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Abstract—A novel coronavirus (COVID-19) recently emerged as an acute respiratory syndrome, and has caused a pneumonia

outbreak world-widely. As the COVID-19 continues to spread rapidly across the world, computed tomography (CT) has become

essentially important for fast diagnoses. Thus, it is urgent to develop an accurate computer-aided method to assist clinicians to identify

COVID-19-infected patients by CT images. Here, we have collected chest CT scans of 88 patients diagnosed with COVID-19 from

hospitals of two provinces in China, 100 patients infected with bacteria pneumonia, and 86 healthy persons for comparison and

modeling. Based on the data, a deep learning-based CT diagnosis system was developed to identify patients with COVID-19. The

experimental results showed that our model could accurately discriminate the COVID-19 patients from the bacteria pneumonia patients

with an AUC of 0.95, recall (sensitivity) of 0.96, and precision of 0.79. When integrating three types of CT images, our model achieved

a recall of 0.93 with precision of 0.86 for discriminating COVID-19 patients from others. Moreover, our model could extract main lesion

features, especially the ground-glass opacity (GGO), which are visually helpful for assisted diagnoses by doctors. An online server is

available for online diagnoses with CT images by our server (http://biomed.nscc-gz.cn). Source codes and datasets are available at our

GitHub.

Index Terms—COVID-19, deep learning, pneumonia diagnosis, weakly supervised learning.

✦

1 INTRODUCTION

In late December, 2019, a cluster of pneumonia cases were
reported with unknown etiology [1]. From their lower
respiratory tract samples, one kind of novel coronavirus
was revealed through deep sequencing, which resembled
severe acute respiratory syndrome coronavirus (SARS-CoV)
[3], and is currently named as the 2019 novel coronavirus
(COVID-19) by the World Health Organization (WHO) [2].
The COVID-19 is a beta-CoV of group 2B with at least 70%
similarity in genetic sequence to SARS-CoV [5] and is the
seventh member of the family of enveloped RNA coron-
avirus to infect humans [6]. Outbreaks in healthcare work-
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ers and families indicated human-to-human transmissions
[1], [4]. Since January 17, the confirmed cases dramatically
increased, and COVID-19 has been designated as a public
health emergency of international concerns by WHO. As of
Oct 10, 2020, China has documented over 90000 confirmed
cases with the death toll rose to 4700, and the world totally
identified more than 36 million confirmed cases with over
one million deaths. The COVID-19 has posed significant
threats to international health [7].

The spectrum of this disease in humans is yet to be fully
determined. Signs of infection are nonspecific, including res-
piratory symptoms, fever, cough, dyspnea, and viral pneu-
monia [1]. With the daily increase in the number of newly
diagnosed and suspected cases, the diagnosis has become a
growing problem in major hospitals due to the insufficient
supply of nucleic acid detection boxes and limited detection
rates in the epidemic area [8]. Computed tomography (CT)
and radiography techniques have thus emerged as integral
players in the preliminary identification and diagnosis of
COVID-19 [9], [10], [11]. However, the overwhelming pa-
tients and relatively insufficient radiologists led to high false
positive rates [11]. Advanced computer-aided lung CT diag-
nosis systems are urgently needed for accurately confirming
suspected cases, screening patients, and conducting virus
surveillance.

With the rapid development of artificial intelligence,
computer vision techniques, originally used for classifica-
tions of general images, have been applied to medical im-
ages including CT images [21]. Among existing techniques,
convolutional neural network (CNN) [27] is a widely used
feed-forward artificial neural network, base on which many
models have shown great promise in capturing feature
representations [13]. However, these general models are not

http://biomed.nscc-gz.cn/model.php
https://github.com/SY575/COVID19-CT
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satisfactory for CT images classification because CT images
are fine-grained that have low inter-class variances, and thus
are difficult to distinguish [28]. Recently, there are encour-
aging developments in fine-grained image representation
learning methods that have been proven effective in CT
image deep learning [23]. More importantly, these methods
required only image-level annotations and have been shown
able to achieve close accuracy to models trained on refined
expert annotations [24].

Generally, these fine-grained image learning methods
follow a two-stage strategy that first locates key objects
in the images and then discriminates their belonging sub-
classes based on the identified objects [22]. One key to
the success of these methods is to accurately identify the
objects in the images. In consideration that the objects
might be of different sizes, Feature Pyramid Network (FPN)
method was proposed to recognize objects (sub-images) at
different scales with corresponding confidence scores [14].
Though the method has shown great power in several fine-
grained image classification datasets [21], existing studies
usually extracted the features of the detected sub-images
separately without considering connections between sub-
images. Therefore, it should be beneficial to extract relations
between these sub-images.

Another bottleneck of current deep learning techniques
is its lack of interpretability. High interpretability is im-
portant in both theory and practice, especially for medical
diagnoses that has low endurance to wrong predictions.
The interpretability of model has recently been significantly
advanced by several studies through visualizing the trained
CNN models [25], [26]. The combination of the visualization
methods will be essential for constructing an interpretable
model for COVID diagnosis.

In this study, we have collected chest CT scans of 88
patients diagnosed as COVID-19 from hospitals of two
provinces in China, along with 100 patients infected by
bacteria pneumonia and 86 healthy persons for comparison
and modeling. To effectively capture the subtle differences
in medical images, we have constructed a new deep learn-
ing architecture DRENet. For a given CT image slice, we
first detected potential lesion regions at different scales by
integrating the pre-trained ResNet50 with the FPN network.
According to the detected regions, ResNet50 was employed
again to extract local features at each region and relational
features between regions. These features were then con-
catenated with global features extracted from the original
image, and input to a multiple layer perception (MLP) for
image-level prediction. Finally, the prediction over each CT
image slice in one patient were aggregated for the person-
level diagnoses. By training and validation on the collected
dataset, our model was shown to accurately discriminate the
COVID-19 patients from the bacteria pneumonia patients
with an AUC of 0.95, recall (sensitivity) of 0.96, and pre-
cision of 0.79. When integrating three types of CT images,
the model achieved a recall of 0.93 with precision of 0.86
for discriminating COVID-19 patients from others. More
importantly, our model could extract main lesion features,
especially the ground-glass opacity (GGO), which visually
assist diagnoses by doctors.

2 MATERIALS AND METHODS

Our institutional reviewing board waived written informed
consent for this study that evaluated de-identified data and
involved no potential risk to patients.

2.1 Data acquisition

This study was based on reliable resources provided by
the Renmin Hospital of Wuhan University and two affili-
ated hospitals (the Third Affiliated Hospital and Sun Yat-
Sen Memorial Hospital) of the Sun Yat-sen University in
Guangzhou. We obtained CT images of totally 88 COVID-
19 infected patients, which comprised of 76 and 12 patients
from the Renmin Hospital of Wuhan University and the
Third Affiliated Hospital, respectively. All COVID-19 pa-
tients’ nasopharyngeal swabs were subjected to nucleic acid
kit lysis extraction and calculation by the respective labora-
tories. In the tests, the fluorescence RT-PCR was performed
to detect the viral nucleic acid sequences, which were then
compared with the novel coronavirus nucleocapsid protein
gene (nCoV-NP) and the novel coronavirus open reading
coding frame lab (nCoV ORFlab) sequence. The patients
were selected only when the nucleic acid results were pos-
itive and the HRCT images of chest were of acceptable
qualities with no significant artifacts or missing images.
For comparison, we also retrieved CT underwent chest
images of 86 healthy persons and 100 patients with bacterial
pneumonia from the Renmin Hospital of Wuhan University
and Sun Yat-Sen Memorial Hospital.

For persons in Wuhan, chest CT examinations were
performed with a 64-section scanner (Optima 680, GE Med-
ical Systems, Milwaukee, WI, USA) without the use of
contrast materials. The CT protocol was as follows: 120
kV; automatic tube current; detector, 35 mm; rotation time,
0.35 second; section thickness, 5 mm; collimation, 0.75 mm;
pitch, 1-1.2; matrix, 512×512; and inspiration breath hold.
The images were photographed at lung (window width,
1000–1500 HU; window level, –700 HU) and mediastinal
(window width, 350 HU; window level, 35–40 HU) settings.
The reconstructions were made at 0.625 mm slice thickness
on lung settings. These data consisted of only transverse
plane images of lung. For persons in Guangzhou, the chest
CT examinations were performed with a 64-slice spiral
scanner (Somatom Sensation 64; Siemens, Germany). All
CT parameters were the same as the above settings except
the followings: section thickness, 8 mm, and collimation, 0.6
mm.

2.2 Model Architecture and Model Training

We have developed a deep learning-based CT diagnosis
system to detect the COVID-19 causing pneumonia and to
localize the main lesions. As shown in Fig. 1, the fully au-
tomated lung CT diagnosis system was developed by three
main steps. First, we extracted the main region of the lung
and filled the blank of lung segmentation with the lung itself
to avoid noises caused by different lung contours. Then,
we designed a Details Relation Extraction neural network
(DRENet) to obtain the image-level predictions. Finally, the
image-level predictions were aggregated to achieve person-
level diagnoses.
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Fig. 1. The proposed training architecture including (1) Preprocessing: the CT images are first preprocessed to remove boundary regions around
the lungs, and to further fill the blank regions around two lungs with its rotational lung areas (for model training only). (2) Image-level classifications
by DRENet: each CT image is input to the pre-trained ResNet50 to extract global features, from which FPN module is employed to identify top-K
lesion regions. According to the top-K regions, the shared ResNet is utilized again to extract local features within the sub-images and relational
features between the sub-images. These features are concatenated with the learned global features to input into MLP for the image-level prediction.
(3) Person-level prediction: the image-level predictions will be aggregated for person-level prediction.

2.2.1 Data preprocessing

As 3D CT images of one patient may contain more than
200 images and neighbored images are highly similar, we
only selected 15 representative images equidistantly, i.e.
images index [i*ntot/15, i=0..14] with ntot as the total
number images. The removal of redundant images could
speed up the calculation and reduce the impact of different
numbers of scanned images between hospitals. As many
CT images contain incomplete lungs, we further detected
lungs through the OpenCV package [12], and removed the
images with lung regions occupying less than 50% of the
total image. However, there is a problem that the lung
contours are substantially different between humans, which
may cause deep learning model to over fit the features of
lung contour. To solve this problem, we simply filled the
blank area of image with its rotational lung areas. Finally,
we kept 88 COVID-19 patients with 777 CT images, 100
bacterial pneumonia patients with 505 slices, and 86 healthy
people with 708 slices in this study.

2.2.2 DRENet

The DRENet was constructed based on the pre-trained
ResNet50 that has been proven to be robust to detect objects
in images [13]. We further added the Feature Pyramid
Network (FPN) [14] to extract the top-K details from each

image. Based on the extracted details, an attention module
is coupled to learn the importance [15].

Concretely, as shown in Figure 1, an image is input to
ResNet50 to extract the feature map. The feature map is then
input to a pooling layer and a dense layer to extract global
features, and to the FPN module to extract local details.
Inspired by the recent modification of FPN [21] to utilize a
top-down architecture for detecting multi-scale regions, we
modified the FPN module to identify multi-scale lesion area,
where convolutional layers are used at all layers to compute
hierarchical features. Moreover, we used feature maps of
sizes {14x14, 7x7} corresponding to regions of scales {48x48,
96x96}, emphasizing on small regions because lesion areas
are generally small and the use of the large size of feature
maps will bring noises to the model. By this way, the FPN
will identify important regions with confidence scores.

According to the identified regions, top-K sub-images
are then cropped from the original image. At the same time,
the original image was scaled to generate a new image by
multiplying the corresponding regions of the top-K sub-
images with their confidence scores. The regions not in-
cluding top-K images were set to zero. These K sub-images
and the newly generated image were input to ResNet50 to
extract respective features.

Finally, we concatenated the features extracted from the
original image, top-K sub-images, and the generated image
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to a 1-D vector and sent them into a multi layer perceptron
(MLP) to predict the image-level state. Based on FPN, our
model can not only provide person-level prediction score for
the doctor but also interpret the prediction by weighing each
pixel of the original image. More details of the implemen-
tation and parameters are attached in the Supplementary
File.

2.2.3 Aggregation

For each patient, the predictions were made on each image
slice, and the image-level scored results were aggregated for
person-level prediction. Here, the mean pooling was used to
integrate the image-level scores into the morbidity of each
person as the person-level prediction.

2.3 Implementation and evaluation

In our experiments, we fixed K = 3 meaning to extract 3
sub-images from each input image. For practical purposes,
we designed the models with two tasks: discriminating
COVID-19-infected patients from the healthy people, and
separating COVID-19 patients from bacterial patients and
healthy controls. For each task, we employed the person-
level split strategy following the LUNA16 competition [16]
by using random splits of 60%/10%/30% for training, vali-
dation, and test sets, respectively. The training set was used
to train models, and the validation set was used to optimize
the hyper-parameters for the best performance. The final
optimal model was independently assessed on the test set.
We computed the measured metrics as

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1− score =
Precision+Recall

2
(5)

where TP, TN, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives, respec-
tively. We also computed Area under the receiver-operating
characteristics Curve (AUC) by the scikit-learn 0.19 (scikit-
learn.org). For the tri-classification task, we computed the
precision, recall, F1-score for each type, and reported the
average in default.

3 RESULTS

3.1 Deep Learning Model for COVID-19 Diagnosis

We first performed experiments by discriminating 88
COVID-19 patients and 100 bacteria pneumonia patients,
from which 777 and 505 images were collected. By tuning
hyperparameters on the 10% validation set, we achieved
AUC of 0.91 in the image level, essentially the same as
the AUC of 0.92 in the test set. Aggregation of the image-
level predictions led to slight increases of AUC values in

person level to 0.93 and 0.95 for the validation and indepen-
dent test, respectively. The consistent results between the
validation and test indicated the robustness of our model.
To indicate the effectiveness of our proposed DRENet ar-
chitecture, we also employed the classical deep residual
network (Resnet) [13], DenseNet [17], and VGG16 [18] for
comparisons. As shown in Table 1, DRENet achieved the
highest AUC score among all methods, VGG16 and ResNet
were close, and DenseNet had the lowest score. When mea-
sured by F1-score, another balanced measurement, DRENet
ranked the first and DenseNet had the lowest score, while
ResNet was slightly higher than VGG16. As DRENet was
mostly based on ResNet, the improvement should result
from the further learning of extracted important regions.

TABLE 1
Comparisons of different models by person-level performances on the

independent test .

Model AUC Recall Precision Specificity F1-score Accuracy
VGG16 0.91 0.89 0.80 0.80 0.84 0.84

DenseNet 0.87 0.93 0.76 0.73 0.83 0.82
ResNet 0.90 0.93 0.81 0.80 0.86 0.86

DRE-Net 0.95 0.96 0.79 0.77 0.87 0.86

Fig. 2A showed the receiver-operating characteristic
curves for comparisons with other baseline models. Obvi-
ously, DRENet has higher true positive rates at regions of
low false positive rate (FPR¡0.02), which are also the most
important regions because of the much higher number of
bacterial pneumonia than COVID-19 patients. At a higher
FPR (>0.2), all methods except DenseNet can correctly
recognize COVID-19 patients. When using a cutoff of 0.5,
the DRENet predictions have one false positive and two
false negatives as shown in the confusion matrix (Fig. 2B),
corresponding to a precision of 0.79 and a recall of 0.96.

Another advantage of DRENet is its ability to detect
potential lesion regions for interpretation. For visualization,
we selected two successfully predicted pneumonia patients
from the test set (Fig. 3), and showed three slice images with
the highest scores for each patient. The detected regions by
DRENet contained ground-glass opacity (GGO) abnormal-
ity, which has been reported as the most important character
for COVID-19 patients by recent studies [9], [10], [11]. To
quantify the potential lesion regions, we also drew the
heat maps through the Gradient-weighted Class Activation
Mapping (Grad-CAM) as proposed by [25]. The visualiza-
tions by Grad-CAM were essentially consistent to detect
potential lesion regions while providing more information.
These findings indicate that DRENet could detect key fea-
tures. The detected features provide reasonable clues for the
judgements, which are especially helpful for diagnoses by
doctors.

3.2 Deep Learning Model for Pneumonia Three-class

Classification

In order for real-world assisted diagnoses in hospitals, we
further performed three-class classification experiments by
adding pneumonia patients caused by bacteria. To this end,
we built a model by the proposed DRENet learning archi-
tecture based on 88 COVID-19, 100 bacterial pneumonia
patients, and 86 healthy persons, consisted of 777, 505 and
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Fig. 2. Performances of different networks on the pneumonia diagnosis with A) Receiver operating characteristic curves for the diagnosis of COVID-
19, and B) Confusion matrix of the DRENet on the test set.

Fig. 3. Visualization of two correctly diagnosed nCOV-19 pneumonia
patients. For each patient, we showed the top 3 predicted slices and
the extracted details (bounding boxes with red color) with normalized
predicted scores above 0.8 (ranging from 0 to 1). Moreover, we also
used the method proposed by [25] to draw the heat map.

708 CT images, respectively. As shown in Table 1, DRENet
achieved a precision of 0.93 with a recall of 0.93 in average,
corresponding to F1-score of 0.93 as well. By comparison,
the F1-score of DRENet is 2% higher than the next best
ResNet and VGG16. DenseNet performed the worst with
F1-score of 0.88. Fig. 4 shows the confusion matrix of the
DRENet on the pneumonia three-class classification. We
observed that the model can discriminate all healthy per-
sons from pneumonia patients while make only six wrong
predictions in classifying the bacterial pneumonia and viral
pneumonia (COVID-19). When considering the separation
of COVID-19 patients from others, the model achieved a
recall of 0.93 and precision of 0.86.

TABLE 2
Performance comparisons on pneumonia three-class classification

task.

Model Recall Precision Specificity F1-score Accuracy
VGG16 0.91 0.91 0.91 0.91 0.91

DenseNet 0.88 0.89 0.88 0.88 0.88
ResNet 0.91 0.92 0.91 0.91 0.91

DRE-Net 0.93 0.93 0.93 0.93 0.93

Fig. 4. Confusion matrix of the DRENet on the pneumonia three-class
classification.

By examining two COVID-19 patients who were
wrongly predicted to be caused by bacteria, we found their
respective predicted scores were 0.46 and 0.39 in the patient
level. These scores were both marginally lower than the
threshold of 0.5. As shown in Fig. 5, although the patient C
has a score of 0.46 in the patient level, three most suspected
slice images (the highest scores in the image level) all have
scores greater than 0.5 in the image level. Therefore, DRENet
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could still assist doctors to make correct decisions by visual-
izing key images in occasionally wrong cases. On the other
hand, the patient D of bacterial pneumonia was wrongly
predicted as the COVID-19 patient. The misjudgements
might be caused by the GGO abnormalities appearing in
the patient of bacterial pneumonia for unknown reasons, as
shown in the rectangles.

Fig. 5. Visualization of two wrongly predicted cases on the pneumonia
classification for A) one patient of bacterial pneumonia wrongly pre-
dicted as the COVID-19 patient, and B) one COVID-19 patient wrongly
predicted as bacterial pneumonia. Arrows were added by hand to point
to regions containing GGO abnormality.

4 DISCUSSION

The outbreak of COVID-19 has resulted in a world-wide
panic recently. There are no specific signs for the infected
patients. Those who have fallen into ills were reported with
the ground-glass opacity (GGO). Thus, CT becomes the
most convenient and fastest diagnosis approach. However,
difficulties were met due to lacks of quantified diagnosis
criteria and of experienced radiologists. It is essential to
develop a publicly available model to assist the diagnosis
by artificial intelligence.

In this study, we have developed a new deep learning
architecture to construct the prediction model based on 88
patients diagnosed with the COVID-19, 100 patients infected
with bacteria pneumonia, and 86 healthy persons from
three hospitals in China. Our models achieved a recall of
96% and a precision of 93% for COVID-19 patients against
bacteria pneumonia patients. When training a model to
separate three classes simultaneously, the tri-classification
model achieved a recall of 93% and a precision of 86% for the
COVID-19 patients. Due to the high infectivity of COVID-
19 virus, a high recall is essential for correctly recognizing
COVID-19 patients to prevent the spreading of virus. The
model developed here is appropriate for assisting clinical
diagnoses considering the 60-70% recall rate by nucleic acid
examinations. More importantly, our method also provides
interpretation of the prediction through recognized lesion
regions and detailed heat map. Since clinical diagnosis is of

low endurance to wrong predictions, such interpretation is
essential for assisting doctors to make decisions.

Since the training data is still a small data, the model can’t
effectively solve the batch effect to make accurate predictions for
other sources of data, a well known problem in AI diagnosis
through medical images [CITE]. One possible way for this problem
is to accumulate data from multiple hospitals. Alternatively, the
model can be fine-tuned or retrained by using data from hospitals
that need to use the model.

Additionally, we performed an experiment to distin-
guish the COVID-19 infected patients from bacterial pneu-
monia. The independent test indicated a recall of 0.93 and
a precision of 0.79 (Table S1). The same recall but lower
precision than the tri-class model (recall=0.86) suggests that
adding other types might help the training in tasks with
small number of samples. Therefore, the performance might
be further improved by adding more CT images, or even
other types of pneumonia [20].

5 CONCLUSION

In conclusion, our study demonstrated the feasibility of
a deep learning approach to assist doctors in detecting
patients with COVID-19 and automatically to identify the
potential lesions from CT images. With the accurate discrim-
ination of the COVID-19 patients, the proposed system may
enable a rapid and accurate identification of patients.

There are also several weakness points in our work. One
major problem is the dataset. We accomplished the work at
the very early stage of the COVID pandemic, where there
are only very few samples to build such a deep learning
prototype. Secondly, due to the issue of batch effect, our
method achieved good results on the datasets from original
source data collection hospital but was not able to predict
the external data directly. Fortunately, it can be alleviated by
finetuning the model with the images from target sources. In
the future, we may include a pre-trained model with more
image sources for more accurate diagnosis of COVID-19.
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