of the ChIP-
nexus/seq peaks. F) Motif instance calling with CWM scanning has higher accuracy for BPNet trained 
on ChIP-nexus data than for BPNet trained on ChIP-seq data (evaluated on the union of the ChIP-
nexus/seq peaks, 500 bp around the peak summit using ChIP-nexus footprints as ground truth). G) 

Training a sequence-to-profile model on ChIP-seq data yields more accurate motif instances (500 bp 
around the ChIP-seq peak summits using ChIP-nexus footprints as ground truth) than training a binary 
classification model or using a PWM scanning approach using FIMO for motifs derived directly from 
ChIP-nexus data (Figure S9). See Figure S10D and S9B legends for a detailed description. 

 
The BPNet model together with the interpretation workflow using DeepLIFT and TF-MoDISco 
can be readily applied to any regulatory profiling experiment such as ChIP-seq, since it does 
not make any modeling assumptions specific to ChIP-nexus profiles. The major difference 
between ChIP-seq and ChIP-exo/nexus is the resolution. For ChIP-seq, the 5' ends of the 
reads mapping to either strand within an enriched peak region are dispersed in a 100-200 bp 
window around the primary binding site (peak summit). In contrast, for ChIP-exo/nexus data, 
the read density is colocalized in the immediate vicinity (+/- 20 bp) of binding events.  
 
To demonstrate that BPNet can also model ChIP-seq profiles, we performed ChIP-seq for 3 
out of 4 previously studied TFs (Oct4, Sox2 and Nanog). We processed the data using the 
ENCODE ChIP-seq pipeline (v 1.3.6) https://github.com/ENCODE-DCC/chip-seq-
pipeline2/releases/tag/v1.3.6 and generated the strand-specific 5' read count tracks as for 
ChIP-nexus. We then optimized multi-task BPNet architectures to predict strand-specific 
ChIP-seq profiles of the three TFs from their corresponding 1 kb sequences at IDR optimal 
peak regions across all three factors. We used the same BPNet architecture for ChIP-seq as 
for ChIP-nexus and determined optimal hyper-parameters by varying each hyper-parameter 
individually while keeping others the same as for the ChIP-nexus model (learning rate: 0.05, 
0.04, 0.02, 0.01, 0.005, 0.004, 0.002, 0.001, 0.0005; deconvolution size: 1, 10, 20, 30, 40, 50, 
60, 70, 80, 100; number of layers: 1-12; profile vs total count loss weight λ: 1, 2, 5, 10, 20, 50, 
100, 200, 500, 1000, 2000, 5000, 10000). We observed that the BPNet model for ChIP-seq 
overall required the same hyper-parameters as for ChIP-nexus. The only hyper-parameter 
that differed was the increased width (50) of the deconvolutional layer (compared to 25 which 
was optimal for ChIP-nexus). Similar to the ChIP-nexus control experiment PAtCh-Cap, we 
used the ChIP-seq input control experiment using a non-specific antibody to control for 
experimental biases (Methods). We also added data augmentation (genomic intervals jittered 
uniformly by [-200, 200] bp with random reverse complementation). This is more important 
when ChIP-seq data are trained on peaks only since the shape of the profiles will be fairly 
constant, hence a constant model can already fit the data well. 
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To gain intuition about the prediction quality of BPNet compared to replicate experiments, we 
investigated the known Zfp281 and Lefty1 enhancers as done before for ChIP-nexus data. 
Since the model evaluation was performed in peak regions, we added data augmentation 
(genomic intervals jittered uniformly by [-400, 400] bp with random reverse complementation) 
to make sure the model does not simply predict the average ChIP-seq signal centered at the 
peak. We observed that the predicted profile shapes significantly de-noise the base-resolution, 
strand-specific 5’-end coverage ChIP-seq profiles. Indeed, the predicted profiles resemble 
smoothed versions of the ChIP-seq 5’-end coverage profiles (averaging sliding window of 
50bp, Figure S11A).  
 
To evaluate the predictive performance of the ChIP-seq BPNet model, we performed a similar 
analysis as for ChIP-nexus with the difference that we assessed the quality of profile shape 
prediction by comparing the similarity of BPNet predictions to the ground truths smoothed 
ChIP-seq profiles on the test set against the similarity of ChIP-seq smoothed profiles between 
replicate experiments using the multinomial log-likelihood. We found that BPNet outperformed 
the smoothed replicate experiments in terms of profile shape prediction on almost all TFs 
except Nanog where both performed similarly (Figure S11B). Consistent with the ChIP-nexus 
models, the total count predictions from the BPNet ChIP-seq model did not surpass the 
concordance between replicate experiments (Figure S11C). As previously discussed, this 
result is expected since the total counts are likely influenced by factors besides local DNA 
sequence that we do not model, such as chromatin context and distal interactions with other 
genomic elements. Altogether, we conclude that BPNet generalizes seamlessly to learn 
accurate models of TF ChIP-seq profiles. 
 
Next, we investigated the DeepLIFT profile contribution scores inferred from the ChIP-seq 
BPNet model for all three TFs in the well-known Oct4 enhancer. The contribution scores were 
computed in the exact same manner as for the ChIP-nexus model. Consistent with the 
inferences from the ChIP-nexus model, we found that the contribution scores also precisely 
highlighted the Oct4-Sox2 motif in the center and the Nanog motif on the immediate flanks 
(Figure S11D). Hence, the contribution scores derived from a ChIP-seq BPNet model is able 
to accurately highlight the expected motifs within a well-known enhancer. 
 
We then investigated the globally predictive motifs learned by the ChIP-seq BPNet model. We 
used TF-MoDISco with the same hyper-parameters as for the ChIP-nexus model. To allow for 
unbiased comparison of the motifs obtain from ChIP-seq and ChIP-nexus BPNet models, we 
retrained additional models on ChIP-nexus and ChIP-seq data using a common set of peak 
regions that were found by either of the two assays i.e. union of ChIP-nexus and ChIP-seq 
peaks, for the three TFs (Oct4, Sox2, Nanog). We further restricted model interpretation to a 
common set of peak regions found by both assays i.e. intersection of ChIP-nexus and ChIP-
seq peaks for each TF.  
 
Additionally, to evaluate the benefits of a profile regression model for ChIP-seq, we trained a 
binary classification model on ChIP-seq data in the same manner as done before for ChIP-
nexus data.  
 
We observed that TF-MoDISco applied to all the different types of ChIP-seq BPNet models 
discovered the majority of the expected motifs. However, the ChIP-seq models trained on 
binary labels found a few additional motifs that appear to be spurious and lacking clear 
biological significance (Figure S11E, Supplemental Table S2). These results show that ChIP-
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seq BPNet profile models perform comparably to ChIP-nexus BPNet profile models in terms 
of motif discovery with fewer spurious discovered motifs compared to models trained on binary 
labels. 
 
To evaluate the quality of the CWM motif instances obtained by the four models, we use the 
same approach as in Figure S9B and Figure S10D in which we compare the ranked motif 
instances against co-localized strong ChIP-nexus footprints for each TF. We observed that 
ChIP-nexus BPNet profile models recalled a higher fraction of motif instances with strong 
ChIP-nexus footprints for the Nanog motif compared to ChIP-seq BPNet models (Figure 
S11F). Both models performed similarly well for Oct4-Sox2 and Sox2 motifs. Additionally, 
ChIP-seq BPNet profile models yielded more accurate CWM motif instances than ChIP-seq 
binary classification models trained on the same data as well PWM based instance calling 
(Figure S11G). In conclusion, with respect to accuracy of motif instances, the ChIP-nexus 
BPNet profile models outperform ChIP-seq BPNet profile models, which outperform ChIP-seq 
binary models. Hence, modeling profiles directly and improved resolution of the ChIP-nexus 
profiles collectively contribute to improved motif instance identification.  
 
Altogether, these results show that the BPNet framework, which includes BPNet training, 
inference of DeepLIFT contribution scores, CWM motif discovery with TF-MoDISco, and motif 
instance identification via CWM scanning, can be readily applied to ChIP-seq data. These 
results were obtained with very minor hyper-parameter adjustments while explicitly controlling 
for assay specific biases. It should be possible to easily adapt and apply the BPNet workflow 
to any other regulatory profiling assays such as CUT&RUN, ATAC-seq and DNase-seq. 
 

Relationship between the Poisson log-likelihood, mean-

squared error and multinomial log likelihood 

We start by writing down the negative log-likelihood for the Multinomial distribution. Let  be 

the sequence length,  the total number of events (i.e. total number of read counts in the 

region) and  the probability of obtaining the outcome  (e.g. the read gets aligned to position
). Then, the negative log likelihood can be written as 

. 
 

Note that we gathered all the terms independent of  into the constant . Let's assume 

the read counts at each genomic location  are distributed according to the Poisson 
distribution. The Poisson log likelihood for the sequence region of length  can be written as 
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If we replace  with , where  is the predicted number of total counts and use 

, , we obtain: 

 
 

We observe that the second term equals to the multinomial negative log-likelihood. If we set 

, , and perform a Taylor expansion 

) 

up to the squared term for variable  around  using, we obtain: 

 
This means that we can approximate the Poisson log-likelihood by a sum of mean-squared 

errors and the multinomial loss function where the predicted log of total counts  is close 

to the true total counts : 

. 

We approximate the expression further by replacing the  in front of MSE with , where 

 is the average (or median) value of  across the dataset and  is the tuning parameter 
which allows to up or down-weight the importance of total count prediction: 

. 

If , the multinomial loss and the mean squared error loss are balanced according to the 
Poisson log-likelihood. 
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Supplemental figures 

Figure S1: Effect of mappability on BPNet predictions 

 

 

Figure S1. Model predictions exhibit no systematic overfitting to unmappable positions A) 

Median model predictions for the positive strand at unmappable (x-axis) and randomly chosen 
mappable positions (y-axis) stratified by distance from the peak summit (denoted by points and color). 
Each of the thousand points corresponds to a specific relative position within the 1 kb peak and the 
color highlights different subregions within the peak regions. Points on the diagonal mean that model 
prediction at unmappable positions (x-axis) is not systematically different from the mappable positions 
(y-axis). None of the unmappable positions are predicted to have 0 probability of reads indicating that 
the model is not overfitting to the false 0 counts at these positions. Points with [0, 100] distance from 
the center are more scattered since the median is computed over very few points for unmappable 
positions and because the strongest signal associated with footprints (and hence highest variance) is 
also observed in these regions (as shown in B). B) Number of unmappable positions for different 
positions within the 1000 bp peak region. Overall, 0.5 % of the positions were unmappable. 
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Figure S2: Performance evaluation of ChIP-nexus BPNet profile models 

 
Figure S2. Additional predictive performance evaluation for BPNet. A) Observed and predicted 
ChIP-nexus read counts mapping to the forward strand (dark) and the reverse strand (light) for the 
Zfp281 and Sall1 enhancers located on the held-out (test) chromosome 1. B) auPRC of profile 
predictions is high across various learning rates on the tuning set chromosomes 2-4 demonstrating the 
robustness of the model. C) The deconvolutional layer slightly improves the profile predictive 
performance compared to a point-wise convolutional layer (deconvolution size=1). D) auPRC of profile 
predictions (top) and the Spearman correlation of total count predictions (bottom) for a range of different 
relative total count weight α in the BPNet loss function parameterized as λ = α/2 n_obs. Relative weight 
of 1 (center) denotes equal weighting of the counts and profile loss functions. The best performance is 
obtained for alpha < 1 showing that putting more weight to profile predictions helps for both profile and 
count predictions. E) Observed and predicted total read counts for BPNet (top) and replicate 
experiments (bottom) across the four studied TFs along with the Spearman correlation coefficient. 
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Figure S3: BPNet predictions and sequence contribution scores at known 

enhancers 

 
 
Figure S3. Additional BPNet predictions across known enhancer regions. A) Observed and 
predicted ChIP-nexus read counts for the Oct4 distal enhancer. B,C,D) Previously validated binding 
motifs for Oct4-Sox2 were re-discovered by BPNet. ChIP-nexus read counts and BPNet contribution 
scores for three enhancers are shown. B) The Oct4-Sox2 motif site in the Klf4 E2 enhancer was 
validated by deleting the site using CRISPR/Cas9 73. C,D) The Oct4-Sox2 binding motifs in the Nanog 
and Fbx15 enhancers were confirmed previously using reporter assays of constructs with various motif 
mutations 74,75. 
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Figure S4: Long motifs discovered by TF-MoDISco come from 

retrotransposons 

 
 

Figure S4. TF-MoDISco discovered long motifs that originated from retrotransposons. A) Among 
all motifs discovered by TF-MoDISco, 18 motifs display unusually high information content (IC) of >30 
bits (green). The expected short motifs are shown in grey. B) Histogram of the overlap of short motifs 
(grey) and long motifs (green) with repeat elements shows that long motifs overlap >80% with annotated 
retrotransposons. C) Long motifs with their PFM, ID, fraction of motif instances overlapping with a 
repeat, and the most frequent (top class) RepeatMasker annotation. Highlighted within the repeat 
elements are potential motif instances of Oct4-Sox2, Sox2, Nanog and Klf4 as indicated by the CWMs. 
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Figure S5: TF-MoDISco motif overview 

 
 

Figure S5. Overview and clustering of all short motifs discovered by TF-MoDISco. A) All 33 
discovered short motifs (information content < 30 bit) are shown with: (from left to right) motif ID, number 
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of seqlets supporting the motif, CWM, PFM, and average ChIP-nexus read count distribution (180 bp) 
for each TF. All sequence logos and profile plots share the same y-axis in each column. Motif ID consists 
of the TF name for which the motif was discovered (O for Oct4, S for Sox2, N for Nanog, and K for Klf4) 
and the order (starting with 0) in which the motif was discovered by the TF-MoDISco run for the TF. B) 

To remove redundant motifs (e.g. discovered through different TFs) and identify a set of representative 
motifs for the downstream analysis, motifs were clustered by similarity using hierarchical clustering. The 
results were then manually inspected to select clusters that separate known motifs that are distinct (e.g. 
Oct4-Oct4 resembles the known MORE and PORE motifs that bind Oct4 homodimers, which is different 
from the monomerically bound Oct4 motif). Among very similar motifs within a cluster, we then selected 
the most abundant motif that was discovered for the most relevant TF (if known). The 11 representative 
motifs that we selected are shown on the left. Non-canonical motifs were given a name (Nanog-alt for 
Nanog alternative, Klf4-long for longer Klf4). 
 
 
 

Figure S6: Validation of the motifs by training BPNet on five folds 

 
 

Figure S6. BPNet trained on different chromosome sets (folds) yields similar motifs. The closest 
motif match from each BPNet/TF-MoDISCo cross-validation run (Methods) resembles the originally 
discovered motifs.  
 
 
 
 
 
 
 
 
 
 
 

Figure S7: Performance of BPNet contribution scores versus match 

scores 
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Figure S7. Ranking motif instances by BPNet contribution scores recovers more motifs 

supported by ChIP-nexus footprints than ranking by match-based scores (sequence or 

contribution). A) ChIP-nexus profile height distribution at the reference summit position for BPNet motif 
instances of different TFs (Methods). The vertical grey lines denote the 90th percentile that is used as 
a stringent threshold for calling motif instances as having a ChIP-nexus footprint. B) Number of top-
ranked N motif instances located up to 500 bp away from the ChIP-nexus peak summits showing a 
ChIP-nexus footprint larger than the threshold defined in Figure S7A. The top N motif instances (x-axis) 
were ranked either by the contribution score magnitude at the motif region (BPNet), match score 
between the CWM and the contribution scores (BPNet-match), or the match score between the PWM 
and the sequence (BPNet-seq match). Note that all motifs in this analysis were originally called by 
BPNet (using both the contribution score magnitude and match), hence motifs with a good sequence 
match and poor contribution scores (or good contribution score and poor sequence match) were already 
excluded during the original instance calling. 
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Figure S8: Mapped motifs across enhancers 

 
 
Figure S8. Mapped motif instances across previously identified enhancer regions. The enhancer 
coordinates (gray boxes) are based on previous publications 63,67,73,152–156 and do not necessarily imply 
that the region is sufficient for enhancer activity. Mapped motif instances (colored boxes) are shown in 
the surrounding region.  
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Figure S12: Motif validation using ATAC-seq data 

 

 
 

Figure S12. Motif validation using ATAC-seq data. A) Overlap of ranked Oct4-Sox2 and Sox2 motif 
instances (in thousands k) with regions that lose ATAC-seq signal in response to either Oct4 or Sox2 
depletion as defined by 77. In addition to the data shown in Figure 2G, the results for co-dependent 
regions are shown, in which ATAC-seq signal is lost in response to either Oct4 or Sox2 depletion. Both 

Oct4-Sox2 and Sox2 motifs are present. Motif instances ranked by BPNet contribution scores also 
outperformed those obtained by HOMER and MEME (ranked by PWM match scores). B) Linear 
regression model based on motif instance features, rather than the BPNet bottleneck layer (Figure 2H), 

of the ATAC-seq log fold-change between Oct4 ON and OFF (𝛥Oct4, left) or Sox2 ON and OFF 

(𝛥Sox2, right). Note that the Pearson correlation (RP) coefficient for both motif instance based models 
is only around half of that of the models based on the bottleneck layer. The motif instance features were 
the number of BPNet motif instances located in the 1 kb ChIP-nexus peaks and their average sequence 
match scores (Methods). Similar results were obtained for motif instances derived by MEME/FIMO, 
ChExMix, and HOMER. This result indicates that the mapped motif instances are strongly enriched in 
differentially accessible sites after TF depletion and contribute to the prediction of differential ATAC-seq 
signal. However, the sequence representation (bottleneck layer) learned by the BPNet model encodes 
additional information (such as motif syntax) beyond linear, additive effects of motif instances, thereby 
significantly improving prediction of differential accessibility. 
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Figure S13: No evidence that Nanog binds with a partner 

 
 

Figure S13. Lack of evidence for a Nanog binding partner. A) Median ChIP-nexus signal, predicted 
BPNet signal, and DeepLIFT contribution of Oct4, Sox2, Nanog, and Klf4 show no signal across the 
genomic instances matching the putative Nanog-Sox heterodimer motif (RMWMAATWNCATTSW) 71. 
The signal for Oct4-Sox2, Sox2, Nanog, and Klf4 motif instances are shown as control. B) Since the 
Nanog motif resembles the known Pbx binding motif, we performed Pbx ChIP-nexus experiments to 
test whether Pbx might be a binding partner for Nanog. However, the average Nanog, Pbx and Sox2 
ChIP-nexus binding profiles show no detectable footprints for Pbx or Sox2 on the three Nanog motifs, 
arguing against Pbx or Sox2 being stable interaction partners. However, an unknown interaction partner 
cannot be ruled out. C) The average Pbx ChIP-nexus footprint on the known Pbx motif from JASPAR 
142 (top 1000 based on PWM-match score) confirms that the Pbx ChIP-nexus experiment worked (left). 
Likewise, Sox2 shows specific binding to its identified Sox2 motif (right). Note that the y-axis is set to 
the same RPM scale in A and B to allow comparisons of signal strength.  
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Figure S14: Strict spacings between motifs are likely due to 

retrotransposons 

 
 

Figure S14. Most over-represented instances of strict spacings between motifs are due to ERVs. 

A) To show that TF binding occurs with strict spacings in retrotransposons and that this is likely 
ancestral, the RLTR9E N6 motif is shown as an example. Sequences of the individual instances in the 
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genome were sorted by the Kimura distance from the consensus motif, with the most similar sequences 
on top (which are likely more ancestral). Nanog, Sox2 and Klf4 ChIP-nexus binding footprints are shown 
in the same order on the right (+ strand reads in red, - strand reads in blue), revealing that the binding 
site spacing is largely constant across all sequences. B) Analysis of the most frequent distances 
between motif pairs (with >500 co-occurrences, distance measured at the trimmed motifs’ centers). The 
top 1% most frequent distances mapped in 83% to ERVs and were often larger than 20 bp. C) 

Histograms depicting the frequency of center-to-center motif pair spacings across the 11 representative 
motifs. Colors represent ERV classes which overlap with the corresponding motif pairs. 
 
 

Figure S15: Validation of discovered motifs 

 
 
Figure S15. Validation of discovered motifs. A) To validate the identified Zic3 motif instances, Zic3 
ChIP-nexus experiments were performed. The average signal across the Zic3 instances reveals a 
strong Zic3 binding footprint. B) A similar validation was performed for the Esrrb motif instances, 
revealing that the Esrrb ChIP-nexus signal is present but more diffuse at the discovered Esrrb motif 
instances. C) To better understand the binding of Oct4 to the B-box, which is frequently found in tRNA, 
tRNA-overlapping B-box motif instances were reoriented to match the transcriptional direction and 
sorted by tRNA gene start proximity. This reveals Oct4 binding at tRNA gene start/stop sites. D) Amino 
acid anti-codons and their copy count of the tRNAs that overlapped with the B-box motif instances.  
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Figure S16: Pairwise in silico motif interactions for all strand orientations 

 
 

Figure S16. Analysis of all pairwise interactions between the four main motifs. A) The influence 
of Motif B on the binding of TF A at Motif A is quantified by the fold change of predicted profile height 
at the reference summit position when Motif B is present or absent nearby (hAB vs hA). The binding fold-
change is corrected for the "shoulder" effect of Motif B by subtracting the predicted profile height when 
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only Motif B is present in the sequence. B) Spacing distribution of all CWM-derived motif instance pairs 
in the genome stratified by motif identity and strand orientation. Note that for homotypic interactions, ++ 
and -- are the same and are shown as ++. C) In silico analysis of motif interactions on synthetic 
sequences measuring the predicted binding fold-change for all motif pairs across all strand orientations. 
Note that no clear differences between the possible strand orientations were detected. 
 
 

Figure S17: Validation of in silico motif interactions from BPNet model 

trained on five folds 

 
Figure S17. BPNet trained on different chromosome sets (folds) yields similar in silico 

interactions results. In silico interaction analysis as shown in Figure 4C using BPNet trained on five 
different chromosome folds and using the motifs discovered by TF-MoDISCo for each fold (Methods). 
The observed interactions are highly reproducible across all folds. 
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Figure S18: Additional information on the genomic in silico interactions 

 
Figure S18. Additional information on the genomic in silico interaction analysis. A) Example 
genomic in silico mutagenesis analysis at the distal Oct4 enhancer. Predicted ChIP-nexus profiles and 
the contribution scores greatly decrease at both motifs (Oct4-Sox2 and Nanog) when erasing the Oct4-

Sox2 motif (through random sequence insertion). By contrast, when the Nanog motif is erased (right), 
the predicted profile and the contribution scores of Oct4-Sox2 motif remain intact. B) Such directional 
effect of motifs can be quantified by the corrected binding fold change (Figure S16A) for all motif pairs 
in the genome and visualized as a scatterplot. C) Example scatterplot for the interaction between Sox2 
and Nanog. Sox2 shows a positive directional effect on Nanog most profound for short motif distances 
(<35 bp). D) Predicted binding fold changes for all motif pairs in genomic sequences. 
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Figure S19: Motif syntax analysis for BPNet trained on different 

chromosome folds 

 
 
Figure S19. Motif syntax analysis for BPNet trained on different chromosome sets (folds). A) 
Distance distribution of motif pairs (as shown in Figures 5E-H) for motif instances obtained from BPNet 
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models trained on each of the five different chromosome folds. The motif instances were obtained by 
scanning the contribution scores with the CWMs obtained from the different chromosome folds as 
shown in Figure S6. B) Nanog ChIP-nexus signal at the reference summit position for motif pairs as 
shown in Figure 5I-K for different BPNet models trained on different chromosome folds and the 
corresponding motifs. 

 

Figure S20: Periodicity of Nanog binding for different motif pairs 

 
 
Figure S20. Nanog exhibits helical periodicity independent of motif orientation. Nanog ChIP-
nexus binding maximum signal across Nanog motif pairs (blue dots), where the median of each motif 
pair distance is depicted as a red line. Nanog on average binds higher when the partner motifs (Oct4-

Sox2, Sox2, Zic3) are within the preferred spacing to Nanog. This trend is observed for all motif 
orientations (unless there are not enough data points as observed for one of the Oct4-Sox2<>Nanog 
strand orientation).  
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Figure S21: CRISPR validation experiments 

 

 
Figure S21. CRISPR validation experiments. A) Nanog and Sox2 ChIP-nexus profiles normalized to 
reads per million (RPM) show highly similar profiles and read counts across known enhancer regions 
for wild-type (WT) and CRISPR ESCs with either a mutated Sox2 motif (Sox2 CRISPR) or mutated 
Nanog motif (Nanog CRISPR) at a selected genomic region (chr10: 85,539,626-85,539,777). B) 
Pairwise comparisons of ChIP-nexus RPM counts between WT and CRISPR ESCs at bound genomic 
regions (151 bp centered on the respective motif): Sox2 ChIP-nexus counts on Sox2 motifs and Nanog 
ChIP-nexus counts on Nanog motifs (motifs based on the original model). The bulk data (gray) are 
highly correlated and known enhancer regions as shown in Figure S8 (green) are highly reproducible 
between ESC lines. Note the specific loss of counts in the selected mutated genomic region (red) over 
wild-type. Pearson correlations (Rp) between groups are shown in the top left of each scatter plot. C) 
Pairwise comparisons of biological replicate experiments across WT and CRISPR ESCs show even 
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higher reproducibility. Each point represents ChIP-nexus RPM counts across 151 bp genomic windows, 
centered on the respective motif. Known enhancer regions from Figure S8 (green) and the selected 
mutated genomic region (red) remain consistent between replicate sets. Pearson correlations (Rp) 
between replicate pairs are shown in the top left of each scatter plot.  

Supplemental tables 

Table S1. List of all ChIP-nexus and ChIP-seq replicate experiments and the associated 
quality-control metrics including the number of unique de-duplicated reads, highest number of 
IDR peaks between replicate pairs, number of “optimal IDR peaks”, the IDR rescue ratio, and 
fraction of reads in IDR optimal peaks (FRiP). 
 

Table S2. Clustered motifs and their labels. Motifs were obtained by TF-MoDISco ran on 
BPNet models trained on 6 differnet datasets: i) seq/profile.peaks-union (ChIP-seq profile 
model trained on a union of ChIP-nexus/ChIP-seq peaks), ii) seq/binary (binary classification 
model trained on genome-wide ChIP-seq peaks), iii) seq/profile (ChIP-seq profile model 
trained in ChIP-nexus peaks), iv) nexus/profile.peaks-union (ChIP-nexus profile model trained 
on a union of ChIP-nexus/ChIP-seq peaks), v) nexus/binary (binary classification model 
trained on genome-wide ChIP-nexus peaks), vi) nexus/profile (ChIP-nexus profile model 
trained in ChIP-nexus peaks). Each motif logo shows the sequence information content of a 
PFM. The logo title consists of the manually assigned motif label (e.g. TE1, Oct4-Sox2) and 
the motif ID composed from the model name, the task name and TF-MoDISco motif ID (e.g. 
seq/profile/Nanog/m0_p13). 

Supplemental movies 

Movies S1-6. BPNet profile predictions averaged across 128 random sequences with two 
motifs inserted at different positions. Centers of the motifs are marked by the vertical gray line. 
Motif distance is shown on the right. For each motif, the predicted profile of the corresponding 
TF is shown on the y-axis. 
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