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ABSTRACT 

While single-accelerometers are a common consumer  

embedded sensors, their use in representing movement data 

as an intelligent resource remains scarce. Accelerometers 

have been used in movement recognition systems, but rarely 

to assess expressive qualities of movement. We present a 

prototype of wearable system for the real-time detection and 

classification of movement quality using acceleration data.  

The system applies Laban Movement Analysis (LMA) to 

recognize Laban Effort qualities from acceleration input 
using a Machine Learning software that generates 

classifications in real time. Existing LMA-recognition 

systems rely on motion capture data and video data, and can 

only be deployed in controlled settings. Our single-

accelerometer system is portable and can be used under a 

wide range of environmental conditions. We evaluate the 

performance of the system, present two applications using 

the system in the digital arts and discuss future directions. 

Author Keywords 

Movement recognition; Movement analysis; Laban Effort 

analysis; Movement analysis; Movement-based interaction. 

ACM Classification Keywords 

I.5.1 Pattern Recognition: Models; H.1.2 Models and 

Principles: User/Machine Systems. 

INTRODUCTION 

Within Human Computer Interaction (HCI) movement was 

originally understood as a functional component of 

interaction. This design approach reflects the task-oriented 

focus of early HCI research, which was preoccupied with 
ergonomics and efficiency as exemplified. Yet, movement is 

not solely functional, it is also highly expressive and 

experiential. Our research articulates higher-level semantics 

of human movement qualities, which exploits the language 

of Laban Movement Analysis (LMA) as a model for  

describing movement expressivity for the design of novel, 

nuanced and meaningful movement-based interaction. 
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Movement analysis systems such as LMA have a rich  

epistemological history particularly in the domains of dance, 
non-verbal communication, psychoanalysis and psychology 

providing rigorous explanatory models for the description of 

movement [16], its function and its expression. LMA has 

been used in previous computational systems, to interpret 

the physical movements of robot agents as outward 

manifestations of internal emotional states [2], to generate 

physically expressive animated characters [8], support social 

intimacy by interpreting qualities of touch applied to 

networked, tactile interfaces [25], and classify activities 

such as walking and running [14]. Yet, within HCI, the 

application of LMA theories, principles and models remains 

marginal and most of the time incomplete or compressed. 

The general goal of our research is to explore how 

movement expertise from LMA can lead to the design and 

integration of more richly articulated human movement 

knowledge within movement-based interaction. In 

particular, we are interested in the notion of “movement 

qualities” (MQs) that practitioners and theorists of 

movement define as the qualitative characteristics defining 

the manner in which a movement is executed. LMA 

formalizes MQs into the Effort category (the other 

categories being Body, Space, and Shape). Laban describes 

the movement's Effort according to four factors: Space, 
Time, Weight, and Flow. Each factor has two elements 

(Space: Direct/Indirect, Time: Sudden/Sustained, Weight: 

Light/Strong, Flow: Bound/Free) that can be understood as 

two ends of a continuum in which the movements can vary 

and thus reveal different qualities or “Effort qualities”. 

Laban considers the Effort qualities as expressive attributes 

of movement produced by dynamics. Although MQs are a 

central notion that conveys movement expressiveness, they 

haven’t been explored in designing and evaluating Human-

Computer Interactions until lately [9,11,17,27]. We believe 

that because MQs reveals movement expressiveness, their 

use has strong potential for movement-based interaction 
with applications in the arts, digital media, entertainment, 

education, or rehabilitation. Precisely, our work aims at 

designing and evaluating interactive systems where the 

notion of MQs is central, and that provide feedbacks that  

can inform users about their MQs. Our systems include MQ 

analysis (motion capture, feature extraction, and real-time 

http://dx.doi.org/10.1145/2556288.2557251
http:978-1-4503-2473-1/14/04...$15.00
mailto:permissions@acm.org
mailto:lyn}@sfu.ca
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recognition), synthesis and control through for example 

sound or visual feedback (given the extracted MQs). 

In this paper, we present the design and evaluation of a 

prototype of MQs analysis system called EFFORTDETECT 

that uses a single-accelerometer data fed to Machine 

Learning software to recognize in real-time and classify 
Laban Effort qualities. We also present two artistic  

applications that use EFFORTDETECT to capture  MQs and 

integrate it as an interaction modality. They demonstrated 

the system’s applicability in the performing Arts and in 

particular in two successful dance performances and an  

interactive installation venue. 

While most of the MQs recognition techniques rely on  

motion capture or video data, which require careful 

positioning of a subject and cameras, our system is based on 

a single-accelerometer to perform continuous MQs 

classifications. The advantage of using accelerometers is 

that they are small and thus highly portable, and can be used 
under a wide range of environmental conditions including 

interactive installations targeting general public audience, 

interactive performances or mobile applications. In such 

conditions, a compelling feature of single-accelerometer 

systems is their pervasive ability to pragmatically 'hand 

over' interaction capability between users. Our approach to 

selecting single-accelerometer systems emphasizes the often 

precarious and critical temporal transactions between users. 

Interaction designers may trade-off the recognition accuracy 

from multiple accelerometers systems for the ease and  

simple handing over of one accelerometer between 
users. This is a key pervasive feature for Art settings, as 

well as mobile device uses. In addition, accelerometer data 

are directly linked to movement dynamics that produce 

MQs, and thus offer a coherent alternative to positional data 

when feeding the recognition process. Moreover, single-

accelerometers are among the most common  embedded 

sensor in popular consumer mobile technologies. 

Accelerometer data abounds in everyday contexts through 

rapidly growing access to consumer products such as mobile 

phones, accelerometer wristbands and game controllers. The 

embedded single-accelerometer remains a common-

denominator in this large range of consumer sensor devices. 
Yet, representing movement data as an intelligent resource 

remains scarce. How can we expand the affordances of 

single-accelerometer applications to include MQs? Our 

research in articulating a language of human movement is 

based on higher-level semantics that computationally 

describe MQs, utilizing LMA as a stable  and replicable 

model that can be directly applied to a wide variety of  

single-accelerometer consumer platforms. Our contribution 

to HCI is targeting mobile applications based on data from 

personal devices with single-accelerometers. 

LABAN MOVEMENT ANALYSIS 

In this section, we present the LMA system in order to 

clarify how we use it to define a framework for MQs 
recognition and evaluation. LMA looks at movement 

through four different categories of Body, Space, Effort, and 

Shape [16] that comprise a rigorous and systematic  

framework for understanding and categorizing movement. 

The Effort component describes human MQs using four 

Factors: Space, Time, Weight, and Flow. Observable 

qualities of Effort mark the outer manifestation of an inner 
attitude. Each of the Effort Factors is a continuum bounded 

by two extreme values or elements (Space: Direct/Indirect, 

Time: Sudden/Sustained, Weight: Light/Strong, Flow: 

Bound/Free) in which movement can vary and thus reveal 

different qualities or “Effort qualities”. One of the values is 

the result of “Indulging” through the Effort, while the other 

extreme value is the result of “Fighting” through the Effort 

[15]. Space is related to the subject’s attention to the 

surrounding environment. Time is related to the subject’s 

sense of urgency. Weight is related to the subject’s impact 

upon the world. Flow is related to the subject’s attitude  

towards bodily control. Table 1 lists the Indulging and 
Fighting Effort elements and their related internal attitudes. 

Factor Indulging element Fighting element 

Space Indirect 

flexible, meandering, 

wandering, multi-

Direct 

single focus, 

channeled, 

Weight Light 

buoyant, delicate, 

overcoming gravity 

Strong 

powerful, having an 

impact 

Time Sustained 

lingering, leisurely 

Sudden 

hurried, urgent 

Flow Free 

uncontrolled, 

abandoned, unable to 

Bound 

controlled, restrained, 

able to stop 

Table 1. The Effort Factors and their Indulging and Fighting 

elements. 

Basic Effort 

Action 

Space 

Factor 

Time 

Factor 

Weight 

Factor 

Press Direct Sustained Strong 

Glide Direct Sustained Light 

Punch Direct Sudden Strong 

Dab Direct Sudden Light 

Wring Indirect Sustained Strong 

Float Indirect Sustained Light 

Slash Indirect Sudden Strong 

Flick Indirect Sudden Light 

Table 2. The BEAs of Laban Action Drive. 

Not all the Effort Factors play a significant role at all times. 

One or more of the Efforts may be attenuated in movement. 

Laban denotes by Action Drive, actions with MQs where 

Flow Effort is not emphasized. To delimit the Action Drive, 

he combines the extreme values of Space, Time, and Weight 

Effort into what he calls the eight Basic Effort Actions 



       

       

       

       

        

         
        

    

         

 

       

           

      

       

     

         

       

    

      

      

      

      
         

        

     

      

     

      

        

     

      

   

        

    
        

         

      

          

         

  

     

         

      

      

       
        

    

         

       

      

        

   

         

     

     

       

       

   

     

        
       

      

      

     

    

      

      

  

    

        

       

         

 

    
      

      

     

       

     

   

      

       

     

          

     
      

    

        

    

         

          

     

       

     

  

      

    

  

  

 

      

     
         

     

      

       

      

  

        

(BEAs). The BEAs, outlined in Table 2, are not movement 

per se. When waving one’s hand goodbye, for example, the 

movement could have either a punching or a  floating 

quality. The BEAs can thus be treated as qualitative 

descriptors of movement that combines three Effort Factors. 

Because these actions are prevalent in daily activity and 
because they cover a large range of Efforts, qualities and 

dynamics, we chose to train EFFORTDETECT computational  

model to recognize and classify them in real time. 

BACKGROUND 

In this section, we review computational approaches to 

Laban Efforts recognition as well as the literature on the use 

of accelerometers for movement recognition to provide the 

context for EFFORTDETECT’s model of MQs recognition. 

Computation Models of Laban Efforts 

The rich framework of MQs provided by LMA contributes 

to its appeal in the field of Computer Science. Indeed, most 

models that incorporate MQs analysis and/or synthesis rely 

on the Effort and Shape categories of LMA 

[20,22,24,29,32]. Some of the earliest work taking MQs into 

account in computer animation comes from Norman 

Badler’s research group. They developed the EMOTE 
system to animate a 3D character using Laban’s Effort and 

Shape qualities in order to produce more expressive and 

natural simulated movements [8]. They also developed 

movement segmentation techniques along the  Laban Effort 

Factors, using high-level movement descriptors inspired by 

the eight Effort elements [7]. LMA Shape qualities were 

exploited by Swaminathan et al. and used to train dynamic 

Bayesian networks for MQs recognition [29]. 

In Human-Computer Interaction, some remarkable systems 

have been exploring MQs [11]. Laban Effort qualities  

inspired a theoretical framework for the design of “graceful” 

movement-based interactions proposed by Hashim et al 
[12]. Schiphorst uses the eight BEAs defined by Laban that 

convey different combinations of Effort qualities, in order to 

enhance the aesthetic appreciation of digital art by better 

involving the body of the user in the experience of 

interacting with digital media [26]. Schiphorst et al. also use 

the BEAs to interpret qualities of touch applied to  

networked, tactile interfaces [25]. More recently, Mentis 

and Johanson proposed a study that aims to situate the 

perception of MQs, in ones own movement and in another’s 

movements [18]. For this purpose they built a Kinect-based 

system for an improvisational dance performance where 
audience members MQs as defined by Laban Efforts, are 

used to influence the music. 

Most of the existing approaches of Effort recognition use 

positional data taken either from motion capture systems or 

video data. These require the subject to be positioned in a  

constrained way in relation to a camera or to a motion 

capture setup. Additionally, these approaches require the 

movement to be a priori partitioned into discrete segments 

before the classification is performed. Bindiganavale 

delimits the segment boundaries by computing the zero-

crossings of acceleration data and detecting local velocity 

extrema [5]. Zhao extracts a curvature feature from motion 

capture data and segments movement where extreme 

changes in the curvature are accompanied by zero-crossings 

in the acceleration data [32]. These approaches to motion 
segmentation presume that motion is a series of discrete 

segments and each segment embeds an independent set of 

Laban Effort qualities. Our approach doesn’t require 

segmenting the movement and  thus maps to movement 

theories articulated by Laban, Bergsen, Sheets-Johnstone, 

and other movement philosophers who understand 

movement as continuous and nondiscrete [4,28]. 

Accelerometer-based Movement Recognition 

Accelerometers built into mobile phones and gaming  

devices such as the Nintendo Wii Remote have popularized 

mobile applications that rely on movement recognition. 

Accelerometers have been mostly used for tasks such as 

navigation [1], pointing [31], gesture-based authentication 

[10], or text input [13]. These single-accelerometer systems 
usually include movement properties such as its contours 

[1], orientation, tilt and direction [6], but only few of them 

take into consideration the dynamical or temporal 

component of movement by including for instance variation 

of speed and acceleration (which are crucial to the notion of 

MQs) [27]. However, some accelerometer-based systems 

have explored aspects of MQs for example, when 

recognizing semaphoric signals such as shakes, whacks, or 

bumps [6], which all have Direct and Sudden qualities. 

Roudaut et al. incorporate aspects of MQs in their design of 

the TimeTilt system, which differentiates between smooth 
and jerky tilting of their accelerometer-equipped device 

[23]. Khoshhal et. al. use a system of six accelerometers to 

extract Time Effort, but no other Factor of  MQs [14]. Our 

prototype is the only portable, single-accelerometer-based 

system that is designed to recognize a wide range of MQs 

including three of Laban Effort Factors. It can be ported to 

existing mobile devices by using the mobile device’s built-

in accelerometer and interfacing it with an application that 

can process the acceleration data. 

SYSTEM DESIGN 

We designed the  EFFORTDETECT system based on the 

knowledge and embodied practice provided by the LMA 

system. 

Wearable Accelerometer 

EFFORTDETECT uses data from a single wearable  

accelerometer. Although acceleration can be derived from 

positional data, collecting acceleration data is a more natural 
fit to motion dynamics and thus MQs recognition than 

capturing positional information. More generally, LMA 

analyses human movement as the process of change, any 

change of Body Effort Shape or Space, rather than the 

positions within the trajectories traced by a movement [3]. 

Moreover, the use of a single accelerometer is consistent  

with the practice & observation of LMA Basic Effort 



         

       

       

        

     

        
      

 

      

 

   

         

       

      

      

      

       

       
     

      

           

       

      

        

    

      

     

    

       

          

  

  

  

        
       

        

         

    

      

     

     

    

        

    

       

     

 

     
        

         

       

        

  

    

    

           

       

     

         
         

       

      

  

  

         

        

        

          

        

  

       

      

        
      

         

Actions (BEAs) that are performed using a dominant body 

part leading the movement. In most of the cases, the hand 

and arm is the body segment leading the BEA. We chose a 

wrist-mounted accelerometer to detect the BEAs led by the 

dominant arm. This could also be replicated in consumer 

use by holding a mobile device such as a smart-phone or 
wearing an accelerometer wristband or a watch. 

Figure 1. The Wearable Acceleration Unit 

Figure 2. The architecture of EFFORTDETECT.  
Components in red are active in the training phase.  

Technically, our Wearable Acceleration Sensor Unit is 

composed of a wireless transmitter and a 5DOF 

accelerometer sensor mounted on a microcontroller and 

powered by a 3.7-volt battery. The sensors transmit 

acceleration data from the x, y, and z-axes as well as pitch 

and roll acceleration data. The wireless transmitters send the 
acceleration data to the Hardware-Software Interface once 

every 10 milliseconds. A Wearable Acceleration Sensor 

Unit is sewn into a 4-inch wide elastic fabric band that is 

attached to the dancer’s right arm, as shown in Figure 1. 

EFFORTDETECT’s use of wireless transmitters and 

acceleration sensors implies that the system can be used in 

low-light situations where a computer vision-based method 

would perform poorly. Our wearable hardware system 

prevents from body part occlusion witch is a concern in both 

computer vision-based tracking and in passive and active IR 

tracking. While occlusion is not a problem with magnetic 

motion tracking systems, the need of both IR and magnetic 

tracking to process the data from multiple moving bodies  

are cost-prohibitive compared to EFFORTDETECT [21]. 

Moreover, computer vision-based methods often rely on 

multiple viewing angles for greatest accuracy, making these 
methods unsuitable in situations where ideal lines-of-sight 

cannot be established, such as spaces that contain obstacles, 

e.g. furniture, or outdoor spaces that do not allow cameras to 

be placed in optimal locations. Furthermore, 

EFFORTDETECT’s hardware subsystem allows the computers 

processing the motion data to be located a long distance 

away from the moving bodies. 

Multiple Sliding Time Windows 

Because we consider human movement as a dynamic, 

continuous flux [19], we designed the  EFFORTDETECT 

system using multiple sliding time windows approach rather 

than an a priori motion segmentation approach. 

EFFORTDETECT adapts a sliding window system first  

described by Widmer and Kubat [30] and analyzes 
movement data incrementally by examining it in context 

across three time scales. Each time scale view is a sliding 

time window, where the incoming data displaces the oldest 

data in a circular buffer. We define three windows, wL,i, 

wM,i, wS,i to represent a large window containing L samples, 

a medium window containing M samples, and a small  

window containing S samples, respectively, where L  > M  > 

S. These three sets of motion samples are passed on to the 

Motion Feature Extractor (see next section); at time ti+1, we 

generate windows wL,i+1, wM,i+1, and wS,i+1, which discards 

the earliest sample in each window and appends a new 
sample to each window. We note that in our 

implementation, we find that at a sampling rate of 100 

samples per second, L = 200, M = 150, and S = 50 produce 

good results. 

Motion Features 

The Motion Feature Extractor examines the data in each 

time window and produces motion feature vectors, one per 

window, which summarizes the character of the motion 

within the time scale of each window. For every window 

wn,i of size n, we compute a motion feature vector collection 

Μn,i = { Xn,i, Yn,i, Zn,i, Pn,i, Rn,i }, where Xn,i, Yn,i, Zn,i, Pn,i, Rn,i 

are motion feature vectors associated with window wn,I, 

composed of 9 real-numbered motion features.  The motion 

features are normalized. Since every motion feature is 
associated with a particular degree of freedom, for a 

particular window, for a particular sensor, for a particular 



          

      

     

         

         

         

         

     

          

      

       

           

        

    

         
    

         

   

           

       

         

    

         

      

      

         

    

         

        

 

         

         

        

 

 

     

     

                                                

   

       

         

          

      

        

     

       

         

 

        

        
      

       

     

  

         

     

            

     

        

     

       

       
     

        

        

        

           

        

         

     

        

 

  

        

       

       

       

     
       

     

        

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

           

           

           

           

           

     

   

Profile 

number 
Dab conf 

Flick 

conf 

Float 

conf 

Glide 

conf 

Press 

conf 

Wring 

conf 

Slash 

conf 

Punch 

conf 

1st-

dominant 

BEA 

(em,1) 

2nd-

dominant 

BEA 

(em,2) 

1 0.035 0.442 0.025 0. 0. 0.006 0. 0.451 Punch Flick 

2 0.040 0.392 0.025 0. 0. 0.008 0. 0.377 Flick Punch 

… … … … … … … … … … … 

99 0.226 0.101 0.052 0.006 0. 0.006 0. 0.451 Punch Dab 

100 0.181 0.034 0.063 0.023 0. 0.007 0. 0.451 Punch Dab

 Table 3. Example of BEA profile stream for a 1-second gesture (target BEA = Punch) determining the 1
st
 and 2

nd
 dominant BEA 

using profile-centered analysis 

time step, we generate 9 motion features x 5 motion feature 

vectors x 3 motion feature vector collections x 3 sensors = 

405 motion features per time step. 

To describe the nine motion features we extracted, we 

present as an example a time window, wn,i, of size n at time 

step i, and motion sample xi along the x-axis from the 

window. A similar analysis can be made for motion samples 

in the y, z, p, and r axes. 

1.  We compute a current difference feature as the signed 

difference in value between the current motion sample 

value, xi, and the one immediately preceding it, xi-1. 

2.  The average difference is the mean of all the current 

differences in the window. We compute the ratio of the 

current and average difference features 

3.  We define the trajectory of xi to be the slope of the line 
determined by the line passing through xi and xi-1, and 

the current trajectory to be a value associated with the 

current time step. 

4.  The average trajectory is defined as the average of the 

trajectories of all n samples within the current time 

window. We compute the ratio of the current trajectory 

on the average trajectory. 

5.  The number of direction changes describes the number 

of times where the motion switches direction along the 

axis. We compute the ratio of the number of direction 

changes per number of samples in window and per 

duration of the window. 

6.  Finally, we define a threshold value determined by 

recording the x value of the accelerometer at rest, below 

which we consider the sensor to be still. We compute the 

ratio of stillness to overall motion given by the number 

samples that represent the sensor at rest divided on the 

number of samples that represent the sensor in motion. 

Recognition Process 

EFFORTDETECT is based on a supervised learning system  

built using Max/MSP and Java and using a classifier 

implemented in Weka1, an open source collection of data  

1 Weka Software http://www.cs.waikato.ac.nz/ml/weka/ 

mining and Machine Learning algorithm. The stream of 

incoming feature vectors are fed to a classifier that operates 

in a training phase and a performance phase. During the 

training phase, an expert Laban Certified Movement 

Analyst (CMA) from the dance department of the 

University of Illinois recorded examples of the  BEAs. 

During the performance phase, the recognition process 

would evaluate other dancers execution of the BEAs. Based 

on the examples recorded during the training, the 

recognition process is able, during the performance phase, 

to estimate in real-time the similarities between the  BEAs 
performed by the user and the pre-recorded examples and 

decide on the BEA that is most likely to be performed by 

the user. Precisely, during the performance phase, the 

system outputs a continuous stream of classifications, which 

we call the BEA profile stream i.e. recognition rates or 

confidence values associated with each of the eight BEAs, 

rated from 0 to 1, for each of the time windows. Figure 2 

shows the subsystems and the data they generate. The  

system examines the motion at all time scale windows and 

combines them to produce a single BEA profile stream. 

Depending on the target BEA under consideration, the 

system weights the output from different time scale 
windows. For example, quick BEAs such as Punch may  

occur within half a second or less, but they would be lost in 

the context of a five-second window. To detect the 

occurrence of these quick motions, we give heavier weight 

to the results of the shortest time window than of the longest 

time window. This approach supports continuous analysis of 

motion over time, and allows us to examine complex 

composite motion (interesting combinations and sequences 

of motion) over a variety of time scales. 

SYSTEM EVALUATION 

Experimental Procedure 

We conducted an evaluation session with a dancer who has 

studied LMA as part of her university-level dance training 

and a Certified Laban Movement Analyst (CMA). The 

evaluation session was structured into several components. 

We organized an LMA knowledge exchange session where  
the movement analyst worked with the dancer to ensure that 

the dancer was performing the  BEAs to a degree that was  

legible to the analyst. We then recorded the dancer 

http://www.cs.waikato.ac.nz/ml/weka


  

        

     

         

   

          
      

      

       

        

      

       

      

        

        

      

  

  

          

        
   

  

  

       

       
      

   

      

    

         

      

       

    

     

    

    
      

   

      

           

       

           

        

 

   

          

         

        

       

       
       

        

           

      

        

           

        

         

       

      

       
         

       

       

         

    

       

         

     

 

      

    

 

    

 

performing eight BEAs ten times, in random sequence,  

while the analyst confirmed the legibility of each 

performance. Finally, we did an open-ended interview 

where we encouraged the dancer and the CMA to share 

observations and provide feedback on EFFORTDETECT and  

any aspect of the evaluation session itself. We would like to 
emphasize that although the evaluation uses only one dancer 

and one CMA, these two participants are experts, highly 

trained in the  Laban Movement Analysis system. When 

movements that exhibit the eight BEAs are performed, 

certified analysts can unambiguously and consistently 

recognize their presence and with little variation in 

performance. In other words, the categories are consistently 

identified. Our expert review of the system relies on the 

connoisseurship that is developed and refined by movement 

experts, and on which previous LMA-recognition research 

has also relied. 

Data Collected 

We collected 80 profile streams that we recorded using a 

custom tool built in Max/MSP to assess quantitatively the 
performance of the EFFORTDETECT system. 

RESULTS AND DISCUSSION 

Data Analysis 

In this evaluation, we measure the accuracy of the  

recognition (i.e., how accurately the system chooses the 
dominant BEA in a movement from the eight possible 

BEAs) and the confidence of that recognition. Consider a  

BEA representing a Punch performed over the duration of 1 

second. Since EFFORTDETECT produces a BEA profile every 

10 ms, it generates 100 Effort profiles for the gesture over 1 

second. To assess the accuracy and the confidence of the 

recognition for a profile stream with respect to the target 

effort, we compute a profile-centered analysis that 

determines the nth-dominant BEA (denoted em,n) as the 

effort in profile m that has the  nth highest confidence  

(denoted pm,n). The nth-dominant BEA for the stream  
(denoted En) is the BEA that appears most frequently in 

{e1,n, e2,n, e3,n,…, eM,n}, where M is the number of profiles in 

the stream. The nth-dominant recognition confidence for the 

stream (denoted Cn) is the mean of all cm, n assigned to em,n 

where em,n  =  En for 1 ≤ m ≤ M. Table 3 summarizes these  

measures for the profile streams of a punch; due to space 

constraints, we show only the first two and the last two 

profiles. 

Analysis of Accuracy 

We compute the accuracy value of the system by analyzing 

whether the target BEA is recognized or not. We define rm,n 

to be the Boolean value associated with em,n (the  nth-

dominant BEA in profile m), where rm,n = 1 if  em,n is the  

target BEA and rm,n = 0 if otherwise. We define Rn to be the 
accuracy value of the nth-dominant BEA in the entire profile 

stream, and is computed as the average of rm,n for 1≤ m ≤ M. 

The average of the simple accuracy values, as well as the 

average of the 1st-dominant recognitions for all profile 

streams is summarized in the confusion matrix in Figure 3. 

Because of the different number of profiles we used for each 

target effort, we express the entries of the matrix in percent, 

computed by using the column sum as 100%. For example, 

10 of the 14 gestures that were performed with the target 

effort of Dab were classified as a gesture with a 1st-

dominant BEA of Dab; hence, the value in the Dab/Dab 
entry is 71.43%. The size of the squares is scaled to match 

the numerical values in the entries, while the opacity 

represents the average confidence associated with the 

recognition. The notable results shown in Figure 3 include 

high accuracy and confidence values for Punch and Glide 

recognition, a strong tendency to confidently misclassify 

Slash as Punch, and strong Dab and Wring recognition 

accuracy but with low confidence. 

Figure 3. Modified confusion matrix using a simple, 

profile-centered interpretation of profile streams. 

Figure 4. LMA-adjusted accuracy for 1st-dominant BEA 

recognitions. 



  

         

 

      

       

      

  

          

         
      

      

      

        

       

         

        

       

  

       

       
         

     

  

       

     

        

     

        

          

   

        
        

       

          

         

     

  

 

      

   

       

            

          

       

        

       

          

       
        

        

          

  

        

   

         

        

         

         

      

    

      
        

     

    

     

      

         

       

   

      

        

         

       

         

     

        

       

         

 

      

     

   

  

  

  

  

  

  

  

  

  

      

LMA-adjusted Analysis of Accuracy 

A simple analysis of accuracy ignores the fact that the eight 

BEAs have fundamental similarities. For instance, Dab  

(Light, Direct, Quick) and Flick (Light, Indirect, Quick) 

differ only in their Space Factor. In contrast, Dab and Slash 

(Heavy, Indirect, Quick) differ by two Effort Factors. Figure 

3 indicates that EFFORTDETECT often mistook a Flick for  

Dab (72.22%). However, the results of the interviews of the 

CMA contrasted this, since she stated that these variations 
were consistent with her experience of LMA highlighting  

the degree of movement variability and complexity that 

occurs within movement streams, but that certain other 

kinds of classifications would not be as admissible. For 

instance, it would make little sense if Dab were classified as 

Wring (Heavy, Indirect, Sustained), and even less sense if 

Dab were classified as Slash (Heavy, Indirect, Quick). 

Following the movement analyst’s observations, we propose 

an LMA-adjusted analysis of accuracy that appropriately  

weights the contribution of each predicted 1st-dominant 

BEA within a profile when calculating the 1st-dominant 
BEA for the profile stream. Instead of a confusion matrix, a 

comparison of LMA-adjusted accuracy values—averaged 

across profile streams and grouped by target Effort—is 

more appropriate. Figure 4 graphs the distribution of LMA-

adjusted accuracy values across the eight-targeted BEAs. 

Profile streams associated with Glide and Wring targets 

demonstrate complete Effort parameter accuracy more than 

45% of the time (Glide: 45.45%; Wring: 50%), and 

accuracy to within two Effort parameters at least 30% of the 

time (Glide: 45.45%, Wring: 30%). Profile streams 

associated with Dab and Punch targets are accurate to within 
all Effort parameters more than 70% of time (Dab: 71.43%; 

Punch: 73.33%). Profile streams associated with Flick, 

Float, and Slash targets are accurate to within two Effort 

parameters at least 75% of the time. Figure 4 also reveals 

that no profile stream was inaccurate by all three Effort  

parameters. 

Dominance Order Analysis 

Figure 4 shows that 1st-dominance matching for Flick, 

Float, and Slash targets is inaccurate by a degree of only one 

Effort parameter between 75% and 83% of the time. This 

finding suggests another line of inquiry: at which 

dominance levels are these BEAs exactly recognized? Figure 

5 visually charts the answer and reveals that profile streams 

for the Slash target exactly matches all Effort parameters in 

the predicted 2nd-dominant BEA 44% of the time. This 
shows that though the system is often (75%) confident that 

Punch is present in a Slash-based movement, the system’s 

next best guess is more accurate 43.75% of the time 

COMPARISON WITH EXISTING SYSTEMS 

We would like to emphasize that while EFFORTDETECT does 

not outperform LMA-based recognition systems described 

in the literature, we stress the significance of the results 

given that the data comes from a single accelerometer 

attached to only one body part, unlike the systems reported 

by Zhao and Badler (seven body parts) [32], Rett et al. (two 

body parts) [22], and Santos et al. (three body parts)  [24]. 

Indeed, Zhao and  Badler [32] used magnetic trackers and  

video and reported a recognition rate of about 90% for 
Weight, Time, and Flow Efforts. Rett et al. [22] use  

Bayesian reasoning to perform continuous classification on 

video data to detect Time and Space Efforts, but not Weight 

Effort. They report success rates between 75% to 92% in 

distinguishing between the four BEAs with Light Weight: 

Flick, Dab, Glide, and Float. Santos et al. [24] achieved  

recognition rates between 58.7% and 97.1% for Space, 

Weight, and Time Efforts. 

To compare EFFORTDETECT’s performance with other LMA 

systems, we compute a weighted overall detection accuracy 

as (rate of perfect parameter matching + 2/3*(rate at which 

two out of three parameters are matched) + 1/3*(rate at 

which one out of three parameters are matched) at the 1st-

dominance recognition level, as summarized in Table 4.

 In this paper, our main contribution is not the movement 

recognition system itself. We do not claim that 

EFFORTDETECT outperforms other LMA-based recognition 

systems. Rather, we believed that a significant amount of 

MQs information can be recognized from a computationally 

efficient, real-time single accelerometer-based sensor that is 

readily wearable and deployable. 

Basic Effort Action Weighted accuracy 

Dab 80.97% 

Flick 61.11% 

Float 58.97% 

Glide 78.78% 

Press 55.55% 

Punch 91.11% 

Slash 62.5% 

Wring 76.67% 

Average 70.71% 

Figure 5. Simple accuracy by dominance order. 

Table 4. Accuracy for 1st-dominant recognition 



     

  

 

   

       

 

     

        
        

         

     

          

    

    

   

   

   

      

   
    

     

 

        

       

      

   

        

      

     

   
     

          

     

       

  

   

  

        

     

        

          

    

         

      
         

        

      

  

       

        

        

    

      

 

 
      

    

 

   

        
  

    

 

        

       

        

       

    

       

      

      
        

        

     

    

      

   

       

     

  

     

            

     

 

                                                

 

 

APPLICATIONS IN HCI AND DIGITAL PERFORMANCE 

EFFORTDETECT system was successfully used in 

applications in digital performances and interactive  

installations and has future potential to be expanded into the 

greater HCI applications for health and well-being, gaming, 

visual analytics for the quantitative self, pedagogical and 

locative media, and large scale public entertainments  

platforms such as interactive urban screens. 

Our contribution is to design for MQs as an interaction 
modality. For this purpose, we represent movement as a 

higher level semantic, which can map to human expression, 

affect and psychological factors. We utilize a stable and 

replicable system such as LMA that can be directly applied 

to HCI applications exploiting single-accelerometer 

consumer platforms. Thus, EFFORTDETECT can be  

incorporated in applications using the ubiquitous single-

accelerometer consumer-devices for movement-based 

interaction, including hand-held mobile phone, game 

controllers, wrist-mounted accelerometers as well as 

wearable on-body devices embedded in clothing or 
accessories. Our system enables these applications  to 

integrate users’ MQs and thus expand the affordances of  

single-accelerometers beyond current uses such as the  

orientation of a browser page (a choice between portrait or 

landscape mode), or tilting a screen-based sprite. While our 

system utilizes a wrist-mounted accelerometer it can be 

ported to existing mobile devices by transmitting its  

accelerometer data as input to our Effort detection engine 

and mapping Effort recognition to higher-level movement  

semantics used by the application. 

We have demonstrated the system’s applicability in the  
performing Arts and in particular its use in two successful 

dance performances. Our system was also tested in a public 

context where participants collaboratively interacted 

through their MQs. We are currently expanding the use of  

our system in a large public interactive urban screen setting 

using mobile phones. 

Astral Convertible 

EFFORTDETECT’s system was successfully used in a live 

restaging of choreographer Trisha Brown’s Masterpiece, 

Astral Convertible (shown in Figure 6), at the  Krannert 

Center for the Performing Arts at the University of Illinois 

at Urbana Champaign. Dancers performed choreographic 

material that was accurately recognized by software built on 

the same backend as EFFORTDETECT [21]. The recognized 
Efforts from the performers’ acceleration data was used to 

trigger changes in aesthetic effects in the performance 

environment including light, sound, and projection. The use 

of EFFORTDETECT system in restaging the piece of Trisha  

Brown, valued the new perspectives that constantly emerge 

from the intersection of movement studies, Dance and more 

generally the Arts, with the field of HCI and movement-

based interaction design. Moreover, this artistic production 

demonstrated the EFFORTDETECT system’s applicability in 

the field of Dance and Performing Arts. 

Figure 6. Image of Trisha Brown’s piece, Astral 

Convertible. ©The Illinois eDream Institute 

. 

EMVIZ Visualization 

In the fields of human movement analysis, artistic 
visualization, and interactive dance performance, 

EFFORTDETECT has also been used in the EMVIZ 

visualization system2 (shown in Figure 7) to explore visual  

metaphors by mapping movement qualities, in the form of 

Laban BEAs to parameterized abstract visualizations. 

The motivation for EMVIZ project comes from the interest 

and expertise about human movement in the field of 

contemporary dance performance and artistic visualization. 

The visualization system places attention on aesthetics, 

provides real-time response through models from expertise-

based knowledge on properties of movement. EMVIZ uses 
metaphoric mappings that rely on artistic interpretation of 

human MQs to generate visual forms, and illustrate the 

creative design process for communicating expert 

knowledge around movement. EMVIZ was also used in an 

interactive art installation during which the audience 

interacted with the visuals. Audience provided feedback 

regarding their response to the aesthetic and communicative 

properties of the visualizations. They reported the system’s 

capacities to support their  ability to become aware of,  

engaged in, differentiate and furthermore, appreciate various 

MQs based on the changes in their own or alternatively in a 

dancer’s movement, with the aid of EMVIZ. 

2 EMVIZ system

 http://metacreation.net/index.php?s=projects#top 

http://metacreation.net/index.php?s=projects#top


 
          

        

       

   

 

   

        

      

      
        

      

        

        

          

        

        

   

  

           

        
       

        

        

        

       

     

      

      

      

  

     

     

        
       

 

       

       

       

       

     

        

         

     

          

      
           

        

    

  

       

      

    

 

       

     

       

         

       
    

       

         

         

      

  

         

        

      

      

    

 

        

 
       

 

         

   

      

  

      

    

    

 

Figure 7. (a) EMVIZ used in a Dance performance, (b)  
EMVIZ used in a public interactive installation at Simon  
Fraser University Open House Event 2011. ©Pattarawut  

Subyen, MovingStories Partnership  

CONCLUSION 

EFFORTDETECT is a single-accelerometer system that 

recognizes in real-time Laban eight Basic Effort Actions 

and can be used under a wide range of environmental 

conditions. In designing and evaluating the EFFORTDETECT 

model, we applied quantitative approaches to assess the 

accuracy of our computational system to match our 

conceptual and epistemological goals. Its form factor makes 

it an ideal candidate for use in mobile and handheld devices. 

The analysis of the data indicates that the model recognizes 

MQs to various degrees of accuracy and confidence, and 

that in most cases both the systems level of accuracy and 

performance could be described and rationalized by the 

LMA analyst. 

The main contribution of this paper is our approach to using 

expertise in planning and carrying out an evaluation for 
movement recognition systems rather than proposing a new 

movement recognition system. This, we argue, is of 

significant interest to the HCI community. As an additional 

contribution of our paper, we also aimed to illustrate in 

general the utility of acceleration as primary data when 

looking at movement quality. We believe that this is 

particularly relevant to the HCI field because of increasing 

use of accelerometers in mobile devices and proliferation of 

mobile applications that take advantage of acceleration-

based data. 

As perspectives of our study, we are currently applying the 

results of the evaluation of the EFFORTDETECT presented in 

this paper, to the iterative design and development of the 
system. We are experimenting with variations of the 

underlying recognition model by generating new types of  

training data while actively using movement expertise to 

inform the process. For instance, we initially trained the 

system with movement corresponding to the eight BEAs; we 

are pursuing this work by generating training data that 

correspond to qualities that interpolate between BEAs, e.g., 

movements that have qualities somewhere between Dab and 

Punch, or Slash and Wring. However, instead of controlling 

only the outer form of the expression by simply directing 

the dancer to move “slower” or “more lightly”, the dancer 

develops an inner image (such as “digging a shallow trench 
in the sand” or “closing a 6-foot high wooden gate”) that 

aids them in performing the movement. Our future work is 

being explored across each level of the data stream: sensor  

data acquisition, categorizing and modeling low-level 

motion features, iterating the movement recognition and 

analysis model, and multi-modal representation of 

movement recognition data. 
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