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A Weakly-Supervised Framework for COVID-19
Classification and Lesion Localization

From Chest CT
Xinggang Wang , Member, IEEE, Xianbo Deng, Qing Fu, Qiang Zhou, Jiapei Feng,

Hui Ma, Wenyu Liu , Senior Member, IEEE, and Chuansheng Zheng

Abstract— Accurate and rapid diagnosis of COVID-19
suspected cases plays a crucial role in timely quarantine
and medical treatment. Developing a deep learning-based
model for automatic COVID-19 diagnosis on chest CT is
helpful to counter the outbreak of SARS-CoV-2. A weakly-
supervised deep learning framework was developed
using 3D CT volumes for COVID-19 classification and
lesion localization. For each patient, the lung region was
segmented using a pre-trained UNet; then the segmented
3D lung region was fed into a 3D deep neural network to
predict the probability of COVID-19 infectious; the COVID-19
lesions are localized by combining the activation regions in
the classification network and the unsupervised connected
components. 499 CT volumes were used for training and
131 CT volumes were used for testing. Our algorithm
obtained 0.959 ROC AUC and 0.976 PR AUC. When using
a probability threshold of 0.5 to classify COVID-positive
and COVID-negative, the algorithm obtained an accuracy
of 0.901, a positive predictive value of 0.840 and a very high
negative predictive value of 0.982. The algorithm took only
1.93 seconds to process a single patient’s CT volume using
a dedicated GPU. Our weakly-supervised deep learning
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model can accurately predict the COVID-19 infectious
probability and discover lesion regions in chest CT
without the need for annotating the lesions for training.
The easily-trained and high-performance deep learning
algorithm provides a fast way to identify COVID-19 patients,
which is beneficial to control the outbreak of SARS-CoV-2.
The developed deep learning software is available at
https://github.com/sydney0zq/covid-19-detection.

Index Terms— COVID-19, CT, deep learning, weak label,
SARS-CoV-2, DeCoVNet.

I. INTRODUCTION

S
INCE Dec 2019, a large and increasing outbreak of a novel

coronavirus was reported in Wuhan, Hubei province of

China [1], [2], which can cause acute respiratory illness and

even fatal acute respiratory distress syndrome (ARDS) [3]. The

new coronavirus was named as SARS-CoV-2 by International

Committee on Taxonomy of Viruses (ICTV) [4] and the

infectious diseases infected by this coronavirus was named

as Coronavirus Disease 2019 (COVID-19) by World Health

Organization (WHO) [5]. The new coronavirus has been

confirmed of human-to-human transmission [6], [7], and due

to the massive transportation and large population mobility

before the Chinese Spring Festival, this new coronavirus has

spread fast to other areas in China with considerable morbidity

and mortality. According to the data from the National Health

Commission of the People’s Republic of China [8], update till

24 o’clock of Mar 29, 2020, China has reported 82447 iden-

tified cases with SARS-CoV-2, including 3,311 death cases;

82.2% (67,801/82,447) of the identified cases came from

Hubei province and identified cases in Wuhan, the very center

of epidemic area of Hubei province, accounted about 73.8%

(50,006/67,801) of the data in Hubei province. Moreover,

COVID-19 cases outside China have been reported in more

than 200 countries, areas or territories. Until to 18:00 Central

European Time of Mar 29, 2020, a total of 638,146 con-

firmed cases with 30,039 deaths cases globally was reported

according to the COVID-19 situation dashboard in the World

Health Organization (WHO) website [9]. Countries with the

most numbers of confirmed cases included United States of

America with 103,321 cases, Italy with 92,472 cases, China

with 82,356 cases, Spain with 72,248 cases, Germany with

52,547 cases, Iran with 38,309 cases, France with 37,145 cases
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and so on. With the tremendously fast spread of SARS-CoV-2,

it has been declared to be a Public Health Emergency of Inter-

national Concern (PHEIC) by WHO on 30 January 2020 [10],

and the global level of assessment of the risk of spread and

the risk of impact of COVID-19 has been increased to be Very

High by WHO on Feb 28, 2020 [11] which poses a great threat

to the international human health.

Even though real-time reverse transcriptase polymerase

chain reaction (RT-PCR) has been considered as the gold

standard for SARS-CoV-2 diagnosis, the very limited supply

and strict requirements for laboratory environment would

greatly delay accurate diagnosis of suspected patients, which

has posed unprecedented challenges to prevent the spread of

the infection, particularly at the center of the epidemic areas.

In contrast with it, chest computed tomography (CT) is a faster

and easier method for clinical diagnosis of COVID-19 by

combining the patient’s clinical symptoms and signs with their

recent close contact, travel history, and laboratory findings,

which can make it possible for quick diagnosis as early as

possible in the clinical practice. It is also effectively helpful

to isolate infected patients timely and control the epidemic,

especially for the severely epidemic areas. In a word, chest CT

is a key component of the diagnostic procedure for suspected

patients and its CT manifestations have been emphasized in

several recent reports [1], [12]–[15].

In a word, accurate and rapid diagnosis of COVID-19

suspected cases at the very early stage plays a crucial role

in timely quarantine and medical treatment, which is also

of great importance for patients’ prognosis, the control of

this epidemic, and the public health security. During Wuhan’s

COVID-19 outbreak period, a large number of patients, includ-

ing suspected cases, identified cases and follow-up cases,

were needed to undergo chest CT to observe the changes and

severity extent of pulmonary pneumonia, which had caused a

tremendous burden to professional medical staffs; their severe

shortage was also a major difficult to conquer the epidemic.

Chest CT, especially high-resolution CT (HRCT) could detect

small areas of ground-glass opacitity (GGO). In the initial

stage of COVID-19 pneumonia, lung findings on chest CT may

present with small, subpleural and peripheral GGO [16], which

would consume much more time than the larger-involved and

diffusive GGO and/or consolidation patterns. At the current sit-

uation, any missed cases would continue to cause COVID-19

spread. So, it has posed great challenge to our radiologists

with such a tremendous amount of work as well as high diag-

nostic accuracy. Moreover, radiologists’ visual fatigue would

heighten the potential risks of missed diagnosis for some small

lesions. Thus, developing an artificial intelligence (AI) method

for computer-aided COVID-19 diagnosis was very helpful to

radiologists.

Deep learning, as the core technology of the rising AI in

recent years, has been reported with significantly diagnostic

accuracy in medical imaging for automatic detection of lung

diseases [17]–[19]. It surpassed human-level performance on

the ImageNet classification task with one million images for

training in 2015 [20], showed dermatologist-level performance

on classifying skin lesions in 2017 [21] and obtained very

impressive results for lung cancer screening in 2019 [17].

However, most deep learning based methods for disease diag-

nosis requires to annotate the lesions, especially for disease

diagnosis in CT volumes. Annotating lesions of COVID-19

costs a huge amount of efforts for radiologists, which is not

acceptable when COVID-19 is spreading fast and there are

great shortages for radiologists. Thus, performing COVID-19

diagnosis in a weakly-supervised manner is of great impor-

tance. One of the simplest labels for COVID-19 diagnosis is

the patient-level label, i.e., indicating the patient is COVID-19

positive or negative. Therefore, the aim of current study was

to investigate the potential of a deep learning model for

automatic COVID-19 diagnosis on chest CT volumes using

the weak patient-level label. Technically, we obtain a high

performance COVID-19 diagnosis system by training a lung

segmentation network using ground-truth masks obtained via

an unsupervised method and designing an effective lightweight

3D residual network (ResNet) with a progressive classifier for

COVID-19 classification and weakly-supervised lesion local-

ization. Our deep learning solution requires minimal expert

annotation and is easy to train, which is very helpful to rapidly

develop AI software for COVID-19 diagnosis at this critical

situation to counter this outbreak globally.

In [22], a comprehensive review of AI for COVID-19

is presented. Compared with existing COVID-19 methods,

we have the following advantages. First, we trained the

lung segmentation model using masks generated from an

unsupervised learning method. Second, we proposed a

weakly-supervised COVID-19 lesion detection by combining

deep learning activation regions and unsupervised connected

component activation regions, which is the first work performs

weakly-supervised COVID-19 lesion localization. Third,

the proposed COVID-19 classification network is lightweight

and effective; in experiments, we had compared our classifier

with different sophisticated deep learning classifiers and our

classifier performed significantly better than the others in

terms of both computation cost and classification performance.

II. MATERIAL AND METHODS

A. Patients

This retrospective study was approved by Huazhong Uni-

versity of Science and Technology ethics committee, patient

consent was waived due to the retrospective nature of this

study.

Between Dec. 13, 2019 to Feb. 6, 2020, we searched unen-

hanced chest CT scans of patients with suspected COVID-19

from the picture archiving and communication system (PACS)

of radiology department (Union Hospital, Tongji Medical

College, Huazhong University of Science and Technology).

Finally, 540 patients (mean age, 42.5 ± 16.1 years; range,

3-81 years, male 226, female 314) were enrolled into this

study, including 313 patients (mean age, 50.7 ± 14.7 years;

range, 8-81 years; male 138, female 175) with clinical diag-

nosed COVID-19 (COVID-positive group) and 229 patients

(mean age, 31.2 ± 10.0 years; range, 3-69 years; male 88,

female 141) without COVID-19 (COVID-negative group).

There was no significant difference in sex between the two

groups (χ2
= 1.744; P = 0.187), age in COVID-positive
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Fig. 1. Architecture of the proposed DeCoVNet. The network took a CT volume with its 3D lung mask as input and directly output the probabilities
of COVID-positive and COVID-negative.

group significantly higher than that of COVID-negative

group (t = 17.09; P < 0.001). The main clinical symptoms

for these patients were fever, cough, fatigue, and diarrhea.

Of all the patients, two were included by both groups due

to the first and second follow-up CT scans. The first case

(female, year 66) was diagnosed as COVID-19 negative

on Jan 24, 2020, then changed into COVID-positive on

Feb 6, 2020; the second case (female, year 23) was diagnosed

as COVID-19 positive on Jan 24, 2020, then changed into

COVID-negative on Feb 3, 2020. All the CT volumes scanned

on and before Jan 23, 2020, were assigned for deep learning

training, and all the CT volumes scanned after Jan 23, 2020,

were assigned for deep learning testing.

B. Image Acquisition

The CT scanning of all the enrolled patients was performed

on a gemstone CT scanner (GE Discovery CT750HD; GE

Healthcare, Milwaukee, WI), and were positioned in a head-

first supine position, with their bilateral arms raised and

placed beside bilateral ears. All the patients underwent CT

scans during the end-inspiration without the administration of

contrast material. Related parameters for chest CT scanning

were listed as follows: field of view (FOV), 36 cm; tube

voltage, 100 kV; tube current, 350 mA; noise index, 13; helical

mode; section thickness, 5 mm; slice interval, 5 mm; pitch,

1.375; collimation 64×0.625 mm; gantry rotation speed, 0.7 s;

matrix, 512 × 512; the reconstruction slice thickness 1 mm

with an interval of 0.8 mm; scan rage from apex to lung base;

the mediastinal window: window width of 200 HU with a

window level of 35 HU, and the lung window: window width

of 1500 HU with a window level of −700 HU.

C. Ground-Truth Label

In the diagnosis and treatment protocols of pneumonia

caused by a novel coronavirus (trial version 5) [23] which

was released by National Health Commission of the People’s

Republic of China on Feb 4, 2020, suspected cases with

characteristic radiological manifestations of COVID-19 has

been regarded as the standard for clinical diagnostic cases

in severely affected areas only in Hubei Province, indicating

that chest CT is fundamental for COVID-19 identification of

clinically diagnosed cases.

Typical CT findings for COVID-19 are also listed: mul-

tifocal small patchy shadowing and interstitial abnormalities

in the early stage, especially for the peripheral area of the

bilateral lungs. In the progressive period, the lesions could

increase in range and in number; it could develop into multiple

GGO with further infiltration into the bilateral lungs. In severe

cases, pulmonary diffuse consolidation may occur and pleural

effusion is rarely shown.

The combination of epidemiologic features (travel or contact

history), clinical signs and symptoms, chest CT, laboratory

findings and real-time RT-PCR for SARS-CoV-2 nucleic acid

testing is used for the final identification of COVID-19. The

medical CT reports were acquired via the electronic medical

record of Union Hospital, Tongji Medical College, Huazhong

University of Science and Technology. According to the CT

reports, if a CT scan was COVID-positive, its ground-truth

label was 1; otherwise, the label was 0. The dataset does not

contain other pneumonia and all negative cases are healthy

patients.

To evaluate the performance of our algorithm for COVID-19

lesion localization, the bounding boxes of COVID-19 lesions

in testing CT scans were manually annotated by a professional

radiologist with 15 years of experience working in chest CT.

D. The Proposed DeCoVNet

We proposed a 3D deep convolutional neural Network to

Detect COVID-19 (DeCoVNet) from CT volumes. As shown

in Fig. 1, DeCoVNet took a CT volume and its 3D lung mask

as input. The 3D lung mask was generated by a pre-trained

UNet [24]. DeCoVNet was divided into three stages for a clear

illustration in Table. I. The first stage was the network stem,

which consisted of a vanilla 3D convolution with a kernel

size of 5 × 7 × 7, a batchnorm layer and a pooling layer. The

setting of the kernel size of 5 × 7 × 7 follows AlexNet [25]

and ResNet [26], which is helpful to preserve rich local visual

information. The second stage was composed of two 3D resid-

ual blocks (ResBlocks). In each ResBlock, a 3D feature map

was passed into both a 3D convolution with a batchnorm layer

and a shortcut connection containing a 3D convolution that

was omitted in Fig. 1 for dimension alignment. The resulted

feature maps were added in an element-wise manner. The third

stage was a progressive classifier (ProClf), which contained
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Fig. 2. Training and testing procedures. A UNet for lung region segmentation was first trained on the labeled training set using the ground-truth
lung masks generated by an unsupervised learning method. Then, all CT volumes were tested by the pre-trained UNet to obtain all lung masks.
Each CT volume was concatenated with its lung mask volume as the input of DeCoVNet. DeCoVNet was trained under the supervision of clinical
ground-truth labels (COVID-positive and COVID-negative). Lastly, the trained DeCoVNet made predictions on the testing set.

TABLE I

DETAILED STRUCTURE OF THE PROPOSED DECOVNET. THE NUMBER

AFTER THE SYMBOL “@”, E.G., 5 × 7 × 7, DENOTES THE KERNEL SIZE

OF THE CONVOLUTION LAYER OR THE RESIDUAL BLOCK. “&” MEANS

THAT THERE ARE TWO TYPES OF KERNEL SIZE IN THE RESIDUAL

BLOCK. “T” DENOTES THE LENGTH OF THE INPUT CT VOLUME.

THE NUMBER IN “OUTPUT SIZE” IS IN THE ORDER OF

“CHANNEL, LENGTH, HEIGHT, WIDTH”. THE INPUT

SIZE IS 2 × T × 224 × 336

three 3D convolution layers and a fully-connected (FC) layer

with the softmax activation function. ProClf progressively

abstracts the information in the CT volumes by 3D max-

pooling and finally directly output the probabilities of being

COVID-positive and COVID-negative.

The 3D lung mask of an input chest CT volume helped to

reduce background information and better classify COVID-19.

Detecting the 3D lung mask was a well-studied issue. In this

study, we trained a simple 2D UNet using the CT images

in our training set. To obtain the ground-truth lung masks,

we segmented the lung regions using an unsupervised learning

method [27], removed the failure cases manually, and the rest

segmentation results were taken as ground-truth masks. The

3D lung mask of each CT volume was obtained by testing

the trained 2D UNet frame-by-frame without using any tem-

poral information. The overall training and testing procedures

of UNet and DeCoVNet for COVID-19 classification were

illustrated in Fig. 2.

E. Weakly-Supervised Lesion Localization

Our idea of weakly-supervised COVID-19 lesion localiza-

tion was to combine the activation regions produced by the

deep classification network (i.e., DeCoVNet) and the unsu-

pervised lung segmentation method. The method is illustrated

in Fig. 3. In the right part, we inferred a few candidate

lesion regions from DeCoVNet by applying the class activation

mapping (CAM) method proposed in [28]. The DeCoVNet

activation regions had a good recall, but they made many false

positive predictions. In the left part of Fig. 3, we extracted

potential COVID-19 lesion regions from the unsupervised

lung segmentation results. After applying the 3d connected

component (3DCC) method [27] to the CT scan, we found the

lesion regions were sensitive the 3DCC algorithm, which could

be utilized for lesion localization. To get the response map,

we calculated the variance (including the standard deviation

and the number of connected components) in a 7 × 7 window

for each pixel as the 3DCC activation. Then, the 3DCC

activation region with the largest size was selected and termed

as R3dcc. Lastly, the CAM activation region that had the largest

overlap with R3dcc was selected as the final COVID-19 lesion

localization result.
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Fig. 3. The pipeline of weakly-supervised lesion localization. “3DCC” denotes the 3D connected components algorithm in [27] and “CAM” denotes
the class activation mapping algorithm in [28].

F. Data Preprocessing and Data Augmentation

1) Preprocessing of 2D UNet: All the CT volumes were

preprocessed in a unified manner before training the 2D UNet

for lung segmentation. First, the unit of measurement was

converted to the Hounsfield Unit (HU) and the value was

linearly normalized from 16-bit to 8-bit (i.e., 0-255)

after determining the threshold of a HU window

(e.g., −1 200-600 HU). After that, all the CT volumes were

resampled into a same spatial resolution (e.g., 368 × 368),

by which the CT volumes could be aligned without the

influence of the cylindrical scanning bounds of CT scanners.

This step was applied to the obtained ground-truth lung

masks as well.

2) Preprocessing of DeCoVNet: For each CT volume,

the lung masks produced by the trained UNet formed a

mask volume, then the CT volume was concatenated with

the mask volume to obtain a CT-Mask volume. Finally, the

CT-Mask volume was resampled into a fixed spatial resolution

(e.g., 224 × 336) without changing the number of slices for

DeCoVNet training and testing. The number of slices in the

whole dataset was 141 ± 16 ranging from 73 to 250.

3) Data Augmentation: To avoid the overfitting problem

since the number of training CT volumes was limited, online

data augmentation strategies were applied including random

affine transformation and color jittering. The affine transfor-

mation was composed of rotation (0◦
±10◦), horizontal and

vertical translations (0% ± 10%), scaling (0% ± 20%) and

shearing in the width dimension (0◦
±10◦). The color jittering

adjusted brightness (0% ± 50%) and contrast (0% ± 30%).

For each training sample, the parameters were randomly

generated and the augmentation was identically applied for

each slice in the sampled CT volume.

G. Training and Testing Procedures

The DeCoVNet software was developed based on the

PyTorch framework [29]. Our proposed DeCoVNet was

trained in an end-to-end manner, which meant that the CT

volumes were provided as input and only the final output

was supervised without any manual intervention. The network

was trained for 100 epochs using Adam optimizer [30] with

a constant learning rate of 1e-5. Because the length of CT

volume of each patient was not fixed, the batch size was

set to 1. The binary cross-entropy loss function was used to

calculate the loss between predictions and ground-truth labels.

During the procedure of testing, data augmentation strate-

gies were not applied. The trained DeCoVNet took the

preprocessed CT-Mask volume of each patient and output

the COVID-positive probability as well as COVID-negative

probability. Then the predicted probabilities of all patients

and their corresponding ground-truth labels were collected for

statistical analysis.

The cohort for studying the COVID-19 classification

and weakly-supervised COVID-19 lesion detection contained

630 CT scans collected from Dec 13, 2019 to Feb 6, 2020.

To simulate the process of applying the proposed DeCoVNet

for clinical computer-aided diagnosis (i.e., prospective clinical

trials), we used the 499 CT scans collected from Dec 13, 2019

to Jan 23, 2020 for training and used the rest 131 CT volumes
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collected from Jan 24, 2020 to Feb. 06, 2020 for testing.

Of the training volumes, 15% were randomly selected for

hyperparameter tuning during the training stage.

H. Statistical Analysis

COVID-19 classification results were reported and analyzed

using receiver operating characteristic (ROC) and precision-

recall (PR) curves. The area under the ROC curve (ROC AUC)

and the area under the precision-recall curve (PR AUC)

were calculated. Besides, multiple operating points were cho-

sen on the ROC curve, e.g., the points with approximately

0.95 sensitivity (high sensitivity point) and with approximately

0.95 specificity (high specificity point). ROC AUC, PR AUC,

and some key operating points were used to assess the deep

learning algorithm.

To quantitatively analyse the performance of our weakly-

supervised lesion localization algorithm, we followed the eval-

uation metric in [31] to calculate the lesion hit rate as follows.

For each of the CT scans predicted as positive by DeCoVNet,

we took the most confident 3D lesion mask predicted by the

proposed weakly-supervised lesion localization algorithm; if

the center of predicted 3D lesion mask was inside any one of

the annotated boxes, it was a successful hit; otherwise, it failed

to hit; finally, we calculated the hit rate by dividing the number

of successful hits over all the number of true positives.

III. EXPERIMENTAL RESULTS

The code for COVID-19 classification with an online web

app as well as the results are available at https://github.com/

sydney0zq/covid-19-detection. Training DeCoVNet on the

training set which consisted of 499 CT volumes took about

20 hours (11 hours for UNet and 9 hours for DeCoVNet)

and testing a CT volume costed an average of 1.93 seconds

(1.80 seconds for UNet and 0.13 seconds for DeCoVNet) on

an NVIDIA Titan Xp GPU.

A. COVID-19 Classification Results

For every testing CT scan, we used the trained DeCoVNet

to predict its probability of COVID-19. By comparing with

their binary ground-truth labels, we plotted ROC and PR

curves as shown in Fig. 4 and Fig. 5 respectively. In the

ROC, we obtained a ROC AUC value of 0.959. When true

positive rate (TPR, i.e., sensitivity) was approximately 0.95,

our model obtained a true negative rate (TNR, i.e., specificity)

of 0.786; when TNR was approximately 0.95, our model

obtained a TPR of 0.880; there was another operating showed

that our algorithm obtained both TPR and FPR larger than 0.9,

i.e., sensitivity = 0.907 and specificity = 0.911. On the PR

curve, our model obtained a PR AUC of 0.975.

When using the threshold of 0.5 to make COVID-19

classification prediction (i.e., if the probability of COVID-19

was larger than 0.5, the patient was classified as COVID-

positive, and vice versa), the algorithm obtained an accuracy

of 0.901 with a positive predictive value (PPV) of 0.840 and

a negative predictive value (NPV) of 0.982. By varying

the probability threshold, we obtained a series of COVID-

19 classification accuracy, PPV and NPV in Table II.

Fig. 4. COVID-19 classification results evaluated using the receiver
operating characteristic curve.

Fig. 5. COVID-19 classification results evaluated using the precision-
recall curve.

TABLE II

COVID-19 CLASSIFICATION STATISTICS BY VARYING THE

PROBABILITY THRESHOLDS. (PPV: POSITIVE PREDICTION

VALUE. NPV: NEGATIVE PREDICTION VALUE)

Our data showed that the COVID-19 prediction accuracy

obtained by the DeCoVNet algorithm was higher than

0.9 when the threshold ranged from 0.2 to 0.5. At the threshold

setting of 0.5, there were 12 false positive predictions in total

and only one false positive prediction by the algorithm in

our study, indicating that the algorithm to have a very high

negative predictive value.

B. Comparison to Different Classification Networks

We compared the proposed 3D DeCoVNet with different

deep classifiers in Table III. Firstly, a 2D COVID-19 classifica-

tion network (2DClfNet) designed following the way of [32].
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TABLE III

COVID-19 CLASSIFICATION RESULTS COMPARED BETWEEN

DECOVNET AND OTHER DEEP LEARNING CLASSIFIERS. “2DCLFNET”

DENOTES A 2D CLASSIFICATION NETWORK DESIGNED

FOLLOWING [32]. “DECOVNET W/ DROPOUT” AND

“DECOVNET-FCCLF” DENOTES DECOVNET WITHOUT

DROPOUT LAYER OPERATIONS AND THE MODIFIED

DECOVNET BY REPLACING THE PROGRESSIVE

CLASSIFIER WITH A FULLY-CONNECTED

CLASSIFIER RESPECTIVELY

As shown in Fig. 8, the 2DClfNet method used 2D con-

volutions to extract features for each slice in CT, and the

slice-level features were aggregated into CT-level feature for

COVID-19 via a max-pooling layer. For a fair comparison,

we kept the number of parameters and the number of network

layers almost the same to our DeCoVNet. However, due to

computations were not shared among different slices, its com-

putation cost was much higher than our DeCoVNet. Evaluated

by the floating-point operations (FLOPs) metric, it had 378.6G

FLOPs, while our DeCoVNet only had 28.87G FLOPs. Our

COVID-19 classification result was also much better than

2DClfNet (0.959 ROC AUC versus 0.900 ROC AUC) since

our DeCoVNet can capture the information among different

slices. The results confirmed the effectiveness of utilizing

the 3D backbone of COVID-19 CT classification. Secondly,

we performed an ablative study to verify the effectiveness of

the dropout operations in DeCoVNet. The results showed that

the dropout operations provided 3.5% ROC AUC performance

gain. Finally, we compared the proposed progressive classifier

with a fully-connected classifier (FCClf), as shown in Fig. 9.

Our progressive classifier contained an adaptive max-pooing

layer, a strided max-pooling layer, a global max-pooling layer,

3 convolution layers, and a fully-connected layer, while the

compared FCClf used 3 fully-connected layers for COVID-

19 classification according to traditional classification network

design methods. The results showed that our progressive

classifier saved about 3G FLOPs computation cost and 6.6%

ROC AUC performance gain.

C. Comparison With Other Methods

To prove the effectiveness of our proposed method, we com-

pared our DeCoVNet with other methods as shown in

Table IV. The gray-scale histogram feature inside the obtained

lung mask volume was provided for different classifiers.

After adjusting the number of bins and parameters of each

classifier, the best results were kept. The proposed DeCoVNet

surpassed the traditional methods by at least 10% in accuracy.

Without UNet which provided the obtained lung mask volume,

the performance dropped about 8%. Although our DeCoVNet

TABLE IV

COVID-19 CLASSIFICATION RESULT COMPARISON AMONG

DECOVNET, OTHER METHODS AND HUMAN EXPERT

TABLE V

THE RESULTS OF WEAKLY-SUPERVISED LESION LOCALIZATION

performed not better than human expert, it was still promising

to assist in improving efficiency.

D. Visualization of Classification Results

The accurate predictions (a true positive and a true negative)

were presented in Fig. 6 (A-B), and erroneous predictions in

Fig. 6 (C-F). In images corresponding to the true positive and

the false negative, the lesions of COVID-19 were annotated by

red arrows. As shown in Fig. 6 (D, E, F), the false negative

predictions were made by the algorithm, and Fig. 6 (C) showed

the only false positive prediction, in which the respiratory

artifact had been mistaken as a COVID-19 lesion by the

DeCoVNet algorithm.

To get a deeper understanding of our DeCoVNet, we visu-

alized the learned attention region (in red color) as shown in

Fig. 7. For each CT volume, we applied CAM [28] on the

deep feature before the progressive classifier and the weights

in the final fully connected layer, then we selected several

representative CT images. It could be observed that our model

indeed learned where the pneumonia occurred.

E. Weakly-Supervised Lesion Localization Results

The results of weakly-supervised lesion localization are pre-

sented in Table. V. The results were evaluated via the hit rate

metric described Sec II-H. The CAM method only obtained a

hit rate of 35.6%. The 3DCC activation method obtained a hit

rate of 65.7%; this is a good hit rate but the region discovered

by 3DCC activation is too small, which is not meaningful to

radiologists. By combining CAM with the unsupervised 3DCC

activation method, we obtained a hit rate of 68.5%, which

was non-trivial achievement since no lesion annotations were

used in our approach. We also explored a very recent weakly-

supervised deep learning method, i.e., NormGrad [33]. The

results of NormGrad were worst than CAM in this task.
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Fig. 6. Some accurate and erroneous predictions of the proposed DeCoVNet.

Fig. 7. Some visualizations of the learned attention region where the pneumonia occurs.

IV. DISCUSSION

This study performs computer-aided COVID-19 diagnosis

using a large number of CT volumes from the frontline hos-

pital and very weak labels. By designing an effective weakly-

supervised deep learning-based algorithm and training it on

CT volumes collected before Jan 23, 2020 with only patient-

level labels, the testing results on 131 CT scans collected

from Jan 24, 2020, to Feb 6, 2020, were very impressive, e.g.,

the PR AUC value was 0.975. On the ROC curve, the algo-

rithm obtained sensitivity and specificity values larger than

0.9, which were both clinically applicable. Compared with

the concurrent work [32], we have the following advantages:

(1) we propose a lung segmentation network trained using

ground-truth masks generated by an unsupervised method

without expert annotation. (2) Our DeCoVNet is light-weight

3D CNN which is more efficient than the CoVNet in [32]

that performs ResNet-50 classification for each slides in CT.

(3) We have more testing CTs (131 v.s. 68). With similar ROC

AUC values for COVID-19 classification, more testing CTs

illustrates more robust performance. (4) We have presented a

weakly-supervised COVID-19 lesion localization algorithm.

The motivation of this study was to utilize AI to alleviate

the problem of shortage of professional interpretations for

CT images when the epidemic is still fast spreading. Though

there were many effective applications of medical AI in

previous studies [17], [34], developing AI for automatic

COVID-19 diagnosis was still a challenging task. Firstly,

in the current emergency situation, the number of enrolled

patients is relatively smaller compared with that used in

previous studies [17], [34]; and patients enrolled in our study

were clinically diagnosed cases with COVID-19, because the

majority of them did not undergo the nucleic acid testing

due to the sudden outbreak and limited medical resource in

such a short time period. Secondly, the lesions of COVID-19

in CT volumes were not labeled by radiologists and only

patient-level labels (i.e., COVID-positive or COVID-negative)

were utilized for training the AI algorithm in our study.

Thirdly, some small infected areas of COVID-19 have the

potential to be missed even by professional radiologists,
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and whether it is feasible to be detected by deep learning-

based 3D DCNN model remains unclear. We hypothesized

to solve these problems by proposing a delicate 3D DCNN,

i.e., DeCoVNet. It solved the first problem by applying

extensive data augmentation on training CT volumes to obtain

more training examples. The second problem was solved by

regarding the COVID-19 lesion localization problem as a

weakly-supervised learning problem [35]. The class activation

mapping algorithm and the connected component algorithm

were used for weakly-supervised lesion localization. The

third problem was addressed by taking the advantages of

deep learning and utilizing a pre-trained UNet for providing

the lung masks to guide the learning of DeCoVNet.

The deep learning-based COVID-19 diagnostic algorithm

used in our study is effective compared to recent deep learning-

based computer-aided diagnosis methods. On the task of

predicting the risk of lung cancer [17], the deep learning

model was trained on 42290 CT cases from 14851 patients

and obtained 0.944 ROC AUC. On the task of critical findings

from head CT [34], the deep learning model was trained on

310055 head CT scans and obtained ROC AUC of 0.920.

In our study, only 499 scans were used for training, but

the obtained ROC AUC was 0.959. By comparing the data

between them, it was able to find that the task of COVID-19

classification may be easier and the proposed deep learning

algorithm was very powerful. As for the erroneous 12 false

negative predictions in our results, the most possible explana-

tions after we rechecked the original CT images were listed as

follows: those lesions were slightly increased in CT densities,

and images of those ground-glass opacities were very faint

without consolidation.

Our study provided a typical and successful solution

for developing medical AI for emerging diseases, such as

COVID-19. While we were developing this AI, doctors in

Wuhan were still extremely busy with treating a huge num-

ber of COVID-19 patients and it may be impossible for

them to annotate the lesions in CT volumes in the current

austere fight against this epidemic. Thanks to the weakly-

supervised algorithm in this study, locations of pulmonary

lesions in CT volumes are not necessary to be annotated, and

radiologists’ annotating efforts can be minimized, i.e., only

providing patient-level labels. Therefore, developing a helpful

AI tool swiftly has become possible and available in the

clinical application. In the future, the burden of AI experts

could be lifted significantly by automatic machine learning

(AutoML) [36].

Limitations of this study: There are still several limitations

in this study. First, network design and training may be further

improved. For example, the UNet model for lung segmentation

did not utilize temporal information and it was trained using

imperfect ground-truth masks, which could be improved by

using 3D segmentation networks and adopting precise ground-

truth annotated by experts. Second, the data used in this

study came from a single hospital and cross-center validations

were not performed. Third, since this study was performed

during the outbreak of COVID-19 in Wuhan and there were

a great shortage of medical staff at that time, the CT data

of community-acquired pneumonia (CAP) were not collected

TABLE VI

DETAILED STRUCTURE OF THE COMPARED 2DCLFNET. THE NUMBER

AFTER THE SYMBOL “@”, E.G., 7 × 7, DENOTES THE KERNEL SIZE OF

THE CONVOLUTION LAYER OR THE RESIDUAL BLOCK. “T” DENOTES

THE LENGTH OF THE INPUT CT VOLUME. THE NUMBER IN “OUTPUT

SIZE” IS IN THE ORDER OF “CHANNEL, HEIGHT, WIDTH”.

THE INPUT SIZE IS 2 × 224 × 336

in the experiments; nevertheless, adding a new class for CAP

prediction would not be difficult for an advanced deep learning

classifier, which had been confirmed in [32]. Fourth, when

diagnosing COVID-19, the algorithm worked in a black-box

manner, since the algorithm was based on deep learning and

its explainability was still at an early stage. Related work of all

limitations mentioned above will be addressed in our further

studies.

V. CONCLUSION

In conclusion, without the need for annotating the

COVID-19 lesions in CT volumes for training, our

weakly-supervised deep learning framework obtained strong

COVID-19 classification performance and good lesion local-

ization results. Therefore, our algorithm has great potential

to be applied in clinical application for accurate and rapid

COVID-19 diagnosis, which is of great help for the front-

line medical staff and is also vital to control this epidemic

worldwide.
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APPENDIX

DETAILS OF THE COMPARED CLASSIFIERS

To clarify the compared deep learning based classifica-

tion networks in Sec. III-B, we illustrate the 2DClfNet and
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Fig. 8. Architecture of 2DClfNet for COVID-19 classification. It extracted features for each slice in CT using a 2D residual network, and the slice-level
features were aggregated into CT-level feature for COVID-19 via a max-pooling layer. For the detailed structure, please refer to Table. VI.

Fig. 9. Architecture of DeCoVNet-FCClf. Different from the standard DeCoVNet, DeCoVNet-FCClf used fully-connected layers for COVID-19
classification. For the detailed structure, please refer to Table. VII.

TABLE VII

DETAILED STRUCTURE OF THE COMPARED DECOVNET-FCCLF. THE

NUMBER AFTER THE SYMBOL “@”, E.G., 5 × 7 × 7, DENOTES THE

KERNEL SIZE OF THE CONVOLUTION LAYER OR THE RESIDUAL

BLOCK. “&” MEANS THAT THERE ARE TWO TYPES OF KERNEL

SIZE IN THE RESIDUAL BLOCK. “T” DENOTES THE LENGTH

OF THE INPUT CT VOLUME. THE NUMBER IN “OUTPUT SIZE”

IS IN THE ORDER OF “CHANNEL, LENGTH, HEIGHT, WIDTH”.

THE INPUT SIZE IS 2 × T × 224 × 336

DeCoVNet-FCClf models by simple diagrams as shown in

Fig. 8 and Fig. 9. And their detailed network structures are

presented in Table. VI and Table. VII.
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