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Abstract. In this paper, we find the optimal blow-up rate for the semilinear wave equation with a
power nonlinearity. The exponent p is superlinear and less than 1 + 4

N−1 if N ≥ 2.

1. Introduction. We are concerned in this paper with blow-up solutions
for the following semilinear wave equation

{
utt = ∆u + |u|p−1u,
u(0) = u0 and ut(0) = u1,

(1)

where u(t): x ∈ RN → u(x, t) ∈ R, u0 ∈ H1
loc,u(RN) and u1 ∈ L2

loc,u(RN). The
space L2

loc,u(RN) is the set of all v in L2
loc(RN) such that

sup
a∈RN

(∫
|x−a|<1

|v(x)|2dx

)1/2

< +∞.

The space H1
loc,u(RN) is the set of all v in L2

loc,u(RN) such that ∇v ∈ L2
loc,u(RN).

We assume in addition that

1 < p < 1 +
4

N − 1
.(2)

The Cauchy problem for equation in the space H1
loc,u × L2

loc,u(RN) follows from
the finite speed of propagation and the wellposedness in H1 × L2(RN). See for
instance Lindblad and Sogge [11], Shatah and Struwe [13] and their references
(for the local in time wellposedness in H1 × L2(RN)). The existence of blow-up
solutions for equation (1) is a consequence of the finite speed of propagation and
ODE techniques (see for example John [8]). More blow-up results can be found
in Caffarelli and Friedman [3], Alinhac [1], Kichenassamy and Litman [9], [10].
Given a solution u of (1) that blows up at time T > 0, we aim at controlling
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its blow-up norm in H1
loc,u(RN). More precisely, we would like to compare the

growth of u with the growth of v, a solution of the associated ODE:

vtt = vp, v(T) = +∞,

that is v(t) ∼ κ(T− t)−
2

p−1 where κ = ( 2(p+1)
(p−1)2 )

1
p−1 . For this purpose, we introduce

for each a ∈ RN the following self-similar change of variables:

wa(y, s) = (T − t)
2

p−1 u(x, t), y =
x− a
T − t

, s = − log (T − t).(3)

The function wa (we write w for simplicity) satisfies the following equation for
all y ∈ RN and s ≥ − log T:

wss +
p + 3
p− 1

ws + 2y.∇ws +
∑
i,j

(yiyj − δi,j)∂
2
yiyj

w +
2(p + 1)

p− 1
y.∇w

= |w|p−1w− 2(p + 1)
(p− 1)2 w.

The equation can be written in divergence form as follows for all y ∈ RN and
s ≥ − log T:

wss −
1
ρ

div (ρ∇w− ρ(y.∇w)y) +
2(p + 1)
(p− 1)2 w− |w|p−1w(4)

= − p + 3
p− 1

ws − 2y.∇ws

where ρ(y) = (1− |y|2)α and α =
2

p− 1
− N − 1

2
> 0.(5)

Note that α > 0 is equivalent to the condition p < 1 + 4
N−1 stated in (2). Note

also that s goes to infinity as t goes to T .
Caffarelli and Friedman have obtained in [3] results on blow-up solutions for

equation (1), when a monotony condition is satisfied by the solution and N = 1.
Antonini and Merle [2] have proved under some restrictions on the power p that
all positive solutions of (4) are bounded in H1

loc,u(RN), which yields a growth
estimate for positive blow-up solutions of (1). Their method strongly depends on
positivity, since it relies on the nonexistence of positive solutions for

∆u + up = 0

in RN , if p > 1 and (N − 2)p < N + 2, as proved by Gidas and Spruck [4].
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In this paper, we remove the positivity condition and prove the same result
for unsigned solutions.

THEOREM 1. (Uniform bounds on solutions of (4)) If u is a solution of (1) that
blows up at time T, then

sup
s≥− log T+1, a∈RN

‖wa(s)‖H1(B) + ‖∂swa(s)‖L2(B) ≤ K,

where wa is defined in (3), B is the unit ball of RN and K depends only on N, p and
bounds on T and the norm of initial data in H1

loc,u × L2
loc,u(RN).

Remark. Let us remark that from scaling arguments and the wellposedness
in H1 × L2(RN), one can derive for all s ≥ − log T + 1,

sup
a∈RN

‖wa(s)‖H1(B) + ‖∂swa(s)‖L2(B) ≥ ε0(N, p) > 0.

Indeed, let us assume by contradiction that there exists s∗ ≥ − log T + 1 such that

for all a ∈ RN , ‖wa(s)‖H1(B) + ‖∂swa(s)‖L2(B) ≤ ε0

where ε0 will be fixed small. Let t∗ = T−e−s∗ . We define for all a ∈ RN , ξ ∈ RN

and τ ∈ [− t∗
T−t∗ , 1),

va(ξ, τ ) = (T − t∗)
2

p−1 u(a + ξ(T − t∗), t∗ + τ (T − t∗)).

The function va is a solution of equation (1) that blows up at time τ = 1. Moreover,

‖va(0)‖H1(B(0,2)) + ‖∂τva(0)‖L2(B(0,2)) ≤ Cε0.

Using the finite speed of propagation and the local in time wellposedness in H1

for equation (1), we obtain for some M > 0

∀a ∈ RN , lim sup
τ→1

‖va(τ )‖H1(B(0,2)) + ‖∂τva(τ )‖L2(B(0,2)) ≤ M,

which implies that

lim
t→T
‖(u, ∂tu)‖H1

loc×L2
loc
≤ M.

This contradicts the fact that T is a blow-up time for u. Note that our result
remains true with the unit ball B replaced by B(R), for any R > 0 (in that case,
K depends also on R).
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Remark. The result holds in the vector valued case with the same proof. Note
that our proof strongly relies on the fact that α is positive. In particular, we don’t
give any answer in the range of subcritical exponent 1 + 4

N−1 ≤ p < 1 + 4
N−2 . The

critical value for p in our theorem (p = 1 + 4
N−1 ) is also critical for the existence

of a conformal transformation for equation (1). Note that the Lyapunov functional
E in the w(y, s) variable is not the energy of the conformal transformation of u.

Remark. Note that a similar structure exists in the diffusive case (nonlinear
heat equations) as has been exhibited and used by Giga and Kohn [5] to ob-
tain uniform bounds in the similarity variables. Further refinements have been
accomplished by Quittner [12] and Giga, Matsui and Sasayama [6].

As in [2], this theorem can be restated in the original set of variables u(x, t):

THEOREM 1′. (Uniform bounds on blow-up solutions of equation (1)) If u is a
solution of (1) that blows up at time T, then for all t ∈ [T(1− e−1), T),

(T − t)
2

p−1 ‖u‖L2
loc,u(RN) + (T − t)

2
p−1 +1(‖ut‖L2

loc,u(RN) + ‖∇u‖L2
loc,u(RN)) ≤ K

for some constant K which depends only on N, p and bounds on T and the norm of
initial data in H1

loc,u × L2
loc,u(RN).

The proof of the main result relies on:
• The existence of a Lyapunov functional for equation (4) and some energy

estimates related to this structure.
• The improvement of regularity estimates by interpolation.
• Some Gagliardo-Nirenberg type argument similar to that used once for the

nonlinear Shrödinger equation, where uniform H1 bounds have been derived from
L2 and energy conservation in the subcritical case p < 1 + 4

N (see Ginibre and
Velo [7]).

2. Local energy estimates.

2.1. A Lyapunov functional for equation (4). We recall in this subsection
some results from Antonini and Merle [2]. Throughout this section, w stands for
any wa defined in (3). As a matter of fact, all estimates we get are independent
of a ∈ RN .

Antonini and Merle [2] showed that equation (4) had a Lyapunov functional
defined by

E(w) =
∫

B

(
1
2

w2
s +

1
2
|∇w|2 − 1

2
(y.∇w)2 +

(p + 1)
(p− 1)2 w2 − 1

p + 1
|w|p+1

)
ρ dy(6)
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where B is the unit ball of RN . More precisely, they have proved the following
identity:

LEMMA 2.1. For all s1 and s2,

E(w(s2))− E(w(s1)) = −2α
∫ s2

s1

∫
B

ws(y, s)2(1− |y|2)α−1 dy ds.

The authors have showed the following blow-up criterion for equation (4):

LEMMA 2.2. (Blow-up criterion for equation (4)) If a solution W of equation (4)
satisfies E(W(s0)) < 0 for some s0 ∈ R, then W blows up in finite time S∗ > s0.

Since w is by definition defined for all s ≥ − log T , we get the following bounds:

COROLLARY 2.3. (Bounds on E) For all s ≥ − log T, s2 ≥ s1 ≥ − log T, the
following identities hold:

0 ≤ E(w(s)) ≤ E(w(− log T)) ≤ C0,(7) ∫ s2

s1

∫
B

ws(y, s)2(1− |y|2)α−1 dy ds ≤ C0

2α
,(8)

where C0 depends only on bounds on T and the norm of initial data of (1) in
H1

loc,u × L2
loc,u(RN).

From now on, we adopt a strategy different from that of [2].

2.2. Space-time estimates for w. The space-time estimates we obtain in
this section involve two relations between three different quantities

∫ s2

s1

∫
B

w2ρ dy ds,
∫ s2

s1

∫
B
|w|p+1ρ dy ds and

∫ s2

s1

∫
B
|∇w|2(1− |y|2)ρ dy ds,

where 1 ≤ s2 − s1 ≤ 3. Let us first derive the two relations.
The first is obtained by integrating in time between s1 and s2, the expression

(6) of E(w):

∫ s2

s1

E(w(s)) ds =
∫ s2

s1

∫
B

(
1
2

w2
s +

(p + 1)
(p− 1)2 w2 − 1

p + 1
|w|p+1

)
ρ ds dy(9)

+
1
2

∫ s2

s1

∫
B

(|∇w|2 − (y.∇w)2)ρ ds dy.

We derive the second relation by multiplying the equation (4) by wρ and integrat-
ing both in time and space over B×(s1, s2). After some straightforward integration
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by parts that we leave to Appendix A, we obtain the following identity:

[∫
B

(
wws +

(
p + 3

2(p− 1)
− N

)
w2
)
ρdy

]s2

s1

(10)

+
∫ s2

s1

∫
B

(
−w2

s − 2wsy.∇w + |∇w|2 − (y.∇w)2
)
ρ dy ds

− 2
∫ s2

s1

∫
B

wswy.∇ρ dy ds =
∫ s2

s1

∫
B

(
|w|p+1 − 2(p + 1)

(p− 1)2 w2
)
ρ dy ds.

Using (10) to eliminate the second line in the energy integral (9), we obtain

(p− 1)
2(p + 1)

∫ s2

s1

∫
B
|w|p+1ρ dy ds =

∫ s2

s1

E(w(s)) ds(11)

+
∫ s2

s1

∫
B

(− w2
sρ− wsy.∇wρ− wswy.∇ρ) dy ds

+
1
2

[∫
B

(
wws +

(
p + 3

2(p− 1)
− N

)
w2
)
ρ dy

]s2

s1

.

From the previous section and Sobolev estimates, we claim the following:

PROPOSITION 2.4. (Control of the space-time Lp+1 norm of w) For all a ∈ RN

and s ≥ − log T + 1,

∫ s+1

s

∫
B
|w|p+1ρ dy ds ≤ C(C0, N, p).

Proof. For s ≥ − log T + 1, let us work with time integrals between s1 and s2

where s1 ∈ [s− 1, s] and s2 ∈ [s + 1, s + 2]. We will first control all the terms on
the right-hand side of the relation (11) in terms of the space-time Lp+1 norm of
w. Hence, we conclude the estimate. In the following, C denotes a constant that
depends only on p, N and C0, and ε is an arbitrary positive number in (0, 1).

Step 1. Control of the H1 norm of w in terms of its Lp+1 norm. We claim
the following:

LEMMA 2.5.

∫ s2

s1

∫
B
|∇w|2(1− |y|2)α+1 dy ds ≤ C +

2
p + 1

∫ s2

s1

∫
B
|w|p+1ρ dy ds,(12)

sup
s1≤s≤s2

∫
B

w(y, s)2ρ dy ≤ C
ε

+ Cε
∫ s2

s1

∫
B
|w|p+1ρ dy ds.(13)
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Proof. Since |y.∇w| ≤ |y|.|∇w|, it follows that

∫
B
|∇w|2(1− |y|2)α+1 dy ≤

∫
B

(|∇w|2 − (y.∇w)2)ρ dy.(14)

Using the energy integral (9) and the energy bound (7), we get (12).

By the mean value theorem, there exists τ ∈ [s1, s2] such that

∫
B

w(y, τ )2ρ dy =
1

s2 − s1

∫ s2

s1

∫
B

w2ρ dy ds ≤
∫ s2

s1

∫
B

w2ρ dy ds(15)

because s2 − s1 ≥ 1. For any s ∈ [s1, s2],

∫
B

w(y, s)2ρ dy =
∫

B
w(y, τ )2ρ dy +

∫ s

τ

d
ds

∫
B

w2ρ dy

≤
∫

B
w(y, τ )2ρ dy + 2

∫ s2

s1

∫
B
|w| |ws|ρ dy ds.

Using the fact that 2ab ≤ a2 + b2, we write

2
∫ s2

s1

∫
B
|w| |ws|ρ dy ds ≤

∫ s2

s1

∫
B

w2
sρ dy ds +

∫ s2

s1

∫
B

w2ρ dy ds.

Using the bound on ws (8), we get for all s ∈ [s1, s2],

∫
B

w(y, s)2ρ dy ≤ C + C
∫ s2

s1

∫
B

w2ρ dy ds.

Since 1 ≤ s2 − s2 ≤ 3, we use Jensen’s inequality to write

∫ s2

s1

∫
B

w2ρ dy ds ≤ C
(∫ s2

s1

∫
B
|w|p+1ρ dy ds

) 2
p+1

(16)

≤ C
ε

+ Cε
∫ s2

s1

∫
B
|w|p+1ρ dy ds.

The desired bound (13) follows then from estimates (15) through (16). This
concludes the proof of Lemma 2.5.

Step 2. Control of the terms on the right hand side of the relation (11).
In this step, we prove the following identity

∫ s2

s1

∫
B
|w|p+1ρ dy ds ≤ C + C

∫
B

(ws(y, s1)2 + ws(y, s2)2)ρ dy.(17)
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For this, we will bound each term on the right-hand side of (11) with the
Lp+1 norm. Note that the first term is bounded because of the energy bound (7),
while the second is negative.

(a) Control of
∫ s2

s1

∫
B wsy.∇wρ dy ds. Using the definition of ρ (5) and the

Cauchy-Schwarz inequality, we write

∣∣∣∣
∫ s2

s1

∫
B

wsy.∇wρ dy ds
∣∣∣∣(18)

≤
∫ s2

s1

∫
B
|ws|(1− |y|2)

α−1
2 |∇w|(1− |y|2)

α+1
2 dy ds

≤
(∫ s2

s1

∫
B

w2
s (1− |y|2)α−1 dy ds

)1/2

×
(∫ s2

s1

∫
B
|∇w|2(1− |y|2)α+1 dy ds

)1/2

≤ C
ε

+ Cε
∫ s2

s1

∫
B
|w|p+1 dy ds,

where we used the bound on ws (8) and the bound on the gradient (12).
(b) Control of

∫ s2
s1

∫
B wswy.∇ρ dy ds. Since we have from the definition of ρ

(5)

y.∇ρ = −2α|y|2(1− |y|2)α−1,(19)

we can use the Cauchy-Schwarz inequality to write

∣∣∣∣
∫ s2

s1

∫
B

wswy.∇ρ dy ds
∣∣∣∣ ≤ 2α

∫ s2

s1

∫
B
|ws|(1− |y|2)

α−1
2 |w||y|(1− |y|2)

α−1
2 dy ds

≤ 2α
(∫ s2

s1

∫
B

w2
s (1− |y|2)α−1 dy ds

)1/2 (∫ s2

s1

∫
B

w2|y|2(1− |y|2)α−1 dy ds
)1/2

≤ C
ε

+ Cε
∫ s2

s1

∫
B

w2|y|2(1− |y|2)α−1 dy ds,

where we used the bound on ws (8). Since we have the following Hardy type
inequality for any f ∈ H1

loc,u(RN) (see Appendix B for details):

∫
B

f 2|y|2(1− |y|2)α−1 dy ≤ C
∫

B
|∇f |2(1− |y|2)α+1 dy + C

∫
B

f 2ρ dy,(20)

we use the bound on the gradient (12) and Jensen’s inequality (16) to write

∣∣∣∣
∫ s2

s1

∫
B

wswy.∇ρ dy ds
∣∣∣∣ ≤ C

ε
+ Cε

∫ s2

s1

∫
B
|w|p+1ρ dy ds.(21)
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(c) Control of
∫

B wwsρ dy. Using the fact that ab ≤ a2 + b2 and the control
(13) of the L2 norm, we write

∣∣∣∣
∫

B
wwsρ dy

∣∣∣∣ ≤
∫

B
w2

sρ dy +
∫

B
w2ρ dy(22)

≤
∫

B
w2

sρ dy +
C
ε

+ Cε
∫ s2

s1

∫
B
|w|p+1ρ dy ds.

Now, we are able to conclude the proof of the identity (17) from the relation
(11). For this, we bound all the terms on the right hand side of (11) (the second
term is negative, use (7), (18), (21), (22) and (13) for the other terms) to get:

∫ s2

s1

∫
B
|w|p+1ρ dy ds ≤ C

ε
+ Cε

∫ s2

s1

∫
B
|w|p+1ρ dy ds

+ C
∫

B

(
ws(y, s1)2 + ws(y, s2)2

)
ρ dy.

Taking ε = 1/2C yields identity (17).

Step 3. Conclusion of the proof. Let s ≥ − log T + 1. Using the mean
value theorem, we get s1 ∈ [s− 1, s] and s2 ∈ [s + 1, s + 2] such that

∫ s

s−1

∫
B

ws(y, s)2(1− |y|2)α−1 dy ds =
∫

B
ws(y, s1)2(1− |y|2)α−1 dy

and

∫ s+2

s+1

∫
B

ws(y, s)2(1− |y|2)α−1 dy ds =
∫

B
ws(y, s2)2(1− |y|2)α−1 dy.

Since the left-hand sides of these inequalities are bounded by the bound on the
ws (8), it follows that

∫
B

(ws(y, s1)2 + ws(y, s2)2)(1− |y|2)α−1 dy ≤ C.

Using the bound on the Lp+1 norm of (17), we conclude that

∫ s2

s1

∫
B
|w|p+1ρ dy ds ≤ C.

Since s1 ≤ s ≤ s + 1 ≤ s2, this concludes the proof of Proposition 2.4.

As a consequence of Proposition 2.4, estimate (8), Step 1 and the fact that
3
4 ≤ 1− |y|2 ≤ 1 whenever |y| ≤ 1

2 , we have the following:
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COROLLARY 2.6. (Bound on space-time norms of the solution) For all a ∈ RN

and s ≥ − log T + 1, the following identities hold:

(i)
∫ s+1

s

∫
B

(|wa|p+1ρ + ∂swa(y, s)2(1− |y|2)α−1

+|∇wa|2(1− |y|2)α+1) dy ds ≤ C,

∫
B
|wa|(y, s)2ρ dy ≤ C,(23)

(ii)
∫ s+1

s

∫
B1/2

(∂swa(y, s)2 + |∇wa|2 + |wa|p+1) dy ds ≤ C,

∫
B1/2

w2
a dy ≤ C.

where B1/2 ≡ B(0, 1/2), C = C(C0, N, p) and C0 is a bound on the norm of initial
data in H1

loc,u × L2
loc,u(RN).

3. Control of the H1
loc,u norm of the solution. In this section, we conclude

the proof of Theorem 1. Let us remark that Theorem 1′ follows from Theorem 1
and the change of variables (3) as in [2]. We proceed in two steps:
• In the first step, we use the uniform local bounds we obtained in the previous

section to gain more regularity on the solution by interpolation (control of the
Lr

loc norm of the solution, where r ≤ p+3
4 ).

• In the second step, we use Gagliardo-Nirenberg type argument involving
the functional E to conclude the proof.

Step 1. Control of wa(s) in Lr
loc.

PROPOSITION 3.1. For all s ≥ − log T + 1 and a ∈ RN,

∫
B
|wa(y, s)|

p+3
2 dy ≤ C if N ≥ 2 and

∫
B
|wa(y, s)|p+1 dy ≤ C if N = 1,(24)

where B is the unit ball of RN.

Proof. We introduce r = p+3
2 for all N ≥ 2 and r = p + 1 for N = 1.

Let us first remark that thanks to a simple covering property, it is enough to
prove the result with B1/2 instead of B. Indeed, let us assume that

for all s ≥ − log T + 1 and b ∈ RN ,
∫

B1/2

|wb(y, s)|r dy ≤ C(25)
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and prove (24). Consider a ∈ RN and s ≥ − log T + 1. Remark that the ball B
can be covered by a finite number k(N) of balls of radius 1

2 . Thus, the problem
reduces to controlling uniformly for |y0| < 1,

∫
|z−y0|< 1

2

|wa(z, s)|rdz.

Note that using the definition (3) of wa, we see that

for all y ∈ RN , wa(y + y0, s) = wa+y0e−s(y, s).

Therefore,

∫
|z−y0|< 1

2

|wa(z, s)|r dz =
∫
|y|< 1

2

|wa(y + y0, s)|r dy

=
∫
|y|< 1

2

|wa+y0e−s(y, s)|r dy ≤ C.

Let us prove (25) now. We write w for wb.
(i) Using Corollary 2.6 and the mean value theorem, we derive the existence

of τ (s) ∈ [s, s + 1] such that

∫
B1/2

|w(y, τ )|p+1 dy =
∫ s+1

s

(∫
B1/2

|w|p+1 dy

)
ds ≤ C.

Therefore, since r ∈ [2, p + 1], we use the Cauchy-Schwarz inequality and the L2

bound in (23) to obtain

∫
B1/2

|w(y, τ (s))|r dy ≤ C.

(ii) Moreover, using again Corollary 2.6, and the Cauchy-Schwarz inequality,
we write

∫
B1/2

|w(y, s)|r dy =
∫

B1/2

|w(y, τ )|r dy +
∫ s

τ

d
ds

∫
B1/2

|w|r dy ds

≤ C + r
∫ s+1

s

∫
B1/2

|ws||w|r−1 dy ds

≤ C + r

(∫ s+1

s

∫
B1/2

w2
s dy ds +

∫ s+1

s

∫
B1/2

|w|2(r−1) dy ds

)

≤ C + r
∫ s+1

s

∫
B1/2

|w|2(r−1) dy ds.
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In the case r = p+3
2 , we have 2(r − 1) = p + 1, hence, the last line is uniformly

bounded by Corollary 2.6. In the case N = 1, we have r = p + 1 and 2(r −
1) = 2p. Using Sobolev’s embedding in two dimensions (space and time), and
Corollary 2.6, we write

∫ s+1

s

∫
B1/2

|w|2p dy ds ≤ C

(∫ s+1

s

∫
B1/2

(
∂swa(y, s)2 + |∂ywa|2 + w2

a

)
dy ds

)p

≤ C.

This concludes the proof of Proposition 3.1.

Step 2. Control of the gradient in L2
loc,u. We claim the following:

PROPOSITION 3.2. (Uniform control of the H1
loc,u norm of wa(s)) For all s ≥

− log T + 1 and a ∈ RN,

∫
B1/2

|∇wa(y, s)|2 dy ≤ C.

We first introduce the following Gagliardo-Nirenberg type estimate.

LEMMA 3.3. (Local control of the space Lp+1 norm by the H1 norm) For all
s ≥ − log T + 1 and a ∈ RN,

∫
B
|wa|p+1 ≤ C + C

(∫
B
|∇wa|2 dy

)β
,

where β = β(p, N) ∈ [0, 1).

Proof. If N = 1, Proposition 3.1 implies the result with β = 0. Assume now
that N ≥ 2. Since 1 < p < 1 + 4

N−1 , it follows that p + 1 < 2∗ where 2∗ = 2N
N−2 if

N ≥ 3 and 2∗ = +∞ if N = 2. Therefore, we can introduce some q = q(p, N) to
be fixed later such that

p + 3
2

< p + 1 ≤ q ≤ 2∗.

We have by interpolation and Proposition 3.1,

∫
B
|wa|p+1 ≤

(∫
B
|wa|

p+3
2

)1−θ (∫
B
|wa|q

)θ
≤ C

(∫
B
|wa|q

)θ
,

where

θ =
(

p + 1− p + 3
2

)
/

(
q− p + 3

2

)
=

p− 1
2q− (p + 3)

.
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Sobolev’s embedding in the unit ball B, the fact that q > p+3
2 and Proposition 3.1

yield

∫
B
|wa|p+1 ≤ C

(∫
B
|∇wa|2

)β
+ C

(∫
B
|wa|

p+3
2

) 2θq
p+3

≤
(∫

B
|∇wa|2

)β
+ C,

where

β(q) =
qθ
2

=
(p− 1)q/4

q− 3/2− p/2
.(26)

If N ≥ 3, then we fix q = 2∗. Since p < 1 + 4
N−1 , it follows that

β =
(p− 1)2∗/4

2∗ − (p + 3)/2
<

2∗/(N − 1)

2∗ − 3/2− 1
2 (1 + 4

N−1 )
=

2∗

(N − 1)
(

4
N−2 −

2
N−1

) = 1.

If N = 2, just note from (26) that when q → ∞, we have β(q) → p−1
4 < 1,

because 1 < p < 1 + 4
N−1 = 5. Therefore, we can fix q large enough such that

β(q) < 1. This concludes the proof of Lemma 3.3.

Let us now prove Proposition 3.2.

Proof of Proposition 3.2. We will prove that for some C = C(N, p, C0), we
have

for all s ≥ − log T + 1 and a ∈ RN ,
∫

B1/2

|∇wa(y, s)|2 dy ≤ C.(27)

For a given s ≥ − log T + 1, there exists a0 = a0(s) such that

∫
B
|∇wa0 |2(1− |y|2)α+1 dy ≥ 1

2
sup

a∈RN

∫
B
|∇wa|2(1− |y|2)α+1 dy.(28)

(i) We claim that a covering argument and the definition of a0(s) yields

∫
B
|∇wa0 |2 dy ≤ C

∫
B
|∇wa0 |2(1− |y|2)α+1 dy.(29)
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Indeed, since we can cover B with k(N) balls of radius 1/2, it is enough to prove
that ∫

|y|< 1
2

|∇wa0 (y + y0, s)|2 dy ≤ C
∫

B
|∇wa0 |2(1− |y|2)α+1 dy(30)

uniformly for |y0| ≤ 1. Using the definition (4) of w, we see that

for all y ∈ RN ,∇wa0 (y + y0, s) = ∇wa0+y0e−s(y, s).

Therefore, since 1− |y|2 ≥ 3
4 whenever |y| ≤ 1

2 , we write

∫
|y|< 1

2

|∇wa0 (y + y0, s)|2 dy

=
∫
|y|< 1

2

|∇wa0+y0e−s(y, s)|2 dy

≤ C
∫

B
|∇wa0+y0e−s(y, s)|2(1− |y|2)α+1 dy

≤ C sup
a∈RN

∫
B
|∇wa|2(1− |y|2)α+1 dy

≤ C
∫

B
|∇wa0 |2(1− |y|2)α+1 dy,

by definition of the supremum (28). This yields (30) and then (29).
(ii) From the estimates on the Lyapunov functional E and the Gagliardo-

Nirenberg type estimates stated above, we have the conclusion. Indeed, using the
definition (6) of E, inequality (14) and the fact that α > 0, we see that

∫
B
|∇wa0 |2(1− |y|2)α+1dy

≤
∫

B
(|∇wa0 |2 − (y.∇wa0 )2)ρ dy

= 2E(wa0 ) + 2
∫

B

(
−1

2
∂sw

2
a0
− (p + 1)

(p− 1)2 w2
a0

+
1

p + 1
|wa0 |p+1

)
ρ dy

≤ 2E(wa0 ) +
2

p + 1

∫
B
|wa0 |p+1 dy.

Using the bound (7) on E, the control of the Lp+1 by the H1 norm of Lemma 3.3
and (29), we obtain

∫
B
|∇wa0 |2(1− |y|2)α+1 dy ≤ C + C

(∫
B
|∇wa0 |2(1− |y|2)α+1 dy

)β
,
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where β ∈ [0, 1). Therefore, for some C = C(p, N, C0) independent of s, we have

∫
B
|∇wa0(s)(y, s)|2(1− |y|2)α+1 dy ≤ C.

From the definition of a0(s), this yields

for all s ≥ − log T + 1 and a ∈ RN ,
∫

B
|∇wa(y, s)|2(1− |y|2)α+1 dy ≤ C.

Since 1− |y|2 ≥ 3
4 whenever |y| ≤ 1

2 , the estimate (27) follows. This concludes
the proof of Proposition 3.2.

Step 3. Conclusion of the proof of Theorem 1. We conclude the proof of
Theorem 1 here.

(i) Uniform control of the H1(B) norm of wa(s). From Proposition 3.2 and
by covering the unit ball B by k(N) balls of radius 1

2 , we obtain

for all s ≥ − log T and a ∈ RN ,
∫

B
|∇wa|2 dy ≤ C.

Since 2 < p + 1, we use this bound and Lemma 3.3 to get for all s ≥ − log T and
a ∈ RN ,

(∫
B

w2
ady
) p+1

2

≤ C
∫

B
wp+1

a dy ≤ C + C
(∫

B
|∇wa|2dy

)β
≤ C.

Thus,

for all s ≥ − log T and a ∈ RN , ‖wa(s)‖H1(B) ≤ C(N, p, C0).

(ii) Uniform control of the L2(B) norm of ∂swa(s). From the definition (6) of
E and its boundedness (7), we use Part (i) to write for all s ≥ − log T + 1 and
a ∈ RN ,

∫
B1/2

∂sw
2
ady ≤ C

∫
B
∂sw

2
aρ dy(31)

≤ 2CE(w) + 2C
∫

B

(
− (p + 1)

(p− 1)2 w2
a +

1
p + 1

|wa|p+1
)
ρ dy

− C
∫

B

(
|∇wa|2 − (y.∇wa)2

)
ρ dy ≤ C.

From a covering argument, we conclude again that

for all s ≥ − log T and a ∈ RN , ‖∂swa(s)‖L2(B) ≤ C(N, p, C0).(32)
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Indeed, since the unit ball B can be covered by k(N) balls of radius 1
2 , This

reduces to prove that:

for all s ≥ − log T + 1, a ∈ RN and(33)

|y0| < 1,
∫
|y−y0|< 1

2

∂swa(y, s)2 dy ≤ C.

Consider a ∈ RN and |y0| < 1
2 . For all b and y in RN , wb(y, s) = wa(y+(b−a)es, s).

Therefore,

∂swb(y, s) = ∂swa(y + (b− a)es, s) + (b− a)es.∇wa(y + (b− a)es, s).

Taking b = a + y0e−s, this gives

for all y ∈ RN , ∂swa(y + y0, s)2 ≤ 2∂swa+y0e−s(y, s)2 + 2|∇wa(y, s)|2.

Therefore, using (31) and Part (i), we obtain (33) and then (32). This concludes
the proof of Theorem 1.

A. Evolution of the L2
ρ norm of solutions of (4). We prove estimate (10)

here. For simplicity, we write
∫∫

for
∫ s2

s1

∫
B and drop down dyds. If we multiply

equation (4) by wρ and integrate in space and time over B× (s1, s2), then we get:

∫∫ (
|w|p+1 − 2(p + 1)

(p− 1)2 w2
)
ρ =

∫∫ (
wss +

(p + 3)
p− 1

ws

)
wρ + 2

∫∫
y.∇wswρ(34)

−
∫∫

wdiv(ρ∇w− ρ(y.∇w)y)

Since 2wsw = ∂s(w2), we integrate by parts in time and write

∫∫ (
wss +

(p + 3)
p− 1

ws

)
wρ =

[∫
B

(
wsw +

p + 3
2(p− 1)

w2
)
ρ dy

]s2

s1

−
∫∫

w2
sρ.(35)

Integrating by parts in space, we write

2
∫∫

y.∇wswρ = −2
∫∫

ws∇. (ywρ)(36)

= −2N
∫∫

wswρ− 2
∫∫

wsy.∇wρ− 2
∫∫

wswy.∇ρ

= −N
[∫

B
w2ρ dy

]s2

s1

− 2
∫∫

wsy.∇wρ− 2
∫∫

wswy.∇ρ.
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Integrating by parts in space, we write

−
∫∫

wdiv(ρ∇w− ρ(y.∇w)y) =
∫∫

(|∇w|2 − (y.∇w)2)ρ.(37)

Using (35), (36) and (37), we see that (34) yields the desired identity (10).

B. A Hardy type identity. We prove the identity (20) here: For any f such
that the right-hand side is finite:

∫
B

f 2|y|2(1− |y|2)α−1 dy ≤ C
∫

B
|∇f |2(1− |y|2)α+1 dy + C

∫
B

f 2ρ dy.(38)

Using the expression of y.∇ρ (19), we see that

∫
B

f 2|y|2(1− |y|2)α−1 dy = − 1
2α

∫ s2

s1

∫
B

f 2y.∇ρ dy.

If we integrate by parts in space, then we see that

−
∫

B
f 2y.∇ρ dy = 2

∫
B

f∇f .yρ dy + N
∫

B
f 2ρ dy.(39)

Therefore, using the Cauchy-Schwarz inequality, we write

∣∣∣∣
∫

B
f∇f .yρ dy

∣∣∣∣ ≤
∫

B
|∇f |(1− |y|2)

α+1
2 | f ||y|(1− |y|2)

α−1
2 dy

≤
(∫

B
|∇f |2(1− |y|2)α+1dyds

) 1
2
(∫

B
f 2|y|2(1− |y|2)α−1dy

) 1
2

≤ 1
ε

∫
B
|∇f |2(1− |y|2)α+1 dy + ε

∫
B

f 2|y|2(1− |y|2)α−1 dy

for any ε > 0. Taking ε = α
5 , we get the desired conclusion (38).
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