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Like in many other research areas, deep learning (DL) is increasingly adopted in

music recommendation systems (MRS). Deep neural networks are used in this domain

particularly for extracting latent factors of music items from audio signals or metadata

and for learning sequential patterns of music items (tracks or artists) from music playlists

or listening sessions. Latent item factors are commonly integrated into content-based

filtering and hybrid MRS, whereas sequence models of music items are used for

sequential music recommendation, e.g., automatic playlist continuation. This review

article explains particularities of the music domain in RS research. It gives an overview

of the state of the art that employs deep learning for music recommendation. The

discussion is structured according to the dimensions of neural network type, input

data, recommendation approach (content-based filtering, collaborative filtering, or both),

and task (standard or sequential music recommendation). In addition, we discuss

major challenges faced in MRS, in particular in the context of the current research on

deep learning.

Keywords: music, recommender systems, music information retrieval, deep learning, neural networks, sequence-

aware recommendation, automatic playlist continuation, survey

1. INTRODUCTION

Research on music recommendation systems (MRS) is spiraling [1]. So is research in deep learning
(DL). Despite their potential, neural network architectures are still surprisingly sparsely adopted
for MRS, even though the number of respective publications is increasing. In this review article, we
discuss the most recent research that involves DL in the context of MRS and we identify possible
reasons for the still limited adoption of DL techniques in this recommendation domain.

Historically, research on MRS has emerged from two distinct communities, i.e., music
information retrieval (MIR) and recommender systems (RS), with different focuses, perspectives,
and terminologies.

1.1. Music Information Retrieval
MIR [2] has its origins in library science and signal processing [3]. It has therefore for a long time
focused strongly on content-based approaches, where “content” refers to information extracted
from the actual audio signal (compared with the common meaning of the term in RS research
below).MIR research has created exciting tools and applications, e.g., musical score following [4, 5],
intelligent music browsing interfaces [6, 7], or automatic music categorization (for instance, into
genres [8–10] or affective categories such as mood [11, 12]), just to name a few. However, while
much research in MIR has addressed the topic of audio similarity [13, 14], which is a prerequisite
to build content-based MRS, surprisingly little research by the MIR community has been devoted
specifically to music recommendation [15]. A simple quantitative investigation highlights this
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fact: According to the computer science bibliography database
DBLP1 only 29 papers (or 1.6%) published at the main venue for
MIR research, i.e., the ISMIR conference2 between 2002 and 2018
(out of 1,840 total papers) contain the term “recommendation”
or “recommender” in the title. For comparison, 120 papers (or
6.5%) contain the term “similarity” in their title.

1.2. Recommender Systems
RS research [16], in contrast, has traditionally been strongly
driven by the task of movie recommendation, not least thanks
to the Netflix Prize [17]. While collaborative filtering (CF)
has been the most common choice in those early days of RS
research, approaches based on content-based filtering (CBF) have
gained popularity in recent years. In short, collaborative filtering
approaches exploit interactions between users and items, e.g.,
clicks or ratings, which are represented in a user–item (rating)
matrix R. The task is then to predict missing ratings r̂u,i for
pairs of users u and items i, and recommend to the target
user u the (unseen) items with highest predictions. To this
end, CF identifies similarities between users and/or items either
in a low-dimensional joint representation of users and items
(model-based CF) or by directly computing similarities from the
user–item matrix (memory-based CF). In the latter case, we can
distinguish between user-based CF and item-based CF, depending
on whether recommendations are made based on similarities
between users or between items. To give an example, user-based
CF approaches often compute user similarities using Pearson’s
correlation coefficient (cf. Equation 1), where suv is the similarity
between the item ratings given by users u and v; Iuv are the items
both users u and v have rated; ru (rv) is the mean rating of user u
(v) and included to account for the user rating bias. A missing
rating r̂ui is then computed according to Equation (2), where
Nu is the set of u’s nearest neighbors (who rated item i) with
respect to the similarity score su· Finally, items with highest r̂ui
are recommended to u.

suv =

∑

i∈Iuv
(rui − ru)(rvi − rv)

2

√

∑

i∈Iuv
(rui − ru)2

∑

i∈Iuv
(rvi − ru)2

(1)

r̂ui = ru +

∑

n∈Nu
snu · (rni − rn)

∑

n∈Nu
snu

(2)

A common approach to content-based filtering is item-based
nearest neighbors, where r̂ui is determined by the ratings of u for
similar items, for instance, as weighted average (cf. Equation 3).
Nu(i) in this case denotes the items most similar to item i which
user u rated.

r̂ui =

∑

n∈Nu(i)
sin · rui

∑

n∈Nu(i)
sin

(3)

Note that this model for item-based CBF can also be adopted for
item-based CF. In fact, the two differ only in their definition of
sij. While item-based CF considers items i and j as similar if users

1https://dblp.uni-trier.de
2https://www.ismir.net

have rated them in a similar way, item-based CBF considers them
as similar if they share characteristics related to their content.

Comparing the MIR and RS communities with respect to
their work on music recommendation, we note that already the
use of the term “content” differs between these communities.
While it indicates information extracted from the audio signal
in MIR (such as rhythm, tempo, or melody), “content-based”
RS have almost exclusively leveraged textual descriptors of the
“content” (e.g., metadata, user-generated tags, or reviews) to
effect recommendations [18]. This article also aims at raising
awareness of such subtle differences between the MIR, RS, and
other related communities such as information retrieval and
multimedia. When it comes to music recommendation, the RS
community, in particular represented by authors in the ACM
Recommender Systems (RecSys)3 conference proceedings, has
embraced the emerging topic of MRS in the past few years.
Quantitatively expressed, 43 papers (2.9%) published in all
RecSys conferences (2007–2018) contain “music” in their title
(out of 1,478 papers). The number of papers on MRS in ACM
RecSys increased from only 2 in 2014 to 8 in 20184. The enlarged
interest for MRS is furthermore supported by the fact that the
ACM RecSys Challenge 2018 targeted the topic of music playlist
continuation [19].

Nowadays, DL in the domain of music recommendation is
commonly used for (1) automatic feature learning from audio
signals and creating corresponding embeddings for CBF, (2)
modeling item/track sequences for automatic music playlist
continuation, i.e., sequential music recommendation, and (3)
extracting latent factors from user–item rating data to incorporate
into CF models. This review article discusses approaches specific
to the music domain. We therefore limit the scope to (1) and (2)
and refrain from including general domain-independent work on
the use of deep learning in purely CF-based approaches (3). For
an up-to-date review of such research, we refer the reader to the
survey by Batmaz et al. [20].

The article at hand is structured as follows: section 2
briefly summarizes in which ways music recommendation differs
from recommendation in other domains and motivates the
use of deep learning techniques to address some of these
differences. Section 3 gives an overview about research that
adopts DL for CBF or in hybrid systems that include a CBF
component. Section 4 discusses work on sequence-aware music
recommendation that employs DL. The article is round off by
providing the author’s personal opinion about the major current
challenges in section 5. Table 1 provides a compact overview
of the research works discussed in sections 3 and 4. Since
measures used in the evaluation of approaches strongly differ
between discussed articles, we provide in Table 2 a summary
of the performance metrics adopted in the reviewed articles.
Furthermore, Table 3 lists abbreviations commonly used in DL
and RS research, to offer the reader an easy reference.

Please note that this article does not provide explanations of
the used neural network architectures and therefore addresses
readers already familiar with these. The article instead offers a

3https://recsys.acm.org
4https://dblp.uni-trier.de/search?q=music%20venue%3ARecSys
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TABLE 1 | Overview of discussed research articles.

Article Year Network type Input data CF CBF Seq.

Mcfee and Lanckriet [21] 2011 Markov chains Timbre, tags, familiarity ✓ ✓

Chen et al. [22] 2012 Markov embeddings Playlists ✓ ✓

van den Oord et al. [23] 2013 CNN Spectrograms ✓ ✓

Wang and Wang [24] 2014 DBN Spectrograms ✓ ✓

Liang et al. [25] 2015 MLP MFCC ✓ ✓

Oramas et al. [26] 2017 MLP, CNN Biographies, spectrograms ✓

Sachdeva et al. [27] 2018 ANN, MLP, GRU Sessions, tags ✓ ✓

Vall et al. [28] 2018 RNN Playlists ✓ ✓

Vall et al. [29] 2019 CNN Playlists, spectrograms, tags, listening logs ✓ ✓

Lin et al. [30] 2019 ANN, RNN, GRU Playlists, graphs, lyrics, album cover images ✓ ✓

Column CF and CBF indicate whether the proposed solution uses collaborative filtering or content-based filtering (or both). Column Seq. identifies solutions that leverage sequential

information in the training or prediction step.

TABLE 2 | Definitions and explanations of performance metrics reported in this article.

Metric Definition Explanation

Precision@K 1
|U|

∑

u∈U
|Lu∩L̂u|

|L̂u|
Percentage of top K recommended items which also appear as highly rated in the test set T, averaged over all

users u ∈ U. Items in Lu are the relevant items (highly rated) for user u in T; L̂u are the top K recommended items

in T with highest predicted ratings for user u.

Recall@K 1
|U|

∑

u∈U
|Lu∩L̂u|
|Lu|

Percentage of items highly rated in the test set T that are recommended within the top K recommendations,

averaged over all users u ∈ U. Terms are defined as in precision@K.

MAP@K 1
|U|

∑

u∈U

(

1
N

∑K
i=1 Pu@i · relu(i)

)

Mean average precision describes the overall precision at different numbers of recommended items, computed as

arithmetic mean of the average precisions over all users U. Average precision of the top K recommendations of

user u is computed using Pu@i, i.e. precision for user u at the ith recommended item and relu(i) which is an

indicator signaling if the ith recommended item is relevant (rel(i) = 1) or not (rel(i) = 0); N is the total number of

relevant items. Note that MAP implicitly considers recall since the relevant items not in the recommendation list are

included too.

AUC FPR =
|L−u ∩L̂u|

L−u
, TPR = recall Receiver operating characteristic (ROC) curve relates the false positive rate (FPR) to the true positive rate (recall),

for all possible values of K recommendations. L−u are the irrelevant items (low-rated) for user u in T; L̂u are the top

K recommended items with highest predicted ratings for user u. The area under the ROC (AUC) can then be

interpreted as the probability that the recommender will rank a randomly chosen positive (highly rated) item higher

than a randomly chosen negative (disliked) one.

MRR 1
|U|

∑

u∈U
1

ranku
Mean reciprocal rank of user u is the inverse of the rank in u’s recommendation list at which the first highly rated

item occurs (ranku). MRR is the average MRRu computed over all users.

NDCG 1
|U|

∑

u∈U

∑N
i=1

ru,i
log2(i+1)

IDCGu
Normalized discounted cumulative gain is a measure of the quality of the ranking of recommended items.

Assuming that the items recommended for user u are sorted in decreasing order of their predicted rating, ru,i is

the true rating of the item ranked at position i for user u; N is the length of the recommendation list; IDCGu
represents the ideal DCG for user u, i.e., the DCG obtained if the recommended items were ordered exactly by

their true ratings of u, in decreasing order.

RMSE
√

1
|T|

∑

ru,i∈T
(ru,i − r̂u,i )

2 Root mean squared error between the predicted ratings r̂u,i and the true ratings ru,i over all user–item pairs in the

test set T.

compact overview of recent research to scholars and practitioners
working onMIR and RS. For a more detailed introduction to DL,
we refer to the books by Goodfellow et al. [31] or Aggarwal [32].

2. WHY MUSIC IS DIFFERENT

In comparison to other domains in which recommender
systems are employed, such as products, movies, or hotels,
recommendation in the music domain has certain specific
characteristics that should be taken into account when creating

MRS [1]. Some of these particularities in the music domain have
implications on the use of recommender systems technology;
and the use of deep learning approaches are directly motivated
by them.

First, the duration of a music track is much shorter than the
duration of a movie, holiday trip, or product usage. Second, the
number of items in commercial music catalogs has a magnitude
of tens of millions of tracks. For these two reasons, music
might nowadays be considered more disposable than ever. Short
consumption time and abundance of songs available implies that
recommending a few songs that do not perfectly fit the user’s taste
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TABLE 3 | Abbreviations commonly used in this article and related literature.

Abbreviation Full name

ANN Attentive neural network

AUC Area under the receiver operating characteristic curve

CNN Convolutional neural network

CBF Content-based filtering

CF Collaborative filtering

CQT Constant-Q transform

DNN Deep neural network

DBN Deep belief network

DL Deep learning

GRU Gated recurrent unit

k-NN K-nearest neighbors

MAP Mean average precision

MF Matrix factorization

MFCC Mel-frequency cepstral coefficient

MIR Music information retrieval

MLE Maximum likelihood estimation

MLP Multi-layer perceptron

MRS Music recommendation systems

MSD Million Song Dataset

MSE Mean squared error

NDCG Normalized discounted cumulative gain

PCA Principal components analysis

PMF Probabilistic matrix factorization

ReLU Rectified linear units

RMSE Root mean squared error

RNN Recurrent neural network

RS Recommender systems

TF-IDF Term frequency-inverse document frequency

VAE Variational autoencoder

WMF Weighted matrix factorization

WPE Weighted prediction error

typically does not affect user experience in an overly negative
way. This is in contrast to movie recommendation, for instance,
where it takes users much longer to figure out that they dislike
a recommended movie, and are therefore more upset about
bad recommendations.

Third, content-based features extracted from the music audio
signal historically play a much bigger role than in other
domains, thanks to great advances in the research fields of music
information retrieval and (audio) signal processing over the past
decades. Building upon developed tools and gained knowledge
from these fields, DL techniques can operate on a much larger
and more sophisticated set of low- and mid-level audio features.

Fourth, repeated recommendations are sometimes
appreciated by the listener, in contrast to the movie or
product domain where users commonly disfavor recurring
recommendations of the same items. Thanks to the probabilistic
treatment of items in DL architectures, i.e., the network’s output
is usually a vector over items (or playlists) that contains the
probabilities of fit, it is straightforward to include also already
seen items.

Fifth, music has the power to send shivers down the listener’s
spine, i.e., music can evoke very strong emotions. State-of-the-art
music emotion recognition techniques often make use of DL [11,
33]. Emotion-aware MRS then match the user’s mood and the
emotions evoked by songs in listeners, (e.g., Deng et al. [34]).

Sixth, music is often consumed in sequence, typically as
playlists of music tracks or listening sessions. Therefore,
recommending not only an unordered set of songs, but a
meaningful sequence of songs, is an important task in the
music domain. Since some DL techniques have particularly
been developed to leverage sequential information, for instance,
recurrent neural networks and their various extensions, their use
greatly boosts approaches for automated playlist generation or
next-track recommendation, cf. section 4.

Seventh, music consumption is often passive, i.e., the listener
does not pay much attention to it, e.g., background music in
shops or elevators. This can be critical when deriving positive
implicit feedback, e.g., a song being played from beginning to end
does not necessarily indicate that the listener actively consumed
that song. Integrating additional contextual information, such as
user’s activity or apps interacted with while listening to music
on smart devices, into context-aware MRS that nowadays are
commonly powered by DL architectures is a solution to alleviate
this problem.

3. CONTENT-BASED AND HYBRID
APPROACHES

Recommender systems research in the music domain that
leverages DL typically uses deep neural networks (DNN) to
derive song or artist representations (embeddings or latent
factors) from the audio content or textual metadata such as
artist biographies or user-generated tags. These latent item
factors are then either directly used in CBF systems such
as nearest neighbor recommendation, integrated into matrix
factorization approaches, or leveraged to build hybrid systems,
most commonly integrating CBF and CF techniques.

Probably the earliest work that uses DL for content-based
MRS is van den Oord et al.’s, who adopt a convolutional neural
network (CNN) using rectified linear units (ReLU) and no
dropout to represent each song by 50 latent factors learned
from audio features [23]. As input, they use short music audio
snippets retrieved from 7digital5 for tracks in the Million Song
Dataset (MSD) [35]. Training the CNN is then performed
on log-compressed Mel spectrograms (128 frequency bands,
window size of 23 ms, 50% window overlap), computed from
randomly sampled 3-second-clips of the audio snippets. Two
algorithmic variants are investigated: minimizing the mean
squared error (MSE) and minimizing the weighted prediction
error (WPE) as objective function. Experiments are conducted
on 382 K songs and 1M users of the MSD. Play counts for
user–song pairs are converted to binary implicit feedback data
(i.e., 1 if user u listened to item i regardless of the listening
frequency; 0 otherwise). Considering 500 predictions per user,

5https://www.7digital.com
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the experiments show that a CNN using MSE as objective
function performs best (AUC: 0.772). Linear regression using
a common bag-of-audio-words representation (vector-quantized
MFCCs) performed substantially worse (AUC: 0.645).

Wang andWang use a deep belief network (DBN), mini-batch
stochastic gradient descent and standard maximum likelihood
estimation (MLE) for training [24]. Input data consists of
randomly sampled 5-second-clips of audio snippets. Similar to
van den Oord et al., Wang and Wang acquire these snippets
from 7digital. The authors subsequently compute spectrograms
(120 frequency bands) on windows of 30 ms (no overlap),
resulting in a 166×120-matrix-representation of each 5-second-
clip. Eventually, principal components analysis (PCA) is applied
to reduce the dimensionality to 100 and this reduced signal
representation is fed into the DBN. The item representations
learned by the DBN are then integrated into a graphical linear
model together with implicit user preferences. Evaluation is
performed on the listening data of the top 100 K users in the
MSD [35] who listened to 283 K unique songs. Play counts are
converted into implicit feedback. The authors investigate a warm-
start scenario (all users and all items in the test set also appear in
the training set) and a cold-start scenario (all users but not all
items appear in the training set). Using the root mean squared
error (RMSE) as performance metric, the proposed DBN-based
approach achieves 0.323 in warm-start and 0.478 in cold-start.
Given the binary rating representation, a baseline that randomly
predicts 0 or 1 would achieve an RMSE of 0.707; a mean predictor
that always predicts a rating of 0.5 would achieve an RMSE of
0.500. Results of the DBN are almost equal to those achieved
by the best-performing approach by van den Oord et al. [23],
i.e., RMSE of 0.325 in warm-start and 0.495 in cold-start. Wang
and Wang also propose a hybrid MRS that integrates the DBN
output and a probabilistic matrix factorization model (PMF) [36]
for collaborative filtering. This hybrid achieves an RMSE of
0.255 (warm-start).

Liang et al. propose a hybrid MRS that integrates content
features learned via a multi-layer perceptron (MLP) as prior into
probabilistic matrix factorization [25]. The authors train a MLP
(3 fully-connected layers, ReLU activation, dropout, mini-batch
stochastic gradient descent) using as input data vector-quantized
MFCCs of 370K tracks of the MSD. The MLP is trained with
the objective to predict 561 user-generated tags, i.e., for an auto-
tagging or tag prediction task. The authors then use the output of
the last hidden layer (1,200 units) as latent content representation
of songs and assume that this representation captures music
semantics. This latent content model is integrated as prior into a
PMF model, which is trained with MLE. Evaluation is performed
on subsets of the MSD for warm-start and cold-start (new items)
situations on 614 K users and 97 K songs. In the warm-start
scenario, Liang et al.’s hybrid approach using MLP and PMF
performs equal to an approach that directly uses the vector-
quantized MFCCs instead of training a MLP and also equal to
a standard weighted matrix factorization (WMF) approach [37];
all achieve a normalized discounted cumulative gain (NDCG)
of 0.288. The cold-start scenario illustrates that using the latent
features given by the MLP clearly outperforms the sole use of
MFCC features (NDCG of 0.161 vs. 0.143).

Oramas et al. propose an approach to create separate
representations of music artists and of music tracks, and
integrate both into a CBF system [26]. First, they use WMF
on implicit feedback data (derived from play counts) to obtain
latent factors for artists and for songs. Subsequently, DNNs are
trained to learn the latent artist and the latent song factors
independently, using as input artist and track embeddings
created from artist biographies and song content, respectively.
To create song embeddings, spectrograms are computed using
the constant-Q transform (96 frequency bands, window size
of 46 ms, no overlap). For each track, only one 15-second-
snippet is considered. A CNN with ReLU activation and 50%
dropout trained on the fixed-length CQT patches is then used
to compute track embeddings. Artist embeddings are learned
from biographies enriched with information from the DBpedia6

knowledge graph and represented as term frequency-inverse
document frequency (TF-IDF) feature vectors [38]. A MLP
using as input these TF-IDF vectors is then trained to obtain
latent artist factors. The artist and track features are finally
combined in a late fusion fashion, using again a MLP. Evaluation
is carried out on a subset of the MSD (329 K tracks by
24 K artists for which biographies and audio are available).
Oramas et al. report mean average precision (MAP) values at
500 recommendations of up to 0.020 for their approach when
evaluated in an artist recommendation task and up to 0.004 when
recommending tracks.

4. SEQUENCE-AWARE MUSIC
RECOMMENDATION

Listening to music is an inherently sequential process. Music
aficionados and professional music editors create carefully hand-
crafted playlists for specific purposes or featuring a common
theme, cf. [39, 40]. Such playlists as well as users’ ad-hoc listening
sessions can be leveraged to build sequence models of tracks or
artists that are in turn used forMRS. Thanks to recent efforts such
as the ACM Recommender Systems Challenge 20187 [19, 41]
or the Sequential Skip Prediction Challenge of the WSDM Cup
2019,8 research on sequence-aware MRS is experiencing a boost.
Approaches taken in the ACM Recommender Systems Challenge
2018 are summarized and discussed in Lee [41].

Most research on the topic targets either next track
recommendation (also known as next song recommendation) or,
more generally, automatic playlist continuation (APC), cf. [42,
43]. Both tasks constitute of learning a model from existing
playlists or listening sessions, but they differ in terms of output.
While APC approaches produce track sequences of arbitrary
length, next track recommenders only suggest one track to listen
to next.

For a systematic investigation of early works on APC, we
recommend the survey and experiments conducted by Bonnin
and Jannach [42]. They assess on common datasets a set of non-
DL-based methods, i.e., k-nearest neighbors (k-NN), association

6https://www.dbpedia.org
7http://www.recsyschallenge.com/2018
8http://www.wsdm-conference.org/2019/wsdm-cup-2019.php
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rules, sequential patterns, and three other simple approaches:
adding to the playlist the most popular artists in the training set
in decreasing order of overall playlist occurrence, adding only
tracks by the same artists that already appear in the given playlist
and order them by popularity (“Same Artist—Greatest Hits”),
and adding tracks by the same artists already included in the
playlist and by similar artists where similarity is defined via artist
co-occurrence in other playlists (“Collocated Artists — Greatest
Hits”). The authors compare these approaches in terms of
recall at different numbers n of recommended items. They find
that simple k-NN outperforms the other approaches for small
values of n, but the Collocated Artists—Greatest Hits approach
outperforms all others for larger n values, depending on the
dataset starting as early as n ≈ 50 (50 K playlists retrieved from
the streaming service Last.fm) up to as late as n ≈ 1, 700 (for a
subset of 50 K playlists of the AotM-2011 dataset [21]).

Earliest works that leverage song orderings within playlists
predominantly use Markov chain models [21, 22]. While
not strictly adopting a neural network model, we mention
these works here for historical reasons because they mark
the beginning of research on APC. McFee and Lanckriet
use a generative model trained on hand-curated playlists, i.e.,
the AotM-2011 dataset [21]. The authors represent songs
by audio content features (timbre descriptors), tags, and
estimates of familiarity, adopting ideas from statistical natural
language processing. They train various Markov chains to
model transitions between songs and use them for generating
new songs that fit a given playlist. Another early approach,
which does not rely on audio features, is proposed by Chen
et al. [22]. The authors use logistic Markov embeddings to
model song transitions, which are learned from hand-curated
training playlists. This approach resembles matrix factorization
and results in an embedding of songs in Euclidean space based
on which nearest songs to the songs in a given playlist can be
easily identified. In these early works [21, 22], performance is
measured in terms of log-likelihood of the model to produce the
actual, known playlist continuations.

More recent work includes Vall et al.’s who target the next
track scenario and compare different approaches with respect
to their ranking performance [28]. The authors analyze the
influence of length of the user-generated playlists used for
training and of the order of songs in the training playlists on
prediction performance. They use a recurrent neural network
(RNN), adopted from [44], that only takes sequential information
without any additional metadata into account. Evaluation is
conducted based on two datasets: AotM-2011 [45] and a
commercial dataset provided by 8tracks9, a streaming service for
user-generated playlists. The authors use subsets of AotM-2011
and 8tracks, the former containing 2.7 K playlists with 12.3 K
songs, the latter 3.3 K playlists with 14.6 K songs. To measure
performance, they compute the rank in the list of predictions
at which the actual next song according to the ground truth
occurs. Compared to a popularity-based recommender and an
item-based CF system, the RNN yields more stable results and is
unaffected by popularity bias. Its performance further converges

9https://8tracks.com

already when given as input playlists of short length (2 or 3
songs, depending on the dataset used). The CF system performs
clearly worst. The popularity-based system achieves remarkably
good results similar to those of the RNN. Song order in training
and test playlists is not found to significantly influence the
performance of the RNN.

In a follow-up work, Vall et al. propose two approaches
to APC: profile-based and membership-based playlist
continuation [29]. The former classifies each song according to
whether it fits to each playlist in the catalog and subsequently
ranks, for a given playlist p, the candidate songs with respect
to their predicted probability of fit to p. It takes arbitrary
feature vector representations of songs as input to train a DNN,
minimizing binary cross-entropy loss. The membership-based
approach represents not only songs but also playlists as feature
vectors (of their constituting songs). In addition to the song
vectors, like in the profile-based approach, also the playlist
features are transformed into latent factors, i.e., a matrix of
latent factors, one row for each song in the playlist. This is
achieved via a DNN whose output is averaged over the latent
factor representations of all songs in the playlist. Both songs
and playlists are therefore represented in the same vector space,
which allows to directly apply a distance metric to estimate their
goodness of match. Again, binary cross-entropy loss is used as
objective function when training the DNN. Profile-based APC
can deal with the new item (song) problem, i.e., songs not seen
during training can be recommended. Membership-based APC
can additionally be used for new playlists, i.e., playlists unseen at
training time can be extended. As DNN, the authors use a CNN
to obtain 200-dimensional song (or playlist) representations
using an approach similar to van den Oord et al.’s [23]. They also
assess text embeddings of Last.fm tags created by word2vec [46]
as well as WMF [37] applied to listening logs from the MSD.
Evaluation is carried out like in 40. McFee and Lanckriet [28] on
the AotM-2011 and 8tracks subsets. When representing songs by
a concatenation of the CNN, word2vec, and WMF features, the
profile-based approach accomplishes a recall@100 of 0.178; the
membership-based approach reaches 0.181.

Sachdeva et al. propose an attentive neural network (ANN)
architecture for next song prediction [27]. They use one-hot
encoded representations of songs and of tags preceding the
song to be predicted. Tags and listening sessions are crawled
from Last.fm, including 386 K songs (no more details are
given). In the proposed ANN architecture, sequential song and
tag representations are fed into bidirectional gated recurrent
units (GRU), whose result is combined in the attention layer.
The attention layer’s context vector for songs and tags is then
concatenated and fed into a MLP, using a softmax function to
create a probability distribution over songs to serve as the next
song to play. Using only song representations, Sachdeva et al.’s
approach achieves a recall@10 of 0.264. Using song and tag
representations, recall@10 increases to 0.299.

Lin et al. propose another variant of an ANNwhich they name
heterogeneous knowledge-based attentive neural networks (HK-
ANN) [30]. This architecture contains two components: entity
embedding and short-term recommendation. The embedding
part learns embeddings from 3 different multimodal sources,
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i.e., graph data, textual data, and visual data. Graph data is
represented by a graph connecting songs, albums, artists, users,
playlists, and tags; textual data by song lyrics; visual data
by cover images. Graphical, textual, and visual embeddings
are learned separately. Graph embeddings are created using
TansR [47] for heterogeneous networks, textual embeddings
using paragraph vector with distributed memory (PV-DM) [48],
and visual embeddings by a variational autoencoder (VAE) [49].
Each of the 3 embeddings are created with a dimensionality of
100. They are concatenated to form a 300-dimensional vector
representation. These embeddings constitute the input to the
short-term recommendation component of the architecture.
More precisely, users’ short-term listening sequences of songs
are represented by the corresponding embeddings created in the
entity embedding step described above and fed into a RNN with
bidirectional GRU. In the encoding stage, the output of the RNN
is input into an attention layer from which the decoding stage
(again RNN with bi-GRU) linearly combines the parts of the
input sequence. This linear combination represents an attention
mechanism whose output is enriched by the latent factors of
candidate song items and of the current user, both represented
by the embedding created in the first stage of the algorithm.
The decoding stage therefore integrates the users’ attention of
sequences, their embeddings, and the embeddings of candidate
song items. Prediction is eventually effected using a softmax
layer. For training, mini-batch stochastic gradient descent is
used to minimize cross-entropy loss. The authors evaluate their
approach on a sample drawn from NetEase Cloud Music10 a
Chinese music streaming platform. The dataset comprises 9
K users, 1.4 M songs, 421 K albums, 151 K artists, and 100
K playlists as well as a large number of relational data to
create the network used in the graph embedding step. For more
details, please refer to Lin et al. [30]. The authors report several
performance measures at 20 recommended items: recall of 0.425,
MRR of 0.305, and NDCG of 0.385. The proposed HK-ANN
model thereby outperforms several traditional and state-of-the-
art approaches used as baseline. However, these baselines do not
take advantage of the full range of multimedia material used in
the HK-ANN approach.

5. CURRENT CHALLENGES

Despite its recent increasing adoption, current research on deep
learning for MRS is facing several challenges. First, as with many
tasks that employ DL, transparency is an issue. In the domain
of music recommendation, this relates to the transparency of
why a MRS decides whether a particular music item is suggested
to the target user, i.e., to the system’s reasoning when making
predictions. While several traditional machine learning methods,
such as rule learners or decision trees, are capable of providing
explanations for their classification or regression decisions, the
latent factors or embeddings used in current DL-based MRS
do not offer meaningful explanations. One direction to alleviate
this problem is to integrate traditional supervised methods with

10https://www.music.163.com

DNN, as proposed for instance in Zhang et al. [50] and Laptev
and Buhmann [51] as combinations of CNN and decision trees.

Another major challenge resulting from the recent fast
growing application of DL in MRS is the lack of established
multimodal datasets and the large variety of evaluation metrics
used to compare results between approaches. While some real-
world datasets such as the MSD [35] or the LFM-1b [52] dataset
do exist, several authors (have to) stick to other datasets, usually
self-assembled, because their approaches require additional data
not included in existing datasets, e.g., full lyrics, audio content,
or images of album covers. Furthermore, the used evaluation
metrics and their parameters (e.g., number of recommended
items) strongly vary between research works, which can be well
observed from the review provided in the previous sections.
Therefore, there is an urgent need for multimodal datasets
for MRS as well as for establishing a common agreement on
evaluation metrics to be used for common tasks in MRS, for
instance, APC.

Moreover, a shortcoming that particularly affects sequence-
aware MRS is that most research takes a highly system-centric
view. In particular in DL-based approaches, large amounts of
playlist data are leveraged to create computational sequence
models, without understanding, or considering in the model
the user’s intention to create a playlist or the purpose of a
listening session. Similarly, little is known about the relevance
of playlist properties, such as song order or diversity, for
users. Only recently, researchers started to investigate these
questions, cf. [53, 54]. Notwithstanding the importance of
a system-centric perspective, the challenge is to achieve a
balance between a purely system-centric view and a holistic
user-centric view. The latter should be considered both when
devising algorithms (e.g., by integrating holistic user models)
and when evaluating MRS powered by these algorithms
(e.g., by adopting beyond-accuracy metrics and assessing the
user experience).

Eventually, several other challenges relate more closely to
the particularities of the music domain. One is to answer the
question of how to deal with different variants of the same music
piece (e.g., cover songs or different interpretations of a piano
sonata). Depending on the target user’s preferences for or against
certain performers, the answer to this question may have a
strong influence on the perceived quality of recommendations.
Also, complex recommendation scenarios emerged recently in the
music domain. One remarkable example is that of sheet music
recommendation for piano practitioners as offered, for instance,
by OKTAV11. In such a scenario, the recommendation engine
needs to consider not only the general music preferences of the
user, but more specifically also his or her playing preferences
and, most importantly, piano skills to create personalized
recommendations. Another scenario is group recommendation,
for instance, how to create a playlist to listen to in a car with
several passengers. This scenario not only requires to take into
account the situational aspects, such as weather, road condition,
or traffic intensity, but also to consider multiple passengers’
preferences and align them with the driver’s. A final challenge is

11https://www.oktav.com
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that of multi-stakeholder music recommendation. Current MRS
are often tuned to benefit a single stakeholder (e.g., shareholders
of the streaming company, content creators, content providers,
or music consumers), whereas multi-stakeholder recommenders
take a holistic perspective onto the needs and demands of
the individual stakeholders and consider them jointly (e.g.,
increasing the business value of a company, raising the popularity
of a creator’s work, or discovering interesting new music for
the consumer).
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