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Design and fabrication of semiconductor photocatalyst 
for photocatalytic reduction of CO

2
 to solar fuel

Xin Li1,2, Jiuqing Wen2, Jingxiang Low1, Yueping Fang2 and Jiaguo Yu1,3*

The shortage of fossil fuels and the disastrous pollution of the 

environment have led to an increasing interest in artificial pho-

tosynthesis. The photocatalytic conversion of CO2 into solar 

fuel is believed to be one of the best methods to overcome both 

the energy crisis and environmental problems. It is of signifi-

cant importance to efficiently manage the surface reactions and 

the photo-generated charge carriers to maximize the activity 

and selectivity of semiconductor photocatalysts for photocon-

version of CO2 and H2O to solar fuel. To date, a variety of strat-

egies have been developed to boost their photocatalytic activity 

and selectivity for CO2 photoreduction. Based on the analysis of 

limited factors in improving the photocatalytic efficiency and 

selectivity, this review attempts to summarize these strategies 

and their corresponding design principles, including increased 

visible-light excitation, promoted charge transfer and separa-

tion, enhanced adsorption and activation of CO2, accelerated 

CO2 reduction kinetics and suppressed undesirable reaction. 

Furthermore, we not only provide a summary of the recent 

progress in the rational design and fabrication of highly active 

and selective photocatalysts for the photoreduction of CO2, 

but also offer some fundamental insights into designing highly 

efficient photocatalysts for water splitting or pollutant degrada-

tion.

INTRODUCTION
The shortage of the energy supply and the problem of di-
sastrous environmental pollution have been recognized as 
two main challenges in the near future [1]. It is a better way 
to efficiently and inexpensively convert solar energy into 
chemical fuels by developing an artificial photosynthetic 
(APS) system because solar fuels are high density energy 
carriers with long-term storage capacity. The most import-
ant and challenging reactions in APS—the photocatalytic 
water splitting into H

2
 and O

2
 (water reduction and oxida-

tion) [2–4] and photoreduction of CO
2
 to solar fuel, such 

as CH
4
 and CH

3
OH [5,6] have been extensively studied 

since the photocatalytic water splitting on TiO
2
 electrodes 

was discovered by Honda and Fujishima in 1972 [7]. The 
photocatalytic reduction of CO

2
 by means of solar energy 

has attracted growing attention in the recent years, which 
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is also believed to be one of the best methods to overcome 
both global warming and energy crisis [8]. However, it is 
also generally thought that photocatalytic CO

2
 reduction is 

a more complex and difficult process than H
2
 production 

due to preferential H
2
 production and low selectivity for 

the carbon species produced [9,10]. The progress achieved 
in the photoreduction of CO

2
 is still far behind that in wa-

ter splitting for a few decades because of the low efficiency 
and selectivity, and limited photocatalysts [11,12]. There-
fore, there is an urgent need for artificial photosynthesis 
research to focus on the formidable challenge of converting 
CO

2
 and water into valuable hydrocarbons or liquid fuels. 

Up to now, many different heterogeneous [4,13,14] and 
homogeneous [15] photocatalysts have been extensively 
studied in the different fields of photocatalysis over the past 
decades. Extensive research has been underway to develop 
highly heterogeneous photocatalysts for the application of 
semiconductor photocatalysis because heterogeneous sys-
tems have more advantages and a wider range of poten-
tial applications than the homogeneous systems [2,13,16]. 
From the viewpoint of searching for suitable photocatalysts, 
a number of reviews about various TiO

2
 and non-TiO

2
 het-

erogeneous semiconductor photocatalyst materials used 
in the fields of photocatalytic reduction of CO

2
 have been 

available [17–19]. However, most of them only focus on 
the review of various kinds of semiconductor photocata-
lysts, there are few reviews about the design strategies for 
the fabrication of highly efficient photocatalysts [20]. Be-
sides continuous fabrication of new visible-light-driven 
photocatalysts, it is also a very important topic to enhance 
the selectivity, stability and activity of existing photocata-
lysts for CO

2
 photoreduction. Furthermore, it is clear that 

photo-generated charge carriers and surface reactions play 
very important roles in enhancing the overall efficiency for 
CO

2
 photoreduction. Thus, it is also significant to efficient-

ly manage the photo-generated charge carriers and surface 
reactions of semiconductor photocatalysts to maximize 
the activity and selectivity for conversion of solar energy 
and CO

2
 to fuel. Any processes consuming photo-gener-
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ated electrons and undesirable reactions will decrease the 
overall efficiency, which should be weakened or completely 
avoided. In addition, the kinetic challenges are great owing 
to the complex multi-electron reduction processes of CO

2 

[21,22]. Thus, increasing the kinetics of CO
2
 reduction is 

a critical step to enhance the overall efficiency. Therefore, 
this review will focus on the design of highly selective and 
efficient semiconductor photocatalysts for CO

2
 photore-

duction through a rational management of photo-generat-
ed charge carriers and surface reactions. Various strategies 
and their corresponding design principles are summarized 
here, including increased visible-light excitation, promoted 
charge transfer and separation, enhanced adsorption and 
activation of CO

2
, accelerated CO

2
 reduction kinetics and 

suppressed undesirable reaction. This review not only dif-
fers from the previous reviews focusing on the summariza-
tion of various photocatalysts for CO

2
 photoreduction, but 

also is different from the reviews about the typical design 
strategies applied in the water splitting and organic pollut-
ants degradation due to the complexity of the carbon spe-
cies from CO

2
 reduction [23,24]. It may open a new oppor-

tunity for designing highly effective photocatalysts for both 
CO

2
 reduction and water splitting.

FUNDAMENTALS OF PHOTOCATALYTIC CO
2
 

REDUCTION

Thermodynamics of photocatalytic CO
2
 reduction

The free energy ΔG0 and the standard redox potential ΔE0 

of the multi-electron water splitting (Equation (1)) and 
CO

2
 reduction (Equation (2–6)) are listed in Equation 

(1–6) [25]. The ΔG0 values of all the reactions are highly 
positive, and make CO

2
 reduction a highly endothermic 

process which is much more difficult to proceed at ambi-
ent temperature. The ΔG0 values also indicate that the CO

2
 

reduction reactions can store more energy than the water 
splitting reaction [25,26].

 H2O(l) → H2(g) + 1/2O2(g), 

 ΔG0 = 237 kJ/mol, ΔE0 = 1.23 V. (1)

 CO2(g) → CO(g) + 1/2O2(g),

 ΔG0 = 257 kJ/mol, ΔE0 = 1.33 V. (2)

 CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g),

 ΔG0 = 286 kJ/mol, ΔE0 = 1.48 V. (3)

 CO2(g) + H2O(l) → HCHO(l) + O2(g),

 ΔG0 = 522 kJ/mol, ΔE0 = 1.35 V. (4)

 CO2(g) + 2H2O(l) → CH3OH(l) + 3/2O2(g),

 ΔG0 = 703 kJ/mol, ΔE0 = 1.21 V. (5)

 CO2(g) + 2H2O(l) → CH4(g) + 2O2(g),

 ΔG0 = 818 kJ/mol, ΔE0 = 1.06 V. (6)

For reduction of CO
2
, the reaction by one electron to 

form CO
2
− radical is highly unfavorable due to the higher 

reduction potential of −1.9 V vs. normal hydrogen elec-
trode (NHE). In addition, a large kinetic “overvoltage” for 
the one-electron reduction was required because of the 
structural differences between linear CO

2
 and bent CO

2
− 

[15,26,27]. In contrast, the multi-electronic processes are 
more favorable, which require much less energy for per 
electron transfer as compared to mono-electron process. 
The standard reduction potentials of CO

2
 for the half-cell 

reactions are summarized in Table 1 (at pH 7 in aqueous 
solution vs. NHE) [15,22,26–30]. Fig. 1 shows a Latim-
er–Frost diagram for the multi-electron, multi-proton re-
duction of CO

2
 in aqueous solution at pH 7 [31]. As de-

picted in Fig. 1, the slope derived from each blue dashed 
line represents the standard redox potential of the corre-
sponding multi-electron CO

2
 reduction reaction. It can be 

clearly seen from Table 1 and Fig. 1 that proton-assisted, 
multi-electron approach to CO

2
 reduction lowers the ther-

modynamic barrier significantly [31]. Furthermore, every 

Table 1  Reduction potentials of CO2

Reaction
E0 (V) vs. NHE 

at pH 7

Reduction potentials of CO
2

2H+ + 2e− →H
2

−0.41

CO
2
 + e−→ CO

2
− −1.9

CO
2
 + 2H+ + 2e−→ HCO

2
H −0.61

CO
2
 + 2H+ + 2e−→ CO + H

2
O −0.53

CO
2
 + 4H+ + 4e−→ C + 2H

2
O −0.2

CO
2
 + 4H+ + 4e−→ HCHO + H

2
O −0.48

CO
2
 + 6H+ + 6e− → CH

3
OH + H

2
O −0.38

CO
2
 + 8H+ + 8e−→ CH

4
 + 2H

2
O −0.24

2CO
2
+ 8H

2
O +12e– →C

2
H

4 
+ 12OH– −0.34

2CO
2
+ 9H

2
O +12e− →C

2
H

5
OH + 12OH− −0.33

3CO
2
+ 13H

2
O +18e− →C

3
H

7
OH + 18OH− −0.32

Reduction potentials of H
2
CO

3
 

2H+ + 2e− →H
2

−0.41

2H
2
CO

3
 + 2H+ + 2e− → H

2
C

2
O

4 
+ 2H

2
O −0.8

H
2
CO

3
 + 2H+ + 2e− → HCOOH + H

2
O −0.576

H
2
CO

3
 + 4H+ + 4e− → HCHO + 2H

2
O −0.46

H
2
CO

3
 + 6H+ + 6e− → CH

3
OH + 2H

2
O −0.366

H
2
CO

3
 + 4H+ + 4e− → C + 3H

2
O −0.182

Reduction potentials of CO
3
2− 

2H+ + 2e− →H
2

−0.41

2CO
3
2− + 4H+ + 2e− → C

2
O

4
2−+ 2H

2
O 0.07

CO
3
2− + 3H+ + 2e− → HCOO + H

2
O −0.099

CO
3
2−  + 6H+ + 4e− → HCHO + 2H

2
O −0.213

CO
3
2− + 8H+ + 6e− → CH

3
OH + 2H

2
O −0.201

CO
3
2− + 6H+ + 4e− → C + 3H

2
O 0.065
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step necessary for converting CO
2
 to CO, then to H

2
CO, 

then to hydrocarbons or alcohols also has low kinetic barri-
ers [31,32]. Therefore, in comparison with the mono-elec-
tron process, proton-assisted multielectron transfer is an 
alternative and more favorable pathway to reduce CO

2
. 

H
2
CO

3
 and the carbonate ions in the solution can be re-

duced to a number of products, such as CH
3
OH, HCOOH, 

and HCHO, through multi-electron transfer processes. The 
potentials calculated for H

2
CO

3 
and CO

3
2− are also listed in 

Table 1, respectively [28,29]. When comparing them, it is 
clear that the route of methanol formation from H

2
CO

3 
or 

CO
3
2− is more thermodynamically favorable than that from 

CO
2
.

Because of high stability and low energy grade of CO
2
, 

the chemical transformations of CO
2
 are thermodynami-

cally highly unfavorable. As a consequence, a large input 
of energy is required to drive the desired transformations. 

Moreover, the use of catalysts is necessary owing to its in-
ertness [27,33]. Therefore, the reduction reaction of CO

2
 is 

quite challenging. So far, thermochemical, electrochemical, 
photoelectrochemical (PEC), and photochemical reduc-
tions of CO

2
 into hydrocarbon fuels with the help of cata-

lysts have been extensively studied [33–35]. Without pro-
ducing more CO

2
, economical and environment-friendly 

reduction of CO
2
 to value added chemicals is highly de-

sired, which is possible only if renewable energy, such as 
solar energy, is used as the energy source. Among them, 
development of APS systems, such as PEC or photochem-
ical reduction of CO

2
 into solar fuel, is one of the ultimate 

goals in the reduction of CO
2 

[36]. For example, in 1978, 
Halmann [6] first found that CO

2
 was photoelectrochem-

ically reduced to CH
3
OH on a p-type GaP electrode. In 

the second year, Inoue et al. [5] first reported that formic 
acid, formaldehyde, and methyl alcohol could be produced 
through the photocatalytic reduction of CO

2
 in aqueous 

suspensions of semiconductors such as TiO
2
, ZnO, CdS, 

GaP and SiC. Through APS systems, solar energy and CO
2
 

are directly transformed and stored as chemical energy 
such as CH

3
OH. Consequently, the photoreduction of CO

2
 

to solar fuel is particularly interesting and amazing, and 
has been extensively studied in the past decades. 

It is well known that the photocatalytic properties of 
semiconductor mainly come from the formation of pho-
togenerated charge carriers (holes and electrons) which 
occur upon the absorption of photons with energy equal 
to or greater than the band gap energy (E

g
) separating the 

valence band (VB) from the conduction band (CB) (Fig. 2) 
[37,38]. The photogenerated holes in the VB diffuse to the 
semiconductor surface and react with water to produce O

2
 

or form hydroxyl radicals (•OH). Then, hydroxyl radicals 
further oxidize nearby organic molecules on the semicon-

Figure 1  Latimer–Frost diagram for the multi-electron, multi-proton re-

duction of CO
2
 in aqueous solution at pH 7.

Figure 2  Processes involved in photocatalytic CO
2
 reduction over a heterogeneous photocatalyst. CRC, CO

2
 reduction co-catalysts; WOC, water 

oxidation co-catalysts.
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ductor surface [37,38]. Meanwhile, electrons in the CB par-
ticipate in reduction processes, which typically react with 
water to produce H

2
 or with CO

2
 to produce fuel [4,37,38]. 

To achieve CO
2
 photoreduction, a good photocatalyst must 

have suitable band positions (VB and CB) and E
g
. In other 

words, the bottoms of CB must be located at a more nega-
tive potential than the reduction potentials of CO

2
, whereas 

the tops of the valence bands must be positioned more pos-
itively than the oxidation potential of H

2
O to O

2
, the redox 

reaction can proceed under irradiation at an energy equiv-
alent to or greater than the band gap of the semiconductor 
photocatalyst [16]. Importantly, the yields of products from 
CO

2
 reduction increase as the CB becomes more negative 

with respect to the redox potential of a certain reaction of 
CO

2
 reduction, which has been demonstrated by the pio-

neering report in 1979 [5].
Based on this principle, it is easily found that many can-

didate materials with suitable CB positions are suitable for 
photocatalytic reduction of CO

2
. Several potential semi-

conductors (e.g., TiO
2 
[19,39], ZnO [5,40–43], ZnS [36,44–

47], SrTiO
3
 [11,48–50], SiC [5,51–53], Cu

2
O [54–57], CdS 

[5,58–63], GaP [5,64], TaON [65–68], C
3
N

4 
[69–71], BiVO

4 

[72–76] and Ta
3
N

5 
[77–80]) are listed in Fig. 3. Among 

them, TiO
2
 is the most studied photocatalyst for CO

2
 re-

duction because it is cheap, nontoxic, made up of abun-
dant elements, and resistant to photocorrosion. However, 
its poor visible light absorption ability should be enhanced. 
Meanwhile, Cu

2
O, CdS, GaP, TaON, C

3
N

4
 and Ta

3
N

5 
are 

good candidates for photocatalytic reduction of CO
2
 under 

visible light irradiation. However, their weak photostability 
should be improved. The photocatalysts with more nega-
tive CB levels (in the right side of Fig. 3) seem to be better 
choices for the photocatalytic reduction of CO

2
.

Process and mechanism of photocatalytic CO
2
 reduction

Process of photocatalytic CO
2
 reduction

In addition to suitable E
g
 and CB potentials, there are many 

other factors influencing the overall efficiency of photocat-
alytic CO

2
 reduction, such as photocatalytic process and 

CO
2
 reduction kinetics. Typical processes of photocatalytic 

CO
2
 reduction over a semiconductor photocatalyst are il-

lustrated in Fig. 2. They include the excitation, transport, 
separation, the elctrocatalytic reduction of CO

2
 and water 

oxidation.
The first step (1) in Fig. 2 is the excitation of photo-gen-

erated electron-hole pairs in the bulk of semiconductor 
particles by absorbing photon energy greater than the band 
gap energy of a material. Therefore, to increase the exci-
tation efficiency of electron-hole pairs by visible light, a 
photocatalyst should have a much narrower band gap (E

g 
< 

3.0 eV or λ > 415 nm). From the viewpoint of visible light 
utilization, it should be an efficient strategy to develop vis-
ible-light-driven photocatalysts.

The second step (2) in Fig. 2 shows the separation of ex-
cited electrons and holes and their migration to the surface 
for the desired chemical reaction. As a competitive process, 
the bulk charge recombination, step (3), is an important 
deactivation process because the number of excited charge 
carriers significantly decreases by generating phonons or 
heat. To enhance the overall efficiency, it is of significant 
importance to improve transfer of photo-generated charge 
carriers to surface and inhibit their recombination in the 
bulk. Clearly, the structural and electronic properties of a 
photocatalyst have significant effects on these two steps. 
Thus, any strategy beneficial to the charge separation and 
transport, such as fabrication of nano-structured semicon-

Figure 3 Band positions of some semiconductor photocatalysts and the redox potentials of CO
2
 reduction at pH 7 in aqueous solution. 
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ductor, semiconductor heterojunctions or semiconductor/
nano-carbon heterojunctions, should be taken into ac-
count to maximize the utilization rate of photo-generated 
charge carriers.

Once the photogenerated electrons reach the surface, 
the step (4) will occur. The process (4) is the electrocatalyt-
ic reduction of CO

2
 by photo-generated electrons trapped 

in the CO
2
 reduction co-catalysts (CRC) or the surface 

active sites. This process is usually a multi-electron and 
multi-step process involving a cascade of reactions, elec-
tron and proton transfer, C–O bond breaking, C–H/C-C 
bond formation and a multitude of products [81–86]. In 
most cases, the CRC should be loaded on the surface of 
semiconductors to achieve a highly efficient and selective 
reduction of CO

2
 to specific products. During the photo-

catalytic reduction of CO
2
, the formation of stable products 

requires at least two electrons, because some of products or 
intermediates are unstable or difficult to detect and quanti-
fy. Accordingly, the multistep mechanism is very complex. 
Any efficient strategy that promotes CO

2
 reduction kinet-

ics should be considered to be a possible way to boost the 
efficiency, such as developing mesoporous photocatalysts 
and loading CRC.

Meanwhile, the step (5) will also occur when the photo-
generated holes reach the surface. The step (5) represents 
the electrocatalytic oxidation of water by the photogenerat-
ed holes trapped in the water oxidation co-catalysts (WOC) 
or the surface active sites. Improving water oxidation can 
promote the separation of photo-generated charge carriers 
on the surface of semiconductors, thus leading to the en-
hancement in activity for CO

2
 photoreduction. In addition, 

the process (6), surface charge recombination, will occur 
if there are no enough active sites or co-catalysts on the 
surface of semiconductors. Apparently, the surface charge 
recombination should also be avoided because it is also in-
effective for photocatalytic CO

2
 reduction process, whereas 

the surface trapping should be enhanced by improving sur-
face properties of the photocatalysts such as surface reac-
tion sites, surface states and morphology.

In addition, the processes (7) and (8) in Fig. 2 represent 
the electrocatalytic H

2
 evolution by trapped photo-generat-

ed electrons in CO
2
 reduction co-catalysts and the electro-

catalytic oxidation of reduction products by water oxida-
tion co-catalysts, respectively. In the processes (7), the H

2
 

evolution will greatly decrease the utilization rates of pho-
to-generated electrons for CO

2
 reduction. In the processes 

(8), the oxidation of CO
2
 reduction products by photo-gen-

erated holes is harmful for both water oxidation and CO
2
 

reduction. Clearly, these two processes are the unfavorable 
ones, because they could significantly reduce the quantum 
yield of photocatalysts for CO

2
 photoreduction. Thus, to 

design highly efficient photocatalysts for photocatalytic 

CO
2
 reduction, these factors should be comprehensively 

considered and the effective strategies should also be de-
veloped to avoid or decrease these unfavorable processes.

Mechanism and kinetics of photocatalytic CO
2
 reduction

One famous mechanism based on the formation of CO
2
− 

radical anion was first suggested by Anpo et al. [86]. In 
terms of this mechanism, the adsorbed CO

2
 molecule was 

activated by a one-electron reduction, leading to the for-
mation of surface-bound CO

2
− radical anion. Then, the CO

2
− 

radical anion was selectively reduced to CO (or HCOOH), 
CH

2
OH, CH

3
OH and CH

4
 by the photo-generated elec-

trons, H+, hydrogen radical (H•) and OH radical (OH•) 
[5,17,83–85]. Although the COO

2
− radicals and CO

2
 reduc-

tion intermediates during the processes of CO
2
 reduction 

have been identified by different spectroscopy [86–88], the 
one-electron reduction of CO

2
 is thermodynamically unfa-

vorable due to the highly negative electrochemical reduc-
tion potential (−1.9 V vs. NHE) of  the anion radical CO

2
− 

and the low CB potential of semiconductors. Therefore, 
most favorable reaction pathways consisting of a multiple 
electron transfer have been also reported.

The two-electron, two-proton reaction pathway is one 
typical multiple-electron reaction mechanism, which was 
first proposed by Inoue and co-workers

 
[5] based on small 

amounts of formic acid, formaldehyde, methyl alcohol, and 
methane produced by photoreduction of CO

2
. A multi-step 

reduction process of conversion of CO
2 
to methane can be 

described using Equation (7).

 

  

  





  

   



 

  


2

2

2e 2e 2e

2 2 2
2H 2H H O 2H

2e

3 4
2H H O

CO HCO H H CO

CH OH CH
 

(7)

 CO2 + 2e− + H+→HCOO−. (8)

A similar route involving surface formate species as the 
primary intermediate has been also proposed by Wu et al. 
[89] on the basis of in-situ IR spectroscopic studies. The bi-
carbonate, carbonate, formate, formaldehyde and methoxy 
species on TiO

2
 surface were observed from IR absorption 

bands. A concerted two-electron and one-proton transfer 
(see Equation (8)) to adsorbed CO

2
 molecules on the TiO

2
 

surface was also demonstrated by Dimitrijevic et al. [90] 
using low temperature electron paramagnetic resonance 
(EPR) measurements. The formation of H atoms and OH• 
radicals in addition to methyl (•CH

3
) and methoxy (•CH

3
O) 

radicals on the surface was also observed by the electron 
spin resonance (ESR) results. Then the reaction of methox-
yl radical with H

2
O can lead to the formation of methanol. 

However, it appears clearly that methanol or formic acid 
as intermediates in the formation of hydrocarbons on Ti-
SBA-15 is impossible because added methanol or formic 

,
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acid does not enhance the concentration of hydrocarbons. 
While, added formaldehyde can increase the photoconver-
sion of CO

2
 to hydrocarbon products [91]. Meanwhile, Frei 

and coworkers [92,93] demonstrated that formic acid is the 
primary 2-electron reduction product of CO

2
 at the excited 

Ti centers of Ti silicalite molecular sieve using methanol 
as electron donor, while CO is the single-photon, 2-elec-
tron-transfer reduction product of CO

2
 at framework Ti 

centers with H
2
O acting as an electron donor. Moreover, 

methyl formate was also mainly produced for photocatalyt-
ic reduction of CO

2
 over some other photocatalysts (such 

as Bi
2
S

3 
[94], CuO-TiO

2 
[95], Ni-doped ZnS [96] and Ag 

Loaded SrTiO
3 

[49]) in methanol solution. Therefore, the 
two-electron, two-proton reaction steps from methanol 
or formic acid to hydrocarbons on most semiconductors 
seem to be impossible in many systems. 

A hypothesis, the CO would react with atomic hydrogen 
to form hydrocarbons, was also proposed by Varghese et al. 
[97]. The possible reactions are seen in Equation (9–14):

 H2O + 2h+ → 1/2O2 + 2H+,  (9)

 H2O + h+→ •OH + H+,    (10)

 H+ + e− → H•,   (11)

 H• + H• → H2,     (12)

 2CO2 + 4e− → 2CO + O2,   (13)

 CO + 6e− + 6H+ → CH4 + H2O.  (14)

However, the validity of this hypothesis need to be fur-
ther verified. Meanwhile, another reaction mechanism 
through the formation of CO in the initial stages followed 
by its conversion to formaldehyde, then to other hydrocar-
bon products was proposed by Yang et al. [91]. Importantly, 
it also showed that formaldehyde is extremely reactive over 
Ti-SBA-15 and that the formation of C

2
 and >C

2
 hydrocar-

bons could be also explained through this mechanism.
Recently, a mechanism involving dimerization of sur-

face C
1
 species was proposed as a possible route for the 

formation of C
2
 hydrocarbon products [98,99]. Interest-

ingly, Shkrob et al. [87] recently reported a glyoxal cycle for 
CO

2
 fixation. In addition to methane, this cycle generates 

complicated organic molecules, such as glycolaldehyde, 
acetaldehyde, and methylformate, which were observed in 
product analyses. This cycle can be regarded as one of the 
simplest realizations of multistep, photosynthetic fixation 
of atmospheric carbon in prebiotic nature [87]. Therefore, 
the glyoxal cycle accounts for several known byproducts, 
such as methanol, formate, formaldehyde, acetaldehyde, 
and methylformate, which provides a new idea to study the 
mechanisms for photocatalytic reduction of CO

2
. Thus, it is 

clear that the products for CO
2
 photoreduction in aqueous 

medium exist in both the gas and liquid phases. However, 
most researchers only measured one or two of reduction 

products in liquid phase and ignored the analysis of prod-
ucts in gas phase, which was not beneficial for a detailed 
study on the mechanism of CO

2
 photoreduction and the 

selectivity of products. Therefore, in addition to the mea-
surements of products in liquid phase, it is also import-
ant to analyze the reduction products in the gas for CO

2 

photoreduction in aqueous medium [83,100,101]. Special 
attention should also be focused on the photocatalytic re-
duction of CO

2
 to C

x
 (x ≥ 2) organic compounds, which 

is also promising and has received far less attention than 
analogous systems leading to C

1
 products [84,98,99].

Furthermore, the kinetic equations based on different 
mechanisms were developed for modeling the photocata-
lytic reduction of CO

2
. A Langmuir–Hinshelwood type ki-

netic equation was first developed for modeling the photo-
catalytic reduction of carbonate by the UV/TiO

2
 process in 

aqueous solution [102]. The results indicate that the pho-
tocatalytic reduction rate of carbonate is adsorption-con-
trolled [102]. Meanwhile, a one-site Langmuir–Hinshe-
wood (L–H) kinetic model was further applied to simulate 
the photoreduction rate of CO

2
 to CO (or H

2
) and CH

4 

using H
2
O over TiO

2 
[102–105]. In addition, Anpo’s mech-

anism, wherein CO is proposed as the primary intermedi-
ate, was well supported by this kinetic model [102–104].

In summary, the complex photocatalytic processes and 
kinetics of CO

2
 reduction on semiconductors lead to a very 

low efficiency of CO
2
 photoreduction. It is clear that the re-

duction potentials of CO
2
 to CH

3
OH and CH

4
 products are 

thermodynamically more feasible than that required to re-
duce protons to H

2
. However, the kinetics of CO

2
 reduction 

is unfavorable due to the multi-electron reduction pro-
cesses. At this point, the kinetic challenges are great, and 
thus the improvements of kinetics of CO

2
 reduction play 

important roles in enhancing the overall efficiency. Mean-
while, the complex photocatalytic processes, including ex-
citation, transport, separation, adsorption and activation 
of CO

2
, CO

2
 reduction kinetics and water oxidation have 

also important impacts on the overall efficiency of CO
2
 re-

duction. Therefore, the control of photocatalytic processes 
and kinetics of CO

2
 reduction is rather critical to enhance 

the overall efficiency, which is strongly dependent on the 
bulk and surface properties of photocatalysts and can be 
improved by rational design and fabrication of photocata-
lysts [16,106,107]. 

All factors influencing the efficiency of photocatalytic 
CO

2
 reduction, including charge excitation and transport, 

adsorption and activation of CO
2
, CO

2
 reduction kinet-

ics and undesirable reaction are summarized in Fig. 4. As 
shown in Fig. 4, to achieve a high efficiency and selectiv-
ity, the corresponding engineering strategies including in-
creased visible-light excitation, improved charge transfer 
and separation, enhanced adsorption and activation of 
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CO
2
, accelerated CO

2
 reduction kinetics and suppressed 

undesirable reaction, can be used to manage photo-gener-
ated charges and enhance the overall efficiency, which will 
be discussed in detail in the following sections.

STRATEGIES FOR DESIGN AND FABRICATION 

OF PHOTOCATALYSTS FOR CO
2
 REDUCTION

Increased visible-light excitation

As described above, the process (1) in Fig. 2 is strongly 
dependent on the band gap of a semiconductor photocat-
alyst. The low visible light absorption is a key factor affect-
ing the photocatalytic efficiency of many wide band gap 
semiconductors. This is because the wide band gap makes 
semiconductors active only in ultraviolet region of the 
solar spectrum (about a 4% of the total sunlight energy), 
and limits utilization of light in visible region (about 48% 
of the total sunlight energy). Therefore, many efforts have 
been made to search for the visible-light-driven photocat-
alysts. One typical strategy is to exploit new single-phase 
visible-light-driven photocatalysts (e.g., CdS [60,63,108], 
C

3
N

4 
[69,109,110], WO

3
 [111,112], CaFe

2
O

4
 [113,114], La-

CoO
3
 [115], BiVO

4
 [116,117], Bi

2
WO

4
 [118,119], Fe

2
V

4
O

13 

[120] and InTaO
4
 [121–124]), which have proven to be ac-

tive for photocatalytic reduction of CO
2
 in visible region. 

The other typical strategy is to make the wide band gap 
semiconductors active in visible region through a suitable 
modification. As shown in Fig. 5, there are generally five 
strategies to develop visible-light-driven photocatalysts 
from wide band gap semiconductors: impurity doping, in-
troduction of structural defects, sensitization, surface plas-
mon resonance (SPR) effect and solid solution, all of which 

have been applied in the fields of photocatalytic reduction 
of CO

2
.

Impurity doping

The first strategy is to tune the electronic properties and 
visible-light response of semiconductor nanocrystals via 
an impurity doping, which can introduce a localized elec-
tronic states (LS) into the band gap of a wide band gap 
semiconductor, thus achieving a two-step photoexcitation 
by the low-energy visible-light photons [125]. On the 
one hand, nonmetal ion doping such as nitrogen and io-
dine can lead to an obvious red shift in optical response 
and an significant enhancement in the visible light activity 
of wide band gap semiconductors, although there is still 
a lively debates about the causes for red-shifts of the ab-
sorption edges [126]. For example, Li et al. [127] reported 
that nitrogen-doped mesoporous TiO

2
 samples displayed 

good visible-light absorption and enhanced activity for 
CO

2
 photoreduction to methane by water in gas phase 

under visible-light irradiation. It was believed that the 
mesoporous structure and N-doping were responsible for 
inhibiting the recombination of photogenerated electrons 
and holes and improving visible light absorption, respec-
tively, thus leading to an improved photoactivity. The mes-
oporous nitrogen doped Ta

2
O

5
 exhibits excellent photocat-

alytic activity for hydrogen evolution and CO
2
 reduction 

(modified with ruthenium-complex) under visible-light ir-
radiation due to their larger surface area, enhanced visible 
light absorption and controlled morphology [128]. Similar 
results were observed for nitrogen-doped InTaO

4
 photo-

catalysts, which showed a 2-fold increase in the yield of 
methanol compared to the undoped one [124]. In addition 
to N-doped TiO

2
, iodine-doped TiO

2
 (I-TiO

2
) nanopor-

ticles (NPs) demonstrated significant enhancements in 

Figure 4  Factors influencing photocatalytic efficiency and correspond-

ing design strategies for highly efficient photocatalysts used in the photo-

catalytic reduction of CO
2
. 

Figure 5  Typical strategies for increasing visible-light excitation. 
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CO
2
 photoreduction to CO compared with undoped TiO

2
 

under both visible and UV-vis irradiations. The possible 
reasons are the synergistic effects of slightly increased sur-
face area, enhanced visible light absorption, and improved 
charge separation owing to the iodine doping [129]. The 
further enhancements in CO

2
 photoreduction to CO were 

also achieved by copper and iodine co-modified TiO
2
 NPs 

(Cu-I-TiO
2
) [130]. 

On the other hand, metal ion doping can also create the 
impurity levels in the forbidden band of wide-band gap 
semiconductors, which can also enhance their absorption 
for visible light. Furthermore, the doped metal ion can also 
perform as electron traps and active sites for highly selec-
tive CO

2
 photoreduction. It is well known that TiO

2
 doped 

with copper shows good selectivity for CH
3
OH from the 

reduction of CO
2
, which will be discussed below [55,131–

133]. Besides Cu, other metal-ion doping such as Ce [134], 
Mn [135], Ru [83,136], Ni [96,137], In [105], Fe [89], Ag 
[89,132], Au [136,138], Mg [139] and their co-doping with 
Cu or N have also been reported for photocatalytic reduc-
tion of CO

2 
and exhibit enhanced photocatalytic activities 

for the reduction of CO
2
. Generally, a metal cation doping 

of TiO
2
 not only creates oxygen vacancies and new active 

sites for the reaction, but also introduces localized mid-gap 
states which contribute to charge separation and the ab-
sorption of visible light [39]. In addition, self-doped Ti3+ 
is also an effective strategy to enhance the photocatalytic 
activity of TiO

2
 under visible light, which deserves more at-

tention in photocatalytic reduction of CO
2 
[140]. It should 

be noted that the excess amount of dopants as recombina-
tion centers can also lead to a greatly decreased activity for 
CO

2
 photoreduction. Thus, it is rather important to opti-

mize dopant concentration to achieve the highest activity 
for CO

2
 photoreduction.

Introduction of structural defects

The second effective strategy to enhance the visible light 
activity of wide band gap photocatalysts is to introduce 
defects (such as oxygen vacancies) on the surface of semi-
conductor substrates, which can effectively tailor their 
electronic structure, thus leading to an enhanced visible 
light absorption, improved charge transport and separa-
tion and increased active sites for adsorption and reduc-
tion of CO

2 
[141,142]. The previous results showed that the 

oxygen vacancies on the surface of semiconductors play 
important roles in the photocatalytic reduction of CO

2
 un-

der visible light. Liu et al. [143] first systematically studied 
the photoreduction of CO

2
 with H

2
O on defect-free and 

defective TiO
2
 anatase, rutile, and brookite nanocrystals, 

respectively. It was found that the activity of the defec-
tive brookite (He-pretreated samples) was enhanced by a 
factor of 10.3 for CO production and 8.2 for CH

4
 produc-

tion. The photocatalytic activities for CO
2
 reduction over 

un-pretreated samples follow the order anatase > brookite 
> rutile. The enhancement in the production of CO and 
CH

4
 from CO

2
 photoreduction was primarily attributed to 

the creation of oxygen vacancies and Ti3+ on the surface 
[143]. A H

2
-pretreated Cu/TiO

2
 exhibited a 10-fold and 

189-fold enhancement in the photoreduction of CO
2
 to 

CO and CH
4
, respectively [144]. The existence of Cu+/Cu0 

couples and the formation of surface defect sites (such as 
oxygen vacancies and Ti3+) in the H

2
-pretreated Cu/TiO

2
 

can greatly improve CO
2
 adsorption, charge transfer and 

trapping at the active sites of the adsorbed CO
2, 

thus lead-
ing to the significant enhancement in the activity for CO

2
 

production [144]. The existence of oxide vacancies on the 
surface of Bi

6
Mo

2
O

15
 sub-microwires enhanced the pho-

tocatalytic activity toward the photoreduction of CO
2
 into 

CH
4
 through capturing photo-generated electrons at the 

surface [145]. Recently, it was also reported that a highly 
selective photoreduction of CO

2
 to CO was achieved over 

defective CeO
2
 nanorods under ambient conditions (CO

2
, 

400 ppm) due to the synergistic effects of local strain and 
surface oxygen vacancies [146]. More interestingly, the ul-
trathin W

18
O

49
 nanowires with diameters below 1 nm also 

exhibited very high activity for CO
2
 photoreduction to 

methane which was several hundred times higher than that 
of commercial WO

3
 due to the presence of a large number 

of oxygen vacancies [141]. 
Similar results were obtained in the metal sulfide semi-

conductors. The quantized ZnS crystallites with low den-
sity of surface defects are indispensable for effective CO

2
 

reduction owing to stabilization of the electron-hole pair 
against recombination and elimination of electron deacti-
vation by surface traps [36].  The surface sulfur vacancies 
on CdS-DMF surface formed by reaction with the excess 
Cd2+ added in the systems can act as adsorptive sites for 
the CO

2
 molecule and increase the photocatalytic activity 

for reduction of CO
2
 to CO [58].  Meanwhile, the surface 

sulfur vacancies on the surface of ZnS-DMF(ClO
4
) formed 

by addition of excess Zn2+ result in the change in the prod-
uct distribution without losing photocatalytic activity [46].

In addition, the location of defects and the relative con-
centration ratio of bulk defects to surface defects in pho-
tocatalysts have also profound effects on their electronic 
properties and photocatalytic activities [147,148]. There-
fore, the density and location of defects should be paid 
more attention for the application of CO

2
 photoreduction 

in future studies.

Sensitization

The third effective strategy is to sensitize wide band gap 
semiconductors using dye and quantum dots (QDs) with 
visible-light activity. Clearly, the sensitizers as the absorb-
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ing species not only improve the sunlight harvesting due 
to their low band gap, but also inhibit the electron–hole 
recombination owing to the efficient charge separation by 
the semiconductor/sensitizer interface. Recently, dye-sen-
sitized TiO

2
 has also been reported in the photoreduction 

of CO
2
 to fuels with H

2
O. The formation rate of formic 

acid, methanol and formaldehyde on zinc-phthalocya-
nine (ZnPc) or CoPc sensitized TiO

2
 are much higher than 

those of TiO
2
 and physically absorbed CoPc(or ZnPc)/TiO

2 

[149–151]. Recently, it was found that the graphene oxide 
(GO)-immobilized CoPc photocatalyst exhibited higher 
photocatalytic  activity and selectivity for the photocatalytic 
reduction of CO

2
 to methanol by using water as a solvent 

and triethylamine as the sacrificial donor. Importantly, 
the photocatalyst also showed good photostability during 
the reaction [152]. A new copper(I) dye-sensitized TiO

2
−

based photocatalyst exhibits impressive effectiveness for 
the selective photoreduction of CO

2
 to CH

4 
under visible 

light [153]. Furthermore, full absorption of visible light of 
N

3
-dye along with efficient charge transfer in N

3
 dye-TiO

2
 

system gives rise to the superior photoreduction of the re-
sulting dye-adsorbed catalyst [154]. However, the improve-
ment of efficiency and long-term stability of dye-sensitized 
photocatalysts is still a great challenge for their practical 
applications. Meanwhile, a series of CdSe QD-sensitized 
Pt/TiO

2
 hetero-structures yield 48 ppm g−1 h−1 of CH

4
 and 

3.3 ppm g−1 h−1 of CH
3
OH (vapor)

 
for photocatalytic re-

duction of CO
2
 in the presence of H

2
O under visible light 

irradiation (λ > 420 nm) [155]. The PbS QDs enhance CO
2
 

photoreduction rates over TiO
2
 by a factor of 5 in compar-

ison with un-sensitized photocatalysts under broad band 
illumination (UV-NIR) [156]. The activity of CdS (or 
Bi

2
S

3
) QD-sensitized TiO

2
 nanotubes for photocatalytic 

reduction of CO
2
 to CH

3
OH was about 1.6 (or 2.2) times 

higher than that of TiO
2
 nanotubes due to enhanced visi-

ble-light absorption and improved charge separation [63]. 
It was also reported that 23.2% AgBr sensitized TiO

2
 exhib-

ited relatively high activity and selectivity for methane and 
methanol production under visible light irradiation. The 
highly efficient photocatalytic activity of AgBr/TiO

2
 is at-

tributed to its strong absorption in the visible-light region 
and the improved transfer and separation of photo-excited 
electrons and holes [157]. Moreover, a new composite pho-
tocatalyst based on overlapping energy states of TiO

2
 and 

copper indium sulfide (CIS) QDs was exploited, exhibiting 
the highest selectivity for ethane (> 70%) and a higher effi-
ciency of converting ultraviolet radiation into fuels (4.3%) 
using concentrated sunlight (> 4 Sun illumination) [158]. 
In addition, a new class of green QDs, silicon and carbon 
QDs [159–162], were expected to apply in designing the 
QD-sensitized photocatalysts for photocatalytic reduction 
of CO

2
.

Surface plasmon resonance (SPR) effect

The forth effective strategy is to use the localized surface 
plasmon resonance (SPR) effect, which refers to the col-
lective oscillation of the conduction electrons in noble 
metal NPs (i.e., Au and Ag) under visible light irradiation 
[163]. Thus, the plasmonic noble metal NPS can serve as 
an alternative type of sensitizer to enhance the visible-light 
absorption of photocatalysts due to SPR effects. In recent 
years, the interesting SPR effects have also been reported 
in the photoreduction of CO

2
 under visible light irradia-

tion [138,164,165]. For instance, Zhang et al. [164] report-
ed that the co-decoration of Au and Pt NPs with sizes of 
5–12 nm on TiO

2
 nanofibers could remarkably enhance 

their photocatalytic activity and selectivity for CO
2
 re-

duction to CH
4
. It was believed that the synergy of surface 

electron trapping of Pt and SPR of Au NPs greatly improve 
the charge separation of photoexcited TiO

2 
(as illustrated 

in Fig. 6), thus leading to a significant enhancement in the 
activity of photocatalytic CO

2
 reduction [164]. A 24-fold 

enhancement in activity and selectivity for photoreduction 
of CO

2 
to CH

4
 with water vapor was also observed because 

of the intense local electromagnetic fields created by the 
surface plasmons of Au NPs on TiO

2
 [138].

Besides good selectivity of plasmonic Au for CH
4
 pro-

duction, the plasmonic Ag NPs have also attracted much 
attention due to their excellent selectivity for methanol in 
liquid phase system. The methanol yields of CO

2
 photore-

duction over the plasmonic-shaped AgCl:Ag and AgBr:Ag 
are 188.68 and 108.696 μmol g−1,  under visible-light irra-
diation, respectively, due to the SPR of Ag NPs [166]. The 
2.5% Ag/TiO

2
 exhibited the best activity for photocatalytic 

reduction of CO
2
 to methanol due to the SPR effects, which 

was 9.4 times higher than that of pure TiO
2 

[167]. Fur-
thermore, the CH

4
 yield over plasmonic Ag NPs/TiO

2
 na-

norods was almost 5 times higher than that of undecorated 

Figure 6  Schematic diagram of photocatalytic process for CO
2
 reduction 

on the Au/Pt/TiO
2 
nanofibers.



December 2014 | Vol.57 No.1            79

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

TiO
2
 nanorods in gas phase system, which was correlated 

with the SPR effect and structure of TiO
2
 nanorods [168].

In addition, it was reported that the Cu-TiO
2
 nanorod 

films showed about twice the rate observed with pure ti-
tania films due to better separation of photogenerated 
electrons and holes and mild SPR effects [169]. Since Au 
and Ag are noble metals, in future studies, more attention 
should be placed on plasmonic Cu NPs or alloy plasmonic 
NPs with better selectivity for CO

2
 reduction [170–173]. 

Solid solution

The fifth effective strategy is solid solution, which can be 
formed through adding a narrow band gap semiconduc-
tor (for example, Ag

2
O, Cu

2
O, Fe

2
O

3
, Cr

2
O

3
, CuO and so 

on) into a wide band gap semiconductor. Both the band 
gap and position can be continuously adjusted by varying 
the ratio of the compositions of the narrow and the wide 
band gap semiconductors in the solid solution. Thus, the 
electronic structures and the photocatalytic performances 
of a semiconductor can be efficiently optimized. Recently, 
many researchers have revealed that solid solutions exhibit-
ed relatively high activity and selectivity for photocatalytic 
reduction CO

2
 to methanol, methane or ethanol under vis-

ible light. The multicomponent metal oxides (e.g., CuGa
1−x 

Fe
x
O

2
 [174]), metal sulfides (e.g., solid solutions of ZnS-

CdS microcrystals [45] and Cu
x
Ag

y
In

z
Zn

k
S

m 
[175]) and 

oxynitrides (e.g., zinc germanium oxynitride [176]) exhib-
ited high activity for the photoreduction of CO

2
 under vis-

ible light irradiation. For instance, the yellow Zn
1.7

GeN
1.8

O 
solid solution, synthesized by the nitridation of the wide-
band-gap Zn

2
GeO

4
, exhibits high activity for photocatalyt-

ic reduction CO
2
 into CH

4
 with H

2
O at room temperature 

under visible light irradiation. The reported photonic yield 
for Zn

1.7
GeN

1.8
O at 420 nm was 0.024% [177]. The further 

research showed that CH
4
 evolution over mesoporous zinc 

germanium oxynitride nitrided over a 10-h period is about 
26.8 ppm g−1, which is even higher than that of commer-
cial nitrogen-doped TiO

2
 (22.1 ppm g−1) under visible light 

[176]. The (Ga
1−x

Zn
x
)(N

1−x
O

x
) solid solutions with a band 

gap of 2.2–2.7 eV exhibited a high visible-light activity for 
photocatalytic conversion of CO

2
 and H

2
O into hydrocar-

bon fuel [178]. A high activity in converting CO
2
 and H

2
O 

into CH
4
 and O

2
 was achieved over zinc gallogermanate 

solid solution synthesized by introducing Zn
2
GeO

4
 into 

ZnGa
2
O

4
, due to improved hole mobility, enhanced water 

oxidation ability and  effectively narrowed band gap [179]. 
Importantly, this zinc gallogermanate solid was prepared 
by a hydrothermal ion exchange reaction, which is benefi-
cial to its surface area enhancement.

So far, most of these oxides are synthesized by high tem-
perature solid state reaction with very low surface area. The 
preparation of high surface area photocatalysts with meso-

porous structures is still a great challenge. Thus, to further 
boost the photocatalytic activities, it is highly desired to 
prepare mesoporous photocatalysts with high crystallinity 
by soft chemistry routes. 

Promoted charge transfer/separation

As mentioned above, the process (3) and (6) account for 
the bulk and surface recombination of photo-generated 
electron-hole pairs, respectively. Obviously, the above two 
processes are detrimental to photocatalytic efficiency en-
hancement of a semiconductor photocatalyst due to the 
decreased utilization rate of carriers for desired photore-
actions. Meanwhile, the process (2) represents the charge 
transfer to the surface without recombination, which is 
dependent on the crystal structure, crystallinity and par-
ticle size of a semiconductor photocatalyst. Thus, the issue 
of photo-generated charge transfer and separation has be-
come another key factor strongly affecting the efficiency of 
photocatalysis process. So far, a number of strategies have 
been employed to promote the transfer and separation of 
the photo-induced electrons and holes. Here, three dom-
inant strategies including nanostructured photocatalysts, 
semiconductor heterojunctions and semiconductor/na-
no-carbon heterojunctions will be discussed in detail.

Nanostructured photocatalysts

An efficient strategy for accelerating the transfer and sep-
aration of the photo-induced carriers is to construct nano-
structured photocatalysts. As is known, the nano-architec-
tures (e.g., physical dimensions, sizes, shapes and porous 
structures) of semiconductors have profound impacts on 
their photocatalytic performances. Generally, semiconduc-
tor nanomaterials have several advantages over their bulk 
counterparts for solar fuel generation due to the following 
reasons: higher surface-to-volume ratio, higher optical ab-
sorption, shorter charge migration length, stronger redox 
power and tunable electronic structure [180]. Further-
more, the photo-generated charges can also be efficiently 
separated to avoid bulk/surface charge recombination and 
transfer to the separated active sites on the surface of the 
photocatalysts. The relevant nanostructures including 0D 
nanocrystals, 1D nanowires/rods, 2D nanosheets and 3D 
hierarchical architectures have been widely investigated, 
which will also be discussed in detail in this section.

First, the construction of 0D nanocrystal photocatalysts 
has also become a widely accepted strategy to enhance the 
photocatalytic activities for CO

2
 reduction because of the 

nanosized and quantum size effects. Kocí et al. [100] stud-
ied the photoreduction of CO

2
 by water upon pure TiO

2
 

anatase particles with a crystallite diameters ranging from 
4.5 to 29 nm. Methane and methanol were the main re-
duction products. The optimum particle size correspond-
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ing to the highest yields of both products was 14 nm. The 
observed optimum particle size is a result of competing ef-
fects of specific surface area, charge-carrier dynamics and 
light absorption efficiency [100]. Liu et al. [181] studied 
the photocatalytic reduction of CO

2
 in various kinds of sol-

vents using TiO
2
 nanocrystals embedded in SiO

2
 (Q-TiO

2
/

SiO
2
) with an average diameter of 5.3 nm. Apart from TiO

2 

[143,181–183], other semiconductor NPs such as ZnS 
[36,46], CdS [62,184] and silicon [185] nanocrystals have 
also been found to exhibit better photocatalytic activities 
for the reduction of CO

2
. Consequently, with regard to the 

application of nanocrystalline semiconductors, it is im-
portant to obtain the optimal particle size for maximizing 
their photocatalytic efficiency for CO

2
 photoreduction. In 

addition, to prevent agglomeration of these particles, they 
should be capped with polymers or anchored on a stable 
support [2].

Second, there are many reports about the application of 
1D nanostructures in photocatalytic reduction of CO

2
 due 

to the shortened distance for charges to diffuse to the semi-
conductor/electrolyte interface and improved transport 
properties of charge carriers. TiO

2
 nanotubes [63,97,186–

191], nanofibers [192] and nanorods [168,169,193] exhib-
ited a much better photocatalytic activity for CO

2
 reduction 

than P25 or TiO
2
 NPs. For instance, Fu et al. [192] demon-

strated that the TiO
2
 nanofibers with a 2-h solvothermal 

treatment exhibited the highest activity for photocatalytic 
reduction of CO

2
 to CH

4
, which was about 6 and 25 times 

higher than those of TiO
2
 nanofibers without solvothermal 

treatment and P25, respectively, due to the enhanced CO
2
 

adsorption capacity and the improved charge separation. 
Moreover, NaNbO

3
 nanowires [194], Zn

2 
GeO

4
 nanorib-

bons [195] and nanorods [196] synthesized using a hydro-
thermal/solvothermal route showed much better photocat-
alytic activity for the conversion of CO

2
 to CO or CH

4
 than 

the corresponding samples prepared by a high-temperature 
solid state reaction. In addition, the surface area value and 

the activity of HNb
3
O

8
 nanobelts prepared by hydrother-

mal synthesis increased six and twenty times, respectively, 
in comparison with those of HNb

3
O

8
 particles prepared by 

solid state reaction [197]. 
Third, there is an increasing interest in developing 2D 

nanosheet-based semiconductors with dominant high-en-
ergy facets for the application in photocatalytic reduc-
tion of CO

2
 because of their facet-dependent properties. 

Among them, TiO
2
 nanosheets with exposed (100), (010), 

(101) or (001) facets were the most widely investigated 
photocatalysts in this field [172,198–201]. For instance, 
the anatase TiO

2
 ultrathin nanosheets with 95% exposed 

(100) facets showed a 5 times higher photocatalytic activ-
ity for reduction of CO

2
 to CH

4
 than TiO

2 
cuboids with 

53% exposed (100) facets [198]. The anatase TiO
2
 single 

crystals and mesocrystals with dominant (101) facets ex-
hibited a much superior activity towards CH

4
 generation 

from photoreduction of CO
2
, in comparison with solid 

crystals [199]. The anatase TiO
2
 (010) facets demonstrated 

a higher photocatalytic reduction efficiency of CO
2
 to  CH

4
 

than (001) facets due to its larger CO
2
 adsorbed amount 

and longer charge  lifetime [200]. More interestingly, Yu 
and coworkers [201] reported that the highest activity of 
TiO

2
 nanosheet for photoreduction of CO

2
 to CH

4
 can be 

achieved at an optimal ratio of the exposed (101) and (001) 
facets (45 : 55). This is attributed to the synergistic effect of 
an electron overflow and   surface heterojunction between 
the co-exposed (101) and (001) facets of anatase (Fig. 7). 
Importantly, the concept of surface heterojunction was first 
proposed in terms of the density functional theory (DFT) 
calculations, which may provide a new strategy for design-
ing sufficiently efficient photocatalysts [201].

In addition, ZnGa
2
O

4
 nanocube with the exposed (100) 

or (110) facets [202,203], Bi
2
WO

6
 square nanoplates with 

the exposed (001) surface [118], BiOCl nanoplates with 
oxygen vacancies [204], nanoplate-textured Zn

2
SnO

4
 with 

the exposed (100) surface [205] and WO
3
 nanosheets with 

Figure 7  An overflow effect and hetero-facet junction between (101) and (001) facets in anatase. 
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the exposed (001) surface [111] were successively report-
ed. These nanoplate/nanosheet photocatalysts exhibit en-
hanced performance for photocatalytic reduction of CO

2
 

into CH
4
 in the presence of water vapor due to the im-

proved separation of photo-generated electron and hole 
pairs

.
 However, so far, the photocatalytic selectivity on 

different facets of various semiconductors has not been 
studied systemically for the photoreduction of CO

2
. Thus, 

it is still very interesting to identify optimal ratio and the 
selectivity of different facets for CO

2
 photoreduction. In 

addition, much attention should be also paid to the simple 
and efficient methods to prepare nanosheets such as liquid 
exfoliation of layered materials [206].

Finally, it is known that 3D hierarchical semiconductor 
architectures assembled by nanoscaled building blocks gen-
erally display unique properties (such as the optical, elec-
tronic, and photocatalytic performances), which are distin-
guished from those of the mono-morphological structures. 
Thus, the 3D hierarchical semiconductor architectures 
have been widely applied in the CO

2
 photoreduction due 

to their increased specific areas and adsorption of CO
2
, as 

well as improved light harvesting and interfacial charge 
separation [94,119,207]. For example, Bi

2
WO

6
 hierarchical 

microspheres with hollow interiors synthesized via a facile 
anion exchange method display an excellent photoactivity 
for reduction of CO

2
 to methanol (32.6 μmol g−1), which 

is 25.5 times higher than that of Bi
2
WO

6
 prepared by solid 

state reaction (1.28 μmol g−1) under the same conditions 
[119]. The significantly enhanced activity can be attributed 
to the improved surface area and high CO

2
 adsorption ca-

pacity. Bi
2
S

3
 microspheres also showed the higher activity 

for photocatalytic reduction of CO
2
 to methyl formate in 

methanol due to their special hierarchical structure, good 
permeability and high light-harvesting capacity, as com-
pared with Bi

2
S

3
 NPs [94].

Semiconductor heterojunctions

Coupling semiconductors has also turned out to be another 
effective design strategy for improving their photocatalytic 
activity because better photo-generated charge transfer and 
separation can be achieved in the interface region between 
two different phases (or semiconductors) in close con-
tact. In coupled semiconductors, the electric-field-assisted 
charge transport from one particle to the other via inter-
faces between the semiconductors with matching band 
potentials can be achieved, which can greatly improve the 
electron-hole separation, increase the lifetime of the charge 
carrier, and enhance the interfacial charge transfer efficien-
cy to adsorbed substrate. Constructing heterophase junc-
tions (homojunctions) and heterojunctions are two main 
strategies used in designing the coupled photocatalysts.

So far, TiO
2
-based heterophase junction has been well 

developed in the photocatalytic reduction of CO
2
. The bic-

rystalline anatase–brookite composite displays the stron-
gest absorption in the visible–light region and on which 
the highest CH

3
OH yield from CO

2
 photoreduction is 3.4 

times higher than that on P25 or anatase catalyst in an 
aqueous system due to its unique electrical band structures 
and efficient transfer of electrons from brookite to anatase 
[208]. Similarly, the bicrystalline mixture with a compo-
sition of 75% anatase and 25% brookite also showed the 
highest photocatalytic activity for CO

2
 photoreduction to 

CO and CH
4
 in the presence of water vapor, as compared 

with pure anatase, brookite, and P25 [209]. The rutile TiO
2
 

nanoparticle modified anatase TiO
2
 nanorods showed 

high photocatalytic activity for CO
2
 reduction to CH

4
, 

which was almost two times higher than that of pure ana-
tase TiO

2
 nanorods [193]. A sputtered mixed-phase film 

(70% anatase, 30% rutile) deposited at low angle exhibited 
a strong red shift and the highest methane yield from the 
photoreduction of CO

2
 compared to TiO

2
 fabricated un-

der other sputtering conditions and commercial standard 
Degussa P25 under UV irradiation [210]. Li et al. [211] 
modified the commercial anatase TiO

2
 with the rutile by 

a low-temperature hydrothermal method and found that 
mixed-phase TiO

2
 nanocomposites sintered in air at 773 K 

exhibited a much greater rate of methane formation than 
Degussa P25. In addition, compared with cubic and ort-
horhombic NaNbO

3
, the activity of mixed-phase NaNbO

3
 

is enhanced by 30% and 200% in reducing CO
2
 into CH

4
, 

respectively, due to improved the charge separation by sur-
face-junctions (Fig. 8) [212].

Since the wide band gap of TiO
2
-based heterophase 

junctions limits their practical applications under visible 
light irradiation, the design of visible-light-driven photo-
catalysts with heterophase junctions has attracted much 
attention in recent years. Many visible-light-driven ho-
mojunctions (i.e., one-dimensional Cd

0.5
Zn

0.5
S nanorod 

Figure 8  Proposed electron transfer in NaNbO
3
-based junctions and the 

surface photocatalytic reactions. 
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homojunctions [213], a tungsten-doped BiVO
4
 homojunc-

tions [214], alpha-/gamma-Bi
2
O

3 
[215] homojunctions, 

and p–n Cu
2
O [216] homojunctions) have been reported 

recently, and all of them exhibited much higher photocata-
lytic activity or photovoltaic efficiency than the pure phase. 
However, there have been no reports about the application 
of visible-light-driven homojunctions in the CO

2 
photocat-

alytic reduction. Therefore, it is of great interest and worth 
noticing at this point that the heterophase junctions based 
on visible-light-driven semiconductors might have poten-
tial applications in the CO

2
 photoreduction under visible 

light irradiation.
Up to now, there are also many hetero-structured semi-

conductor systems applied in the fields of photochemical 
reduction of CO

2
. Among them, TiO

2
-based semiconduc-

tor composites have been extensively studied. The ordered 
mesoporous CeO

2
-TiO

2
 composites exhibited excellent 

photocatalytic activity in the reduction of CO
2
 with H

2
O to 

CH
4
 and CO under simulated solar irradiation, which were 

about ten and three times higher than that of commercial 
P25, respectively, due to the enhanced separation of photo-
generated electrons and holes [217]. TiO

2
/ZnO composites 

showed much higher performance in the photoreduction 
of CO

2
 into CH

4
, which was about six times higher than 

that of commercial P25. The enhancement in CO
2
 reduc-

tion performance of the hybrid TiO
2
/ZnO composites was 

probably resulted from a faster diffusion transport of pho-
togenerated electrons, decrease of electron-hole recombi-
nation rate and increase of specific surface areas [41]. 1.0 
wt% CuO-loaded TiO

2
 showed the highest photocatalytic 

reduction activity of CO
2
 to methyl formate in methanol 

solution, which was about two times higher than that of 
TiO

2 
[95]. The methane production rate over hetero-struc-

tured CuO-TiO
2−x

N
x
 hollow nanocubes was 2.5 times faster 

than that of Degussa P25 TiO
2
 when measured under the 

same conditions [218]. In addition, the CH
4
 production 

yield of optimal In
2
O

3
-g-C

3
N

4
 hybrids with 10 wt% In

2
O

3
 

(76.7 ppm) is three to four times higher than that of pure 
g-C

3
N

4
 or In

2
O

3
, due to effective charge separation and 

longer lifetime of the photogenerated charge carriers [219]. 
The hetero-structured Bi

2
S

3
/CdS [60] and Cu

2
O/SiC [52] 

photocatalysts have been used to photoreduction of CO
2
 to 

CH
3
OH under visible-light irradiation. In contrast to the 

single semiconductor, the hetero-structured photocatalysts 
showed a 2- or 3-fold enhancement in the photoactivity for 
CO

2
 reduction. It can be mainly ascribed to the improved 

charge separation. However, challenges still remain in the 
further promotion of electron transfer between two semi-
conductors. In future studies, it is of great interest to con-
struct the core/shell structured [220–222] and two-dimen-
sional layered heterojunction systems [223] because of the 
larger contact area and better surface passivation effects.

Semiconductor/nano-carbon heterojunctions

Another strategy for improving charge separation is cou-
pling semiconductor with nano-carbon materials, which 
can greatly enhance the collection and transfer of photo- 
generated electrons and reduce the charge recombination 
due to the excellent properties of nano-carbon materials. 
Among carbon-based supports, carbon nanotubes (CNT) 
and graphene are excellent candidates due to their out-
standing properties. CNT possesses many unique proper-
ties such as a large electron-storage capacity, good electron 
conductivity, good chemical stability, excellent mechanical 
strength, a large specific surface area (> 150 m2 g−1), and 
mesoporous character which favors the diffusion of react-
ing species [224–226]. Consequently, as a good support for 
semiconductors, CNT has been widely used to construct 
semiconductor–CNT nanocomposite photocatalysts in the 
past few years [227,228]. However, there are very restricted 
reports on semiconductor-CNT nanocomposite photocat-
alysts for photocatalytic CO

2
 reduction. The multi-walled 

CNTs (MWCNTs) supported TiO
2
 composite catalysts pre-

pared by the sol-gel method lead to the main formation of 
C

2
H

5
OH, while HCOOH is found to be the major product 

on the sample prepared by the hydrothermal method [229]. 
Chai and his coworkers [230,231] reported that the CNT@
Ni/TiO

2
 and MWCNT/TiO

2
 core-shell nanocomposites 

showed excellent photocatalytic activity towards CH
4
 syn-

thesis as compared to TiO
2
 and Ni/TiO

2
 under visible light 

illumination, on which the maximum yields of CH
4
 were 

0.145 and 0.17 μmol g
cat

−1 h−1, respectively.
Graphene, a single layer of graphite, possesses a unique two- 

dimensional structure, high conductivity (~5,000 W m−1 K−1), 
superior electron mobility (200,000 cm2 V−1 s−1), and ex-
tremely high specific surface area (~2,600 m2 g−1), and can 
be produced on a large scale at low cost [232–234]. Since 
the pioneering studies by Kamat and coworkers [235,236], 
semiconductor/graphene-based nanocomposites have at-
tracted a lot of attention in different fields due to their good 
electron conductivity, large specific surface area and high 
adsorption [222,237–240].

There were a large number of reports about the semi-
conductor-graphene nanocomposite photocatalysts for 
CO

2
 photoreduction. Interestingly, the graphene oxide can 

be directly applied as a promising photocatalyst for CO
2
 to 

methanol conversion. The largest conversion rate of pho-
tocatalytic CO

2
 to methanol on modified graphene oxide 

is 0.172 μmol g
cat

−1 h−1 under visible light, which is 6-fold 
higher than that of pure TiO

2 
[241]. The nanocomposites 

based on the less defective solvent-exfoliated graphene ex-
hibit a significantly larger enhancement in CO

2
 photore-

duction, especially under visible light [242]. The rates of 
CO and CH

4
 formations over the Ti

0.91
O

2
-graphene hol-

low spheres were 8.91 and 1.14 μmol g−1 h−1, respectively, 
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which was about 5 times higher than that over the Ti
0.91

O
2 

[243]. Meanwhile, the TiO
2
-graphene 2D sandwich-like 

hybrid nanosheets were also synthesized by a one-step 
hydrothermal method in a binary ethylenediamine (En)/
H

2
O solvent. The results showed that the synergistic effect 

of the surface-Ti3+ abundant TiO
2
 and graphene favors the 

generation of C
2
H

6
, and the yield of the C

2
H

6
 increases with 

increasing the content of incorporated graphene [244]. In 
addition, the hierarchically mesostructured TiO

2
/graphit-

ic carbon composite photocatalyst exhibited considerably 
higher activity in the photocatalytic reduction of CO

2
 with 

H
2
O than a mesostructured anatase TiO

2
 prepared by a sol-

gel method [245]. The NiO
x
-Ta

2
O

5
-rGO (reduced graphene 

oxide) containing 1 wt% graphene (G1.0) displayed the 
highest activity for photoreduction of CO

2
 to CH

3
OH, 

which was 3.4 times higher than that of corresponding 
photocatalyst without graphene (G0) under the same con-
ditions, due to promoted electron transfer and collecting 
characteristics of rGO [246]. The photocatalytic activity of 
graphene-WO

3
 (GW) nanobelt composites is higher than 

that of graphene oxide (GO), WO
3
 and P25 TiO

2
 because 

of the elevated conduction band of WO
3
 [247]. In another 

example, Cu
2
O/rGO composites exhibit a high activity for 

CO
2
 photoreduction to CO, which is about 6 and 50 times 

higher than that of the optimized Cu
2
O and Cu

2
O/RuO

x
 

junction, respectively. The enhanced activity is attribut-
ed to the efficient charge separation and transfer and the 
protection function of rGO [248]. Similarly, the CH

4
-pro-

duction rate of a rGO-CdS nanorod composite photocata-
lyst was increased 10-fold compared with that of the pure 
CdS nanorods, which was even better than that of an op-
timized Pt-CdS nanorod photocatalyst under the same re-
action conditions [108]. The rGO sheets in the composites 
not only promote the surface trapping and efficient sep-
aration of photo-generated charge carriers as an electron 
acceptor and transporter (as presented in Fig. 9), but also 

enhance the adsorption and activation of CO
2
 molecules, 

thus boosting the photocatalytic efficiency of the compos-
ite photocatalysts.

In addition, it is worth noticing that the defects of 
graphene in carbon/TiO

2
 nanocomposite photocatalysts 

also play a significant role in the photocatalytic reduction 
of CO

2
. Liang et al. [242] demonstrated that the less defec-

tive solvent-exfoliated graphene (SEG) resulted in a larg-
er enhancement in the activity for photoreduction of CO

2
 

to CH
4
, compared to the solvent-reduced graphene oxide 

(SRGO). It was found that the optimized graphene/TiO
2
 

nanocomposites exhibit approximately 7-fold improve-
ments in the photoreduction of CO

2
 compared with TiO

2
 

alone under visible illumination [242].

Enhanced adsorption and activation of CO
2

Effective adsorption and activation of CO
2
 is a key step for 

improving the efficiency for CO
2
 reduction. The adsorp-

tion and photoinduced activation of CO
2 
on stoichiometric 

and oxygen-deficient TiO
2
 surfaces have been theoretically 

[39,81,249,250] and experimentally studied [251,252]. Re-
cently, some interesting results have been reported through 
the quantum chemical calculations. Several CO

2
 adsorp-

tion sites on the predominant anatase TiO
2 

(101) surface 
and on nanoclusters

 
can be identified using first-principles 

calculations [39,249,253]. Thus, to well understand the key 
factors affecting adsorption and photoinduced activation 
of CO

2
,
 
a combination of experimental and computational 

studies is also highly expected.

Increased surface area for CO
2 
adsorption

For TiO
2
, it is clear that the adsorption isotherms of CO

2
 on 

pure
 
and nitrogen modified TiO

2
 photocatalysts can be well 

described by the Freundlich adsorption equation [63,254], 
which indicates that adsorption of CO

2
 onto TiO

2 
photo-

catalysts is a favorable physical process. Therefore, the en-
hancement in adsorption capacity of TiO

2
 photocatalyst for 

CO
2
 can be realized through increasing its surface area.

In recent years, it was widely reported that most met-
al-organic frameworks (MOFs) with super-high surface ar-
eas exhibit excellent adsorption capacity for CO

2 
[255,256]. 

Interestingly, MOFs are also a class of potential semicon-
ductors [257], which could be also directly applied in the 
photocatalytic CO

2
 reduction as photocatalysts [258–261]. 

For example, Fu et al. [259] reported that a photoac-
tive Ti-containing metal-organic framework, NH

2
-MIL-

125(Ti), exhibited a good photocatalytic activity for reduc-
tion of CO

2
 to formate anion under visible light irradiation. 

The Re complexes   derivatized UiO-67 served as an active 
catalyst for photocatalytic CO

2
 reduction to CO with a to-

tal turnover number (TON) of 10.9, which was three times 
higher than that of the homogeneous Re complexes [260]. 

Figure 9  Schematic illustration of the charge transfer and separation in 

the RGO-CdS nanorod system under visible-light irradiation. 
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Wang et al. [262,263] demonstrated that a cobalt-contain-
ing zeolitic imidazolate framework (Co-ZIF-9) as a robust 
MOF co-catalyst could achieve the photocatalytic conver-
sion of CO

2
 to CO by using a Ru-based dye or CdS as the 

light harvester. It was suggested that the Co-ZIF-9 could 
not only promote the CO

2
 capture and reduction catalysis, 

but also play a crucial role in improving electron transfers 
in the light harvester system [262,263]. Thus, it is natural-
ly expected that MOFs as good supports can greatly pro-
mote the activity of a photocatalyst for CO

2
 photoreduc-

tion to fuels due to their excellent adsorption capacity and 
photocatalytic reduction the activity for CO

2
. Recently, it 

was first verified that the addition of 25 wt% ZIF-8 to Zn-

2
GeO

4
 nanorods could achieve a 3.8-fold enhancement in 

adsorption capacity for CO
2
 dissolved in water and a 62% 

enhancement in photocatalytic activity for the reduction 
of CO

2
 to CH

3
OH [264]. Therefore, as molecularly tun-

able and recyclable photocatalysts in CO
2
 reduction, MOFs 

deserve more attention. However, the instability of MOFs 
in some conditions should be improved for their practical 
applications.

Increased basic sites for CO
2 
adsorption

Apart from increasing the surface area for CO
2
 adsorption, 

another widely selected strategy to maximize adsorption 
of acidic CO

2
 molecules is to introduce functional basic 

groups (or basic sites) on the material surface of porous 
materials [255,256,265]. For example, the amine-function-
alization of TiO

2
 NPs exhibited significantly enhanced ac-

tivities for photoreduction of CO
2
 into methane and CO 

due to improved chemisorption and activation of CO
2
 and 

charge transfer from excited TiO
2 

[266]. At this regard, it 
is expected that mesoporous C

3
N

4
 photocatalyst should 

have excellent adsorption selectivity and capacity for CO
2
 

because of rich nitrogen-containing groups on the sur-
face of C

3
N

4 
[70]. However, so far, there are few reports 

about the CO
2
 adsorption and photoreduction on C

3
N

4 

[69,109,110,267]. Thus, more efforts should focus on the 
adsorption and photocatalytic reduction CO

2
 on meso-

porous g-C
3
N

4
 photocatalysts in future studies. Further-

more, the nitrogen-doped carbon nanotubes (CNTs) or 
graphene have been extensively used as an efficient electro-
catalyst for hydrogen or oxygen evolution [268–270], be-
cause nitrogen impurities can function as catalytic sites. In-
terestingly, the nitrogen-containing sites are also potential 
active sites for CO

2
 adsorption. Thus, it is highly expected 

the promising nitrogen-doped CNTs or graphene can be 
deeply studied and applied in photocatalytic reduction of 
CO

2
 due to the synergistic effect of their good electron con-

ductivity and potential adsorption ability for CO
2
.

In addition, the loading of basic sites on the surface of 
photocatalysts can also be achieved using the solid basic 

(hydro)oxides such as NaOH, MgO and ZrO
2
. Ye and co-

workers [271] demonstrated that the surface modification 
of TiO

2
 with NaOH could greatly enhance the CO

2
 adsorp-

tion, activation, thus leading to highly effective photore-
duction of CO

2
 into CH

4
 without loading any noble metal 

co-catalysts. Kohno et al. [272,273] reported that the pho-
tocatalytic reduction of CO

2
 to CO can be achieved over 

MgO. However, the mechanism of the photoreduction of 
CO

2
 on MgO cannot be explained by the conventional band 

theory because MgO is not a semiconductor [272]. Thus, a 
new concept for photocatalytic reduction of CO

2
 over an 

insulating material was proposed. It is believed that a CO
2

- 
radical can form by activating CO

2
 adsorbed on MgO un-

der photoirradiation. Then it was reduced to the surface 
bidentate formate by H

2
 or CH

4
 in the dark. The surface 

bidentate formate as photoactive species can further reduce 
CO

2
 in the gas phase to CO under photoirradiation. The 

mechanism can also be used to explain the photocatalytic 
reduction of CO

2
 over ZrO

2 
[274]. Recently, the addition of 

MgO modifier onto TiO
2 
[275–277] was found to be capa-

ble of significantly enhancing the activity for photocatalytic 
reduction of CO

2
. The proposed mechanisms of the MgO 

layers and Pt NPs over TiO
2
 for photocatalytic reduction of 

CO
2
 in the presence of H

2
O were shown in Fig. 10. Clear-

ly, the MgO layers on TiO
2
 surfaces not only enhance the 

adsorption of CO
2
 as basic sites, but also can capture the 

holes and promote charge separation. More importantly, it 
also can inhibit the reoxidation of products owing to avoid-
ing direct contact of products and TiO

2 
[276]. In addition 

to MgO, ZrO
2 

[278], Ga
2
O

3 
[279] and layered double hy-

droxides [280–282] also have great potentials to function 
as modifiers to enhance the activities for photocatalytic re-
duction of CO

2
 over semiconductor photocatalysts.

Important factors affecting CO
2 
activation

The surface oxygen vacancies play very important roles in 
governing the adsorption, activation and dissociation of 

Figure 10  Proposed mechanisms of the MgO layers and Pt NPs over 

TiO
2
 for photocatalytic reduction of CO

2
 in the presence of H

2
O.
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CO
2
, which provide not only an electronic charge (Ti3+) but 

also the sites for the adsorption of oxygen atoms from CO
2
 

[283]. It was even demonstrated that CO
2
− species, generat-

ed upon an electron attachment to CO
2
, are spontaneously 

dissociated into CO on defective Cu(I)/TiO
2−x

 at room tem-
perature even in the dark [283]. Indrakanti et al. [249] per-
formed the excited-state ab initio calculations of CO

2
 ad-

sorbed on clusters from the (010), (101), and (001) anatase 
surface planes. The calculated results indicated that oxygen 
vacancies may act as the active sites for CO

2
 photoreduc-

tion, whereas the activation of CO
2
 can’t be achieved on the 

stoichiometric TiO
2
 surfaces. Meanwhile, the adsorption 

of CO
2
 and temperature programmed desorption (TPD) 

experiments also demonstrated that chemical adsorption 
of CO

2
 can be improved through increasing the oxygen va-

cancy in SrTiO
3
, which would lower the activation barrier 

of CO
2
 and favor the photoreduction of CO

2
 to hydrocar-

bon fuels [284]. It is expected that the oxygen vacancies, 
and the adsorption and activation of CO

2
 on the defective 

surface of a given photocatalyst can be experimentally in-
vestigated in detail, which may provide necessary informa-
tion for designing highly efficient photocatalysts.

It is also clear that the polarity and dielectric constant 
of solvents, acid–base properties of supports and the hy-
drophobic-hydrophilic nature of catalysts have signif-
icant influences on the activation of CO

2
, the stability of 

CO
2
− radical anion and the catalytic activity and selectivity 

[59,84,181,285]. For example, through loading TiO
2
/Pd, 

CuO/ZnO and Li
2
O-TiO

2
 on the supports of magnesium 

oxide, aluminium oxide and silicon dioxide, it was found 
that the conversion of CO

2
 to C

1
–C

3
 compounds took place 

preferentially on basic oxide supported systems, and acid-
ic oxide supported catalysts showed more selectivity to 
C

1
 compounds [84]. Consequently, the acidic oxide such 

as SiO
2
 was generally used to obtain the C

1
 compounds in 

most studies. The formation of CH
4
 and CH

3
OH from CO

2
 

photoreduction with gaseous and liquid water was observed 
over Ru-TiO

2
/SiO

2
 [83] and TiO

2
-containing porous SiO

2
 

thin film [286], respectively. It is also evident that the selec-
tive formation of CH

3
OH from CO

2
 photoreduction with 

gaseous water increases rapidly with decreasing the sur-
face concentration of hydroxyl groups [286]. Very recently, 
it was reported that the selectivity for photoreduction of 
CO

2
 can be tailored by controlling the band structure of a 

g-C
3
N

4
 photocatalyst [287]. Thus, it is clear that the band 

structure, surface state and sites (e.g., the chemistry of CO
2
 

adsorption, oxygen vacancies, isolated Ti-species, acid–
base properties and the hydrophobic-hydrophilic nature) 
played very crucial roles in the photoinduced activation of 
CO

2
 [39,88,288–290].

Meanwhile, the water vapor adsorption can be also 
tuned through managing the surface area and pore struc-

ture of porous materials [291–293]. It is worth noticing 
that the SiO

2
-pillared HNb

3
O

8 
photocatalysts also exhibit a 

6-fold enhancement in the photocatalytic activity for CO
2
 

reduction due to increased adsorption ability for water va-
por molecules on SiO

2 
[294]. However, an excess amount 

of H
2
O will suppress the reaction. The optimum mole ratio 

of H
2
O/CO

2
 for CO

2 
photoreduction over highly dispersed 

TiO
2
 anchored on porous Vycor glass was found to be 

about 5 [295]. Recently, efficient high-rate sunlight-driven 
conversion of diluted CO

2
 into light hydrocarbons in gas 

phase was also achieved by coupling coaxial Cu-Pt bimetal-
lic coatings with these TiO

2
 nanotube arrays as catalysts at 

room temperature [188]. Therefore, for the photocatalytic 
reduction of CO

2
 by water vapor, control of CO

2
 and H

2
O 

adsorption capacity of photocatalysts and the ratio of H
2
O 

to CO
2
 is of great importance to optimize the photocatalyt-

ic activity and selectivity in future studies.

Accelerated CO
2
 reduction kinetics

Developing mesoporous photocatalysts

Developing mesoporous semiconductor photocatalysts has 
become a popular strategy to effectively increase the active 
sites, surface area and light harvesting. The mesoporous 
structure can also facilitate access of reactants to the sur-
face active sites and improve multiple scattering. All these 
factors can subsequently maximize the activity for photore-
duction of CO

2
. Typically, the micro/mesoporous Zn

2
GeO

4
 

with crystalline pore-walls [296] and mesoporous zinc ger-
manium oxynitride [176] exhibited much higher activities 
for CO

2
 photoreduction (about 2.5–5.0 times) than the cor-

responding samples obtained by a solid state reaction, re-
spectively, due to the increased surface area and improved 
pore structure. The mesoporous ZnGa

2
O

4
 prepared by a re-

active templating route at room temperature also exhibited 
a higher activity (CH

4
: 5.3 ppm h−1) than ZnGa

2
O

4
 (CH

4
: 

trace) obtained by a solid state reaction [297]. The indium 
hydroxide (In(OH)

3
) sample with mesoporous structure is 

about 20 times higher in efficiency for the photoreduction 
of CO

2
 to CH

4
 than that of sample without mesoporous 

structure [298]. With respect to the bulk NPs, the porous 
gallium oxide exhibits the enhanced photocatalytic activity 
of conversion of CO

2
 into CH

4
, which is mainly due to the 

300% higher CO
2
 adsorption capacity, as well as the 200% 

increased surface area [299]. For mesoporous graphitic 
C

3
N

4
, it was revealed that the photoactivity for CO

2
 reduc-

tion to formic acid was strongly dependent on its specific 
surface area and crystallinity rather than the pore size and 
the volume [300]. Similarly, the enhancements of photo-
catalytic performance for CO

2
 reduction over mesoporous 

composites (CeO
2
-TiO

2 
[217] and TiO

2
/ZnO [41]) were 

also observed in a different group. However, the direct syn-
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thesis of highly crystalline mesoporous transition-metal 
oxides that are thermally stable and well-ordered remains 
a major challenge [301]. Another challenge is to prepare 
multimetallic oxide mesoporous materials and their oxyni-
tride. Particular emphasis should be placed on preparing 
these kinds of active materials by soft chemical methods 
for the application of photoreduction of CO

2
 under visible- 

light irradiation.
Meanwhile, as another effective strategy to develop mes-

oporous photocatalysts, constructing isolated centers in ze-
olite matrices (or loading photocatalyst NPs onto zeolites or 
mesoporous molecular sieves) has also been widely inves-
tigated. Zeolites exhibit unique nanoscaled porous struc-
tures and ion exchange properties. Zeolites are often em-
ployed as organizational media or supports for entrapped 
or adsorbed transition-metal catalysts and photocatalysts 
[302]. Therefore, zeolites have been widely utilized in the 
design of efficient photocatalytic systems for CO

2
 pho-

toreduction. So far, the highly dispersed Ti-oxides in silica 
matrices are one of the best performing photocatalysts in 
direct CO

2
 reduction to hydrocarbons, pioneered by Anpo 

and his co-workers in the 1990s [303]. The titanium oxide 
anchored on Y-zeolite exhibits the highest photocatalytic 
activity and the highest selectivity for the formation of CH

4
 

and CH
3
OH, whereas CO is formed as a main product on 

the titanium oxide anchored on ZSM-5 [295]. It is clear 
that the activity and selectivity of photocatalysts for differ-
ent products strongly depend on the chemical nature of the 
supports. Yet, the microporous structure of zeolites is not 
beneficial for the improvement of photocatalytic activity. 
Thus, a variety of mesoporous molecular sieves (MCM-41, 
MCM-48, KIT-6, FSM-16 and SBA-15) are also applied in 
photocatalytic CO

2
 reduction [285,290,295,304–309]. Ti-

MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts 
exhibited high photocatalytic reactivity for the reduction of 
CO

2
 with H

2
O at 328 K to produce CH

4
 and CH

3
OH in the 

gas phase. Especially Ti-MCM-48 with a large pore size and 
three-dimensional channels exhibited the highest reactivi-
ty for CH

4
 production, which was almost ten times higher 

than that of bulk TiO
2 

[304]. The further results showed 
that the dispersed TiO

2
 within mesoporous FSM-16 and 

SBA-15 exhibited much higher photocatalytic activities for 
CO

2
 reduction than other supports. Furthermore, Ti-con-

taining Ti-KIT-6, Ti-FSM-16 and Ti-SBA-15 prepared by 
hydrothermal synthesis also showed very high yields in 
methane or/and methanol, respectively. In particular, the 
photocatalytic reaction yields of the Ti-SBA-15 catalyst for 
CH

4
 formation under UV light are over 240 times higher 

than those of the TiO
2
 catalyst and the yields for CH

3
OH 

formation increase remarkably over 4000 times [290,310]. 
More recently, a new photocatalyst, Ti-TUD-1, showed a 
30% increase in the total hydrocarbons produced by CO

2
 

photoreduction, as compared with Ti-SBA-15 [311]. In a 
word, highly dispersed titanium oxide in mesoporous sil-
ica materials (KIT-6, FSM-16, SBA-15 and TUD-1) leads 
to relatively high yield in CH

4
 or/and CH

3
OH, which is a 

promising candidate for CO
2
 photoreduction.

Recently, much attention has been directed at monolay-
ered zeolites [312] and zeolite nanosheets [313–315] which 
can increase the external to internal surface ratio and thus 
can enhance the catalytic activity. However, this kind of 
layered zeolite nanosheets has not been used in photocata-
lysts. Maybe zeolite nanosheets can provide a new strategy 
for designing highly efficient photocatalysts for photocata-
lytic reduction of CO

2
.

Loading CO
2
 reduction co-catalysts

It is generally believed that the co-catalysts can extract 
the photogenerated charge carriers from semiconductors, 
provide reaction sites, lower the electrochemical overpo-
tentials associated with the multielectron water oxidation 
and CO

2
 reduction reactions, and decrease the activation 

energy for gas evolution [316,317]. Another function is to 
provide a junction/interface between the co-catalyst and 
the semiconductor to enhance electron–hole separation or 
charge transport [317,318].

For photoreduction of CO
2
, the loaded co-catalysts 

could serve as electron traps to enhance the separation of 
the photogenerated electron-hole pairs and hence improve 
the photocatalytic activity and selectivity for CO

2
 reduc-

tion. Generally, Pd, Pt and Au can selectively reduce CO
2
 

into CH
4
 products. Ishitani et al. [136] first systematically 

studied the photoreduction of CO
2
 on a series of metal-de-

posited TiO
2
 and found that depositing metals (Pd, Rh, Pt, 

Au, Cu
2
O, etc.) on TiO

2
 photocatalysts can greatly boost 

their photocatalytic activities for CO
2
 reduction to CH

4
 

(in decreasing order). The addition of Pt onto the highly 
dispersed titanium oxide catalysts promotes the charge 
separation which leads to an increase in the formation of 
CH

4
 in place of CH

3
OH [305]. Pt NP/TiO

2
 nanotube com-

posite greatly promoted the photocatalytic conversion of 
CO

2
 and water vapor into methane due to a large number 

of active reduction sites from the homogeneous distribu-
tion of metal co-catalyst NPs over the TiO

2
 nanotube array 

surface [186]. A unique one-dimensional (1D) structure 
of TiO

2
 single crystals coated with ultrafine Pt NPs (NPs, 

0.5–2.0 nm) exhibited extremely high CO
2
 photoreduction 

efficiency with selective formation of methane (the max-
imum CH

4
 yield of 1361 μmol g

cat
−1 h−1) [319]. A similar 

result was also observed on the Pt-C
3
N

4
 system [201]. The 

highest yield of CH
4
 was obtained on the g-C

3
N

4
 loaded by 

about 1 wt% Pt. Here, Pt NPs not only improve the transfer 
of photogenerated electrons and the activity for photocat-
alytic reduction of CO

2
 as a co-catalyst, but also promote 
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the oxidation of reduction products (as shown in Fig. 11) 
[201]. The loading of Pd (> 0.5 wt %) on TiO

2
 can suppress 

the CO formation and promote the CH
4
 formation [320].

In addition, it is worth noticing that the bimetallic 
co-catalysts systems (Cu and Pt) exhibited better activities 
for CO

2 
reduction than single metallic co-catalysts sys-

tems. For example, a hydrocarbon production rate of 111 
ppm cm−2 h−1, or ≈ 160 μL g−1 h−1), is obtained when the 
nitrogen-doped TiO

2
 nanotube array samples are load-

ed with both Cu and Pt NPs. It was pointed out that this 
rate was at least 20 times higher than that in the previously 
published reports [97]. The mechanisms for photocatalytic 
CO

2
 conversion to fuels over this composite photocatalyst 

were illustrated in Fig. 12. In another example, a bimetallic 
co-catalyst of Cu

0.33
-Pt

0.67
 was loaded on the double-walled 

TiO
2
 nanotube for the photoreduction of diluted CO

2
 to 

CH
4 

(1% in N
2
), an average hydrocarbon production rate 

of 6.1 mmol m−2 h−1 was realized under AM 1.5 one-sun 

illumination [321]. However, the enhancement mechanism 
of bimetallic co-catalysts is still unclear. Thus, a deeper un-
derstanding and investigation of these bimetallic co-cata-
lysts might be needed for their further application in this 
field.

Meanwhile, Au and Ag-loaded TiO
2
 photocatalysts have 

also been widely studied. For a leaf-architectured artificial 
photosynthetic system of SrTiO

3
, Au exhibits the best per-

formance as a suitable co-catalyst for both CO and CH
4
 

selectivity [11]. The nanoscale TiO
2
 particles embedded 

in the hydrophilic cavities of Nafion membrane films sig-
nificantly improved photoconversion of CO

2
 to methanol 

when coated with silver [322]. Ag co-catalyst-loaded ALa
4 

Ti
4
O

15
 (A = Ca, Sr, and Ba) photocatalysts showed better 

activities for CO
2
 reduction to CO and HCOOH without 

any sacrificial reagents [323].
Furthermore, RuO

2
 has also proved to be a good co-cat-

alyst for CO
2
 photoreduction. The maximum CH

3
OH yield 

observed was about 118.5 μmol g−1 h−1 in the presence of 
RuO

2
/Cu

x
Ag

y
In

z
Zn

k
S

m
 photocatalysts under H

2
 atmosphere 

[175]. The generation rate of CH
4
 over meso-ZnGa

2
O

4
 

could be significantly enhanced by loading 1 wt% RuO
2
 as 

co-catalyst to improve separation of the photogenerated 
electron–hole pairs [297]. The rate of CH

4
 generation over 

the Zn
2
GeO

4
 nanoribbons could also be significantly en-

hanced by loading of Pt or RuO
2
 and especially by co-load-

ing of Pt and RuO
2
 as co-catalysts [195].

Besides noble metal co-catalysts mentioned above, it 
is indispensable to search for cheap, earth-abundant and 
highly efficient co-catalysts for photocatalytic reduction of 
CO

2 
[324]. Generally, the first-row transition metals such 

as Co, Ni, Mn, Fe and Cu, have been recognized as good 
candidates for practical applications [325,326]. For ex-
ample, copper as an earth-abundant co-catalyst has been 
extensively used in the photoreduction of CO

2
. In most 

cases, the active species on Cu-loaded TiO
2
 is Cu

2
O, which 

not only greatly enhances the photochemical production 
of CH

3
OH, CO and CH

4 
from the CO

2
 and gaseous H

2
O 

system [54,86,327], but also greatly improves the photo-
catalytic activity for CO

2
 reduction to methanol in liquid 

phase. The copper cluster is an effective electron trapper, 
and able to reduce the recombination of electron–hole 
pairs [55,133]. However, higher Cu loading gave a lower 
rate of methanol yield because of the masking effect of 
Cu

2
O clusters on the TiO

2
 surface [132,133]. Consequently, 

it is generally believed that CO
2
 can be selectively reduced 

to methanol in an aqueous solution under light irradia-
tion due to the Cu

2
O or CuO species on the TiO

2
 surface 

[54,55,131,133,218,308,328].
In addition, NiO NPs were also usually loaded on dif-

ferent semiconductors as a co-catalyst to enhance their 
photocatalytic activity for CO

2
 reduction. The NiO

x
 co-cat-

Figure 11  Schematic illustration of CO
2
 photoreduction in the Pt/g-C

3
N

4
 

system under visible light irradiation. 

Figure 12  Mechanisms for photocatalytic CO
2
 conversion to fuels using 

nitrogen-doped TiO
2
 nanotube arrays loaded with Cu and Pt co-catalyst 

NPs. 
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alysts loaded on the surface of InTaO
4
 can slightly increase 

the methanol yield from CO
2
 reduction [121–123]. Thus, 

to further enhance the activity for CO
2
 reduction, core/

shell Ni/NiO co-catalysts were also constructed and used 
in the photocatalytic conversion of CO

2
 [122,246,329]. In 

particular, the methanol yield over the Ni@NiO core/shell 
structure-modified nitrogen-doped InTaO

4
 photocatalyst 

is about three times higher than that of pure InTaO
4
. It is 

believed that the co-catalyst loading not only dramatically 
enhances absorbance, but also efficiently avoids electron–
hole recombination [124].

Unfortunately, the molecular O
2
 and H

2
 had not been 

quantitatively measured in these reports. It is very im-
portant to detect the molecular O

2
 and H

2
 for the Ni-

base co-catalysts systems because NiO
x
 is also an efficient 

co-catalyst for photocatalytic hydrogen generation from 
water splitting. Therefore, it is suggested that the molecular 
O

2
 and H

2
 should also be detected when the NiO and core/

shell Ni/NiO co-catalysts were used for the photocatalytic 
reduction of CO

2
. 

However, nowadays, there were seldom reports on the 
photocatalytic reduction of CO

2
 by loading two different 

co-catalysts for water oxidation and CO
2
 reduction. There-

fore, special attention should be given in future studies to 
the systems with two separated co-catalysts for water oxi-
dation and CO

2
 reduction [330].

Improving water oxidation kinetics

Generally, to increase the photocatalytic activities of 
semiconductors and prevent the oxidation of the reduc-
tion products in liquid phase, some highly efficient elec-
tron-donor sacrificial agents including EDTA, Na

2
SO

3
, 

acetonitrile, dichloromethane, iso-propyl alcohol, alcohols 
and amines were also widely used in many photocatalytic 
reduction systems. It can be expected that these electron 
donors will not compete with CO

2
 in the trapping of the 

electrons in the CB since they are more difficult to be re-
duced as compared to water. For instance, Richardson et al. 
[12] also demonstrated a very interesting concept using a 
tertiary amine as an recycling electron donor to combine 
CO

2
 photoreducton with water splitting for improving the 

overall efficiency.
However, water is not a real electron donor in the pres-

ence of sacrificial reagents. In theory, the oxygen-evolu-
tion half-reaction is an important part of the process of 
CO

2
 photoreduction [331–335], as improvements of water 

oxidation must be favorable for the efficient separation of 
the photo-generated carriers and the enhancement in the 
photocatalytic activity for the reduction of CO

2
. Especially, 

the water oxidation reaction is an important bottleneck for 
both photocatalytic H

2
 production and CO

2
 reduction be-

cause this reaction is considerably more difficult and com-

plicated. It requires a four-electron oxidation of two water 
molecules coupled to the removal of four protons to form 
a relatively weak oxygen-oxygen bond [336,337]. Although 
it is well accepted that the CO

2
 photoreduction process (the 

reduction half-reaction) is accomplished by O
2 

and H
2
O

2
 

formation, which comes from the oxidation of water (the 
oxidation half-reaction) [5,89,92,338], or water splitting 
[90,143,252,339], many researchers only measured the 
products from the reduction of CO

2
 and always ingored 

the measurement of the products (O
2
 and H

2
) from water 

splitting reaction. The evolution rate of O
2
 from the pho-

toreduction of CO
2
 with H

2
O was first studied by Ogura et 

al. [340]. In particular, water oxidation products (O
2
) were 

also detected during the photoreduction of CO
2
 over ZrO

2
 

[341], KCaSrTa
5
O

15 
[342], KTaO

3 
[343] and ALa

4
Ti

4
O

15
 (A 

= Ca, Sr, and Ba [323]) photocatalysts in water. Impor-
tantly, evolution of (H

2 
+ CO) and O

2
 in a stoichiometric 

amount (2:1 in a molar ratio) was observed in the absence 
of sacrificial reagents, further indicating that water could 
function as a reducing reagent (an electron donor) for the 
CO

2
 reduction [323]. Consequently, it is of great signifi-

cance to examine the amounts of oxygen from the CO
2
 

photoreduction with H
2
O in future studies. In particular, 

to identify who is the real electron donor, it is quite nec-
essary that the molecular O

2
 should be also quantitative-

ly measured during the photocatalytic reduction of CO
2
 

[59,117,181,344]. To some extent, O
2
 should be especially 

carefully checked whether they do not form really or may 
be not detected, remaining adsorbed on the photocatalyst.

Meanwhile, when the photocatalytic reduction of CO
2
 is 

performed in the gas phase with controlled proportion of 
water vapor as a reductant agent, the photocatalytic activity 
of semiconductor for CO

2
 reduction is much higher than 

that observed in liquid phase. Therefore, for these reasons, 
the photocatalytic reduction of CO

2
 in the gas phase with-

out using any sacrificial reagent seems to be more promis-
ing than that in liquid phase.

So far, there are seldom reports on the application of co-
balt-based co-catalysts in the photocatalytic reduction of 
CO

2
. Recently, Lin et al. [109] verified that the introduced 

cobalt oxide (CoO
x
) NPs on carbon nitride as reductive and 

oxidative promoters can improve the photocatalytic activ-
ity toward CO

2
-to-CO conversion due to the acceleration 

in the oxidative partner reaction, charge-carrier separation 
and transfer kinetics. Therefore, loading oxygen-evolution 
co-catalysts such as Co-Pi, Co

3
O

4
 and Fe

100-y-z
Co

y
Ni

z
O

x
 

[345–349] may provide a strategy for improvement of the 
photocatalytic performance for the reduction of CO

2
. Im-

portantly, they not only can enhance the kinetics of water 
oxidation and suppress the recombination of photo-gener-
ated charge carriers, but also can increase the stability of 
semiconductors.
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Suppressed undesirable reaction

Inhibited hydrogen evolution

Selective reduction of CO
2
 is another major challenge in 

the photocatalytic reduction of CO
2
 in aqueous solutions 

because the hydrogen evolution via water reduction is the 
main competing reaction, which can greatly decrease the 
efficiency and selectivity for CO

2
 reduction. During CO

2
 

photocatalytic reduction, hydrogen evolution as the side 
reactions of the photoreduction of CO

2
 also usually exists 

in the systems. The kinetics for CO
2
 reduction is unfavor-

able due to the multi-electron reduction processes, while 
H

2
 evolution generally predominates when thermodynam-

ic conditions for both processes are satisfied [21,22]. There-
fore, it is of immense importance to couple CO

2
 reduction 

with water splitting, which is beneficial for finding the 
rate-determining steps and improving the efficiency and 
selectivity of CO

2
 photoreduction in aqueous solutions. In 

a certain sense, suppressing the reduction of H
2
O to H

2
 (a 

competitive reaction with the reduction of CO
2
) can en-

hance the efficiency and selectivity of CO
2
 photoreduction.

Recently, considerable attention has been drawn to this 
issue. Wang and his coworkers [344] founded that a core-
shell structured Pt@Cu

2
O co-catalyst on P25 can signifi-

cantly promote the photoreduction of CO
2
 with H

2
O to 

CH
4
 and CO and suppress the reduction of H

2
O to H

2
. The 

selectivity for CO
2
 reduction reached 85%. It was proposed 

that the Cu
2
O shell was capable of providing sites for the 

preferential activation and conversion of CO
2
 molecules in 

the presence of H
2
O and suppressing the reduction of H

2
O 

to H
2
, while the Pt core extracts the photo-generated elec-

trons from TiO
2
 (Fig. 13). 

Inhibited products oxidation

It is a great challenge to separate oxidation and reduction 
processes on the surface of semiconductor NPs, because 
many intermediate products of CO

2
 reduction cycle ad-

sorbed on the surface could be oxidized, which will reduce 
overall yield of hydrocarbons and the photocatalytic effi-
ciency [90,350]. The research from the Mul’s group [91] 
demonstrated that the backward reaction, i.e., oxidation of 
hydrocarbons back to CO

2
 and water, proceeds to a signif-

icant extent due to the existence of the oxygen from the 
splitting of water. The further results revealed the impor-
tance of evaluating hydrocarbon oxidation in explaining 
performance of catalysts designed for CO

2
 reduction [311]. 

As displayed in Fig. 14, it is clear that methane only slowly 
degraded over the catalytic systems within 120 min of illu-
mination whereas the other hydrocarbons (i.e., ethane and 
propane) were easily degraded, in particular over the Ti-1-
Cr-1 sample. Interestingly, the products from CO

2
 photore-

duction as electron donors are even employed to improve 
the evolution rate of hydrogen in water splitting, further 
indicating the reduction product oxidation also exist in the 
liquid phase [351]. Therefore, it is still a great challenge to 
minimize hydrocarbon oxidation in process conditions 
needed for CO

2
 reduction.

For CO
2
 reduction by water vapor, the control of water 

vapor pressure appears the challenge, since it is not only 
the hydrocarbon oxidant but also the reductant for acti-
vating CO

2
. For CO

2
 reduction by liquid water, it is still a 

challenge to physical separation of oxidation and reduction 
sites. A thin Nafion layer on Pd-deposited TiO

2
 NPs [352] 

and a proton conducting Nafion membrane [322,353–355] 
have been used to inhibit the reoxidation of the reduction 
products and enhance the photosynthetic conversion of 

Figure 13  Mechanism of a core-shell structured Pt@Cu
2
O co-catalyst on 

TiO
2
 for photocatalytic reduction of CO

2
. 

Figure 14  Degradation profiles of the standard hydrocarbons over the 

prepared samples. The concentrations were recorded every 15 min for 

the duration of 2 h. Reproduced with permission [311]. Copyright 2014, 

American Chemical Society.
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CO
2
 to corresponding products (mainly methane, ethane, 

methanol and formic acid) in an aqueous suspension or 
gas phase. In addition, the PEC conversion of CO

2
 to fuel 

appears to be more promising among various other routes 
owing to the ability of separating the two half-reactions 
to avoid reverse processes [17]. For example, to avoid the 
oxidation of obtained products, the physical separation of 
the two reactions of water oxidation and CO

2
 reduction in 

a photoanode and cathode, respectively, can be achieved 
in a newly-designed PEC reactor (as presented in Fig. 15) 
[356]. Similarly, in another system of PEC reduction of CO

2
 

into chemicals, Pt-rGO and Pt modified TiO
2
 nanotubes 

(Pt-TNT) performed as cathode and photoanode catalysts, 
respectively. As a consequence, the separated Pt-rGO ex-
hibited an outstanding activity for CO

2
 reduction due to its 

enhanced adsorption capacity for CO
2
 and suppressed ox-

idation of products [357]. Furthermore, a bifunctionalized 
TiO

2
 film containing a dye-sensitized zone and a catalysis 

zone as cathode exhibited highly efficient conversion of 
CO

2
 to formic acid, formaldehyde, and methanol through 

the electron transfer at the CB of TiO
2
 under visible light 

[358]. Importantly, the oxidation of obtained products was 
prevented via the anode in separated solution. In addition, 
in Izumi’s group, the photocatalytic water oxidation and 
photocatalytic reduction of CO

2
 were successfully integrat-

ed in reverse photofuel cells [281,359]. In this new reactor, 
the oxidation of products from photoreduction of CO

2
 can 

be avoided due to the separate water oxidation and CO
2
 re-

duction, thus leading to an enhanced activity for photore-
duction of CO

2 
[18]. Therefore, it is interesting to carry out 

the photocatalytic reduction of CO
2
 using a PEC cell.

CONCLUSION AND PROSPECTIVE
In summary, this review highlights the design and fabrica-

tion of semiconductor photocatalysts for enhancing pho-
tocatalytic efficiency and selectivity of converting CO

2
 into 

useful fuels. Although some significant advances have been 
achieved in the recent years, the selectivity and yields of the 
desired products are still rather low and at this point is far 
from practical application. Therefore, many problems such 
as the underlying mechanisms of CO

2
 photoreduction, 

the lack of highly efficient photocatalyst and appropri-
ate non-noble metal co-catalyst for special carbonaceous 
product still need to be clarified in the future.

From our review, it is clear that every step in photoca-
talysis processes including charge excitation, separation, 
transport, adsorption and activation of CO

2
, CO

2
 reduction 

kinetics and undesirable reactions has significant influenc-
es on the overall efficiency of photocatalytic CO

2
 reduction. 

In addition to the photocatalytic properties, adsorption 
and activation of CO

2
, the development of CO

2
 reduction 

electrocatalyst and the suppression of products oxidation 
are very important to achieve a maximum efficiency. Thus, 
all the factors should be taken into account and optimized 
carefully when designing and fabricating multifunctional 
semiconductor photocatalysts for CO

2 
reduction. 

Especially, the oxidation of water and products should 
be also paid more attention in future studies. In photocat-
alytic systems using semiconductor particles as photocat-
alysts, it is still a challenge to physical separation of oxi-
dation and reduction sites. A PEC cell seems to be a good 
choice for the photoreduction of CO

2
 in water solution due 

to the physical separation of water oxidation and CO
2
 re-

duction. The typical strategies in this review can also be 
used in designing photocathode or photoanode for PEC 
reduction of CO

2
. One possibility for PEC cell is the use 

of multijunction systems coupling with suitable protective 
layers or co-catalyst.

The mechanism needs to be deeply investigated in fu-
ture studies, which still significantly limits the develop-
ment of the CO

2
 photo-reduction. The finding of the rate- 

determining steps in CO
2
 photoreduction is favorable for 

the design and fabrication of highly efficient and selective 
photocatalysts. Thus, an in-depth study to understand the 
surface transformations at the molecular level during CO

2
 

reduction, including adsorption/desorption of CO
2
, sur-

face chemistry and reaction, intermediate products, as well 
as the role of adsorbed water and carbonates during the 
reaction is needed in order to reveal the reaction mecha-
nism [90]. To get accurate production yields of the photo-
catalytic conversion of CO

2
, it was essentially important to 

use isotope labeling of 13CO
2
 as a reactant, which can de-

termine whether the products were derived from CO
2
 and 

not from carbon impurity intermediates [18,320,360]. In 
addition, the blank tests and different control experiments 
are highly needed in future studies. 

Figure 15  Scheme of the PEC device for CO
2
 reduction to fuels and 

H
2
 production. Reproduced with permission [356]. Copyright 2010, RSC 

Publishing. 
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Meanwhile, almost all known non-oxide and many ox-
ide semiconductors suffer from photocorrosion in aqueous 
electrolytes, which is one of the most fundamental prob-
lems that limit the lifetime of all photocatalysts. Therefore, 
the photostability of the semiconductor should be funda-
mentally improved to prevent corrosion in the practical ap-
plication [2,8]. Nanostructured wide-bandgap oxide semi-
conductor (TiO

2
 and titanate mostly) or carbon material 

coating, surface passivation and co-catalyst loading, have 
proved to be effective strategies for reducing the photocor-
rosion of unstable semiconductors.

In a word, all results indicate that the photocatalytic con-
version of CO

2
 into valuable energy-bearing fuels is still in 

its infancy, and that breakthroughs for bringing this tech-
nology to reality can occur when all these problems and 
strategies above have been taken into consideration and the 
photocatalytic system has been well designed.
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中文摘要    近年来, 严 重的化石燃料短缺以及环境污染问题使得人工光合作用引起了科研工作者的广泛关注, 光催化转换CO
2
成为有价

值的太阳能燃料被认为是解决能源危机以及环境问题的最好的方法之一. 有效地控制半导体表面的催化反应以及光生载流子是制备高
活性以及高选择性半导体CO

2
还原光催化剂的关键因素, 至今, 研究人员已经提出了许多策略来增强光催化转换CO

2
的活性以及选择性. 

本文在分析提高光催化效率和选择性限制因素的基础上, 尝试从几个不同方面总结了近些年来提高光催化CO
2
还原效率的方法以及它们

的设计原理 , 包括增强半导体可见光响应、促进光生电子空穴分离、提高CO
2
的吸附和活化、加速CO

2
还原的动力学以及抑制不良反应等

方面. 因此, 本文不仅系统地总结了近年来高活性高选择性光催化CO
2
还原光催化剂的设计进展 , 而且为高效光解水产氢和污染物降解

光催化剂的设计提供了重要参考. 
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