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Abstract 
Mouse strains are frequently used to model human disease states, to test the efficiency of 
drugs and therapeutic principles. However, the direct translation of murine experimental 
data to human pathological events often fails due to sufficient differences in the 
organization of the immune system of both species. Here we give a short overview of the 
principle differences between mice and humans in defense strategies against pathogens 
and mechanisms involved in response to pathogenic microorganisms and other activators 
of the immune system. While in human blood mechanisms of immune resistance are highly 
prevailed, tolerance mechanisms dominate for the defense against pathogenic 
microorganisms in mouse blood. Further on, species-related differences of immune cells 
mainly involved in innate immune response as well as differences to maintain oxidative 
homeostasis are also considered. A number of disease scenarios in mice are critically 
reflected for their suitability to serve as a model for human pathologies. Due to setbacks in 
these studies, novel mouse models were created to bridge the immune system of both 
species: humanized mice. Accordingly, a special section of this review is devoted to new 
results applying humanized mouse models taking limitations and prospects into account. 
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I.   INTRODUCTION 
In humans, pathogens, traumata, and antigens can activate cells of the innate and in many 
cases also of the adaptive immune system. Immune cell activation contributes to 
neutralization and elimination of the initiating agents and is directed to abolish any harm 
from the host. However, immune stimulation results sometimes in long-lasting 
inflammatory events and disease states. Finding an adequate and person-specific therapy 
for such pathological scenarios is a great challenge for physicians and researchers. 
Laboratory mouse strains are widely used to test drugs and to develop novel therapeutic 
strategies on artificially induced diseases. 

It is quite obvious that man and mouse are different in respect to their size, behavior, 
lifespan, living conditions, ecological niches, and other properties. Nevertheless, the leading 
model system for biomedical research is the mouse. Almost 100 years ago, malting 
programs established in the Jackson Laboratory created the first inbred mouse strains used 
for cancer research.1 Today, various modern mouse strains are used in laboratories 
worldwide to test drugs in disease models because of their short lifetime, easy 
reproduction, comparable low costs, public acceptance, ease of genetic manipulation, and 
the possibility to keep them under standardized conditions. 

Undoubtedly, detailed investigations of similar molecular pathways in mice considerably 
increased our knowledge about the corresponding immune reactions in humans. For 
example, elucidation of signaling via toll-like receptor 4 in mouse strains provided 
important useful information about basic mechanisms in human innate immunity.2–4 It is 
also evident that in some murine models of human diseases, an identical point mutation is 
responsible for the development of the same disease phenotype in both species as in the 
pathogenesis of the Burkitt lymphoma5  or in leukocyte adhesion defect syndromes.6 

Despite these and other commonalities, adequate translation of results from animal 
experiments to humans is often highly challenging, frustrating, and in many cases very 
unsuccessful. Several items have been summarized that make the mouse to an improper 
model for human diseases.7 These constraints are the use of inbred mice strains that may 
have homozygous recessive defects, application of disease protocols that are often far from 
reality, large evolutionary distance between both species, and differences in organization of 
the immune system. For example, the Mx1 gene, which provides resistance to influenza 
virus infection, is deleted in most standard laboratory inbred mouse strains. Mouse strains 
originating from wild mice uniformly carry the Mx1 gene.8 The most serious problem in 
translation of mouse model data to human diseases is that man and mouse developed 
divergent strategies during evolution to combat infections, which result in a different 
management of the accompanying inflammatory process. 

As it is impossible to cover all immunologically relevant differences between both species, 
this review focuses on the basic differences in the organization of immune responses and 
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the differences among cells of the innate immune system, as well as the critical reflection of 
disease models. 

II.  THE MOUSE GENOME IN COMPARISON TO MAN 
A.  General Genome Properties 

Modern genetic approaches allow detailed analysis of genomes in, inter alia, man and 
mouse. Due to a common precursor of both species, substantial amounts of orthologous 
genes are found together with a sufficient number of species-relevant individual genes. The 
first mouse genome sequence was published in 2002.9 Improved methodological 
approaches led to publication of a refined version of the mouse genome in 2009.10  All data 
given here are referred to this second version. 

Novel improved sequencing approaches revealed that the number of genes in mouse is 
20,210, while humans have only 19,042 genes (see also Table 1). There are 15,187 genes of 
both species that are functionally closely related, indicating their existence in an ancient 
common precursor species living about 90 million years ago as rodent and primate lines 
were separating. That means 75% of mouse genes and 80% of human genes are orthologs. 
These one-to- one orthologs exhibit median nucleotide and amino acid identities of 85.3% 
and 88.2%, respectively.10  

Interestingly, the number of duplicated genes is higher in mouse than in man (3767 versus 
2941). In mice, duplicated genes encode mostly olfactory and vomeronasal functions, 
pheromone senses, or are associated with reproductive functions, for instance, with 
processes during spermatogenesis.10  

B.  Essential and Nonessential Orthologous Genes 
Another study compared orthologs of essential genes in humans and mice.11 A total of 1716 
human genes were identified as genes with a clear disease-related association. Of this 
group 1450 genes have one-to-one orthologs in the mice genome. From this gene pool, 120 
human genes were selected as essential genes, implying that deletions of these human 
genes are associated with early death (before puberty) or infertility. Proof of essentiality of 
these genes in mice revealed that 27 genes were nonessential and 93 genes were essential. 
The criterion for essentiality in mice was death before reproductive age or infertility in the 
corresponding knockout animal. 

Twelve of 27 nonessential genes in mouse are related to degradation of cellular waste and 
toxins within lysosomes. Comparison between metabolic rates revealed that humans 
produce about 18 times more waste products until they reach the reproductive age, than 
mice, per unit of body mass. Hence, diseases concerning waste management are more 
important in human beings than in mice. In mice, there is a tendency for the development 
of such diseases at more advanced age of life. Consequently, knowledge of human diseases 
gained from mouse models is only basic, but will not yield sufficiently accurate information. 
This especially holds for neurologic diseases associated with defective waste product 
elimination.11 

III. RESISTANCE VERSUS TOLERANCE 
A.  Main Immunological Defense Principles 

Survival of a species depends not only on numerous adaptations to environmental 
conditions but is also determined by a well-functioning immune system. The latter is 
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responsible for recognition and elimination of pathogens as well as different self- and 
environmental antigens, and to hold any threat at a low extent to the whole organism 
coming from these agents. 

Two general principal mechanisms exist to combat deleterious pathogens and antigens, 
resistance, and tolerance.12,13 Resistance mechanisms are directed to deactivate and 
eliminate unwanted microbes and other pathogens as early as possible. Thus, a number of 
fine mechanisms exist for activation of host immune cells after recognition of specific 
pathogen markers. This immune activation keeps the number of invading pathogens at a 
low level. 

In contrast, tolerance mechanisms are developed to hold any threat to the host at a low 
level coming from pathogens although they might be present in a high number in some 
host compartments. Thus, tolerance ensures survival of host cells and tissues as well as 
host functioning despite a high load of pathogens. However, host protecting mechanisms 
should exist to hold the total number of pathogens below a given—for the host tolerable—
threshold. 

Considering systemic effects of the immune defense organization, in humans resistance 
mechanisms dominate, while in mice tolerance mechanisms are highly prevailed. During 
the last 30 years, immunologists focused mainly on investigating and understanding 
resistance despite exploring tolerance mechanisms.12,13 Although a number of examples 
exist for the latter, the knowledge about these mechanisms is much lower. Important 
differences between man and mouse regarding main immunological defense strategies are 
summarized in Fig. 1. 

B.  Response to Toll-like Receptor Ligands in Human and Mouse Blood 
Recognition of pathogen- and damage-associated molecular patterns is important to 
minimize any threat to the host organism. Toll-like receptors (TLRs) as a prominent class of 
pattern recognition receptors activate the innate immune system by binding selected 
constituents of pathogenic microorganisms and of the damaged host tissue. Gram-negative 
bacteria are known to express lipopolysaccharide (LPS) that activates immune cells via TLR4 
signaling.3 Other examples of TLR ligands are bacterial lipopeptides and lipoproteins, 
lipoteichoic acid, heat shock proteins, zymosan, flagellin, and double-stranded RNA from 
viruses.14 Up to now, 10 TLRs are known for humans and 12 for mice. Although many TLR-
induced signaling pathways are highly conserved between man and mouse, there are a 
number of differences mostly related to TLR expression and ligand specificity. Important 
differences in TLR properties and signaling are summarized in Table 2.  

In humans, TLR ligands cause an inflammation including sequelae during host protection 
against infections. A similar scenario occurs in noninfectious diseases where an 
inflammatory process is relevant, such as in arteriosclerosis, Alzheimer’s disease, and some 
forms of cancer. This kind of immune response corresponds to resistance, with the main 
aim to limit the burden of pathogenic microorganisms. In different human inflammatory 
scenarios, a common strategy of genetic responses under involvement of TLR signaling was 
recently reported.15 

In contrast to humans, mice are hardly challenged by TLR agonists. They developed 
tolerance strategies against the TLR4 agonist LPS, the TLR2 agonist peptidoglycan-
associated lipoprotein, and other inflammatory agonists such as the superantigen 
staphylococcal enterotoxin B.16,17 
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These immunological differences are further underlined by the noxious effect of LPS. In 
humans, a LPS dose of 2–4 ng/kg body mass induces fever and cytokines, and about 
15 µg/kg causes already severe disease with shock.18–21 In mice, the median lethal dose is 
reported to be 10 mg/kg.17,22,23 Thus, LPS doses inducing severe disease with shock are 
several orders of magnitude higher in mice than in humans. 

These effects were carefully evaluated by measuring cytokine release after challenging 
human and mouse blood with LPS or peptidoglycan-associated lipoprotein.17 When mouse 
serum was added to isolated human and mouse mononuclear cells it diminished the 
cytokine release more efficiently than human serum. Thus, mouse serum contains a yet 
unknown factor that is responsible for this effect. This factor was not inactivated by heat 
treatment but was sensitive to treatment with trypsin. Furthermore, mouse serum 
markedly reduced the mRNA encoded for tumor necrosis factor α (TNFα) in monocytes. 
However, mRNA expression of factors (e.g., MyD88s, SOCS1, SOCS3) which are known to 
limit TLR4 signaling and reduce TNFα production was not upregulated.17  

Due to the lack of clear data, it is only possible to speculate about the significance of this 
finding for the immunological response to LPS in mice. Maybe there are differential 
responses in various compartments in mice that would limit the appearance of a systemic 
inflammation due to suppressive activity of serum components from a local inflammatory 
event. An inverse correlation between LPS sensitivity and suppression of TNFα production 
was not only found for mouse serum but also for other animal sera.17 Hence, an 
appropriate model system for LPS sensitivity in human has to be chosen carefully. 

C.  Different Responses to Interferon γ 
During inflammation, the cytokine interferon γ (IFNγ), released by specialized immune cells, 
is able to trigger innate immune response in humans and rodents. In mice, IFNγ induces the 
expression of 18 different genes of GTPases, the so-called p47 immunity-related GTPase 
(IRG) proteins. These proteins induce host response against bacterial and protozoan 
pathogens as shown by a dramatic increase in susceptibility to pathogens in IRG knockout 
mice.24  

One antimicrobial effect of IRG proteins in mice is the induction of autophagy of pathogen-
loaded macrophages. This process does not require reactive oxygen and nitrogen species.25 

Originally, autophagy has been described as a fundamental cellular adaptation to starvation 
in eukaryotes, whereby cells autodigest long-lived cytosolic macromolecules.26 Interestingly, 
several groups demonstrated that intracellular pathogens are also sequestered into 
autophagosomes, vacuoles with a characteristic double membrane, for degradation in 
autolysosomes. This autophagy process can be induced in murine mycobacterial-loaded 
macrophages by IFNγ. Thereby, the IRG protein LRG-47 is of importance stimulating the 
translocation of an autophagy factor (microtubule-associated protein 1A/1B-light chain 3) 
from the cytosol to the autophagosomal membrane promoting the maturation of 
mycobacterial phagosomes. The autophagic pathway overcomes the Mycobacterium 
tuberculosis induced phagolysosome biogenesis block.25,27 

Further, IRG proteins in mice induce vesiculation, destruction of Toxoplasma gondii 
parasitophorous vacuolar membranes,28 and modify lipid traffic in immune cells after 
escaping pathogens.24  

In striking contrast, humans express only two members of IRG proteins. None of the genes 
of this protein family are induced by IFNγ. Nevertheless, the human IRGM protein 
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participates in IFNγ-induced autophagy processes in human macrophages to eliminate 
intracellular mycobacteria.27 However, human IRGM does not display any additional 
antimicrobial activity.24  

General differences in human and mouse immune response also lead to different strategies 
of the pathogens to survive. In mice, IFNγ induces three different IRG genes for resistance 
against the primarily human pathogen Chlamydia trachomatis. Thereby, the IRG proteins 
trigger a rerouting of bacterial inclusions in mouse embryonic fibroblasts to 
autophagosomes. However, the mouse pathogen Chlamydia muridarum adapts to the 
autophagy process and blocks the interaction of IRG proteins with vacuole membranes.29  

In contrast, human cells resist Chlamydia trachomatis by expression of indoleamine 2,3-
dioxygenase (IDO) in response to IFNγ or IFNγ+LPS. Thereby, IFNγ is of special importance 
as neither LPS nor Chlamydia alone is known to induce IDO. Indoleamine 2,3-dioxygenase 
causes a depletion of tryptophan that is necessary for pathogen growth. To overcome the 
lack of tryptophan, Chlamydia trachomatis expresses tryptophan synthase.30 Most mouse 
cell lines cope with Chlamydia or IFNγ stimulation by expression of inducible nitric oxide 
synthase (iNOS or NOS2) but do not express IDO. In human cells, iNOS is never induced by 
this pathogen or treatment with IFNγ. The outcome of NO, however, depends on the 
mouse cell line type. Further on, blockade of NO synthesis in mice only partially rescued 
Chlamydia growth indicating additive effects of NO to the antichlamydial activity of IRG 
proteins.30 

IV. SELECTED PROPERTIES OF INNATE IMMUNE CELLS 
A.  White Blood Cell Composition 

In adult species, the balance between leukocytes in man and mouse is quite different. 
C57BL/6 mice contain 10–25% neutrophils, 75–90% lymphocytes, and about 2% 
monocytes.31 For CD-1 mice, 15–20% neutrophils (300–2000 cells/µL) and 50–70% 
lymphocytes (1000–7000 cells/µL) were reported.32 

In contrast, humans have 50–70% neutrophils (3500–7000 cells/µL) and 20–40% 
lymphocytes (1400–4000 cells/µL).32  The crucial role of neutrophils in humans is not only 
reflected in terms of quantity but also in the functional importance as described in the 
following section. 

B.  Neutrophil Granulocytes 
Neutrophil granulocytes are the first cells accumulating at the inflammatory site from 
peripheral blood followed by monocytes. With the release of highly aggressive proteins and 
reactive metabolites they contribute to host defense. The most prominent task of 
neutrophils is the phagocytosis of bacteria. An uncontrolled activation can result in tissue 
injury. However, neutrophils are also important as regulators of inflammatory processes 
and are involved in acquired immunity by activation of T-cells, antigen presentation, or T-
cell suppression.33 

1.  Chemotaxis and Diapedesis of Neutrophils 
During the course of inflammation, neutrophils are recruited from the peripheral blood to 
the site of inflammation by chemoattractants. In this process, differences between the 
human and murine system emerged. While interleukin (IL) 8 was identified as being the 
most important chemoattractant for human neutrophil recruitment, an orthologous 
counterpart is absent in mice.34 In contrast, mice express lungkine as attractant for 
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neutrophils in lung and other functional homologues of IL-8.35,36 Directional migration of 
neutrophils is furthermore stimulated by chemoattractive N-formylated peptides [with N-
formyl-methionine-leucine-phenylalanine (fMLF) as prototype] that are formed, among 
others, by gram-negative bacteria. Only two formyl peptide receptors (FPR), FPR1 and 
FPR2, are expressed in human neutrophils. On the contrary, at least three members, Fpr1, 
Fpr2, and Fpr-s1 (also known as LXA4R), are expressed in murine neutrophils.37–42 However, 
their fMLF-affinity in comparison to the human FPR1 is low.  

In the next step of leukocyte extravasation, rolling adhesion, further species-specific 
differences emerged. For instance, L-selectin from human but not from murine neutrophils 
binds to E-selectin.43 In addition, the treatment of mouse neutrophils with a protease mix 
eliminated the binding of P-selectin and E-selectin.44 However, on human neutrophils 
proteases abrogated only the P-selectin  binding site, whereas E-selectin binding was only 
slightly affected.45 This might be attributed to cell-surface glycosphingolipids of human 
leukocytes as possible binding partners of E-selectin on endothelia cells.46  Furthermore, 
distinct glycosyltransferases synthesize E-selectin ligands in human and mouse 
granulocytes.47 

2.  Granule Constituents in Neutrophils 
Neutrophils are characterized by their microbicidal molecules packed in granules and 
released upon cell activation. Due to remarkable differences in expression and/or activity 
between man and mouse, particular attention has to be paid in research connected to 
neutrophil action. Differences are summarized in Table 3.  

Prominent components of azurophilic granules in human neutrophils are defensins, small 
cysteine-rich cationic proteins that bind to microbial membranes and induce pore-like 
membrane defects. Three of the four human defensins in neutrophils (human neutrophil 
peptide HNP-1, HNP-2, HNP-3) account for 5–7% of total protein content and about 30–
50% of protein content in azurophilic granules.48 In contrast, neutrophils from mice do not 
express defensins.49 In mice, Paneth cells, present in the crypts of the small intestine, 
express at least six different defensins,50 whereas in humans only two kinds of defensins 
(HNP-5, HNP-6) are found in these cells.51 Mouse defensins are processed by matrix 
metalloproteinase-7, while human defensins from Paneth cells are processed by trypsin.51,52 

Another member of the host defense peptides is the bactericidal/permeability-increasing 
protein (BPI). This cationic peptide fulfills antimicrobial activities by directly interacting with 
membranes of gram-negative bacteria, neutralizing the endotoxic effects of LPS by binding, 
and thereby contributing to phagocytosis by opsonizing bacteria.53 In humans, BPI is mainly 
expressed in neutrophils during the promyelocyte stage of differentiation and then stored 
in azurophilic granules.54  In mice, its expression pattern differs and under resting conditions 
BPI is mainly found in testis, epididymis, and only at low levels in myeloid cells.55 

Finally, one further key component of human neutrophils, the heme-containing enzyme 
myeloperoxidase (MPO) that is stored in large amounts in azurophilic granules of resting 
cells, differs in its expression between man and mouse. Myeloperoxidase is able to catalyze 
a wide range of one- and two-electron substrate oxidations. On the one hand, MPO 
contributes with special products to apoptosis induction in neutrophils and, thus, to 
termination of inflammatory response. On the other hand, MPO released from necrotic 
cells promotes an inflammation by recruiting neutrophils and chemical modification of 
proteins and other tissue constituents.33 The myeloperoxidase level in mice neutrophils is 
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about 10–20% that of human cells as determined by activity measurements.56,57  Differences 
exist also in the organization of the MPO promoter region between both species.58 

Furthermore, lower levels of ß-glucuronidase, lysozyme, and alkaline phosphatase were 
reported in mice neutrophils in comparison to human ones.57 In conclusion, the 
composition of granules significantly differs between human and mouse neutrophils. 
Various antimicrobial molecules, which contribute decisively to host defense in human 
neutrophils, are less abundant in mouse neutrophils. 

C.  Eosinophil Granulocytes 
Eosinophil granulocytes constitute only 1–3% of the white blood cell count both in humans 
and mice. Upon production in bone marrow, they circulate in blood or, also despite 
absence of infection, reside in different organs (e.g., secondary lymphoid tissue, thymus, 
gastrointestinal tract) with so far unknown function. Eosinophils are specialized in host 
defense against parasites, but overwhelming activities have also been described in allergic 
response and asthma pathogenesis.59 

Interspecific varieties between human and murine eosinophils are only scarcely described. 
Nevertheless, differences exist in cell morphology (size, granularity), cell surface markers 
(e.g., Gr1 is only present in mice), mode of degranulation (compound and classical 
exocytosis are not observed in mice), and mediators released upon stimulation (eosinophil 
peroxidase is not released in mice upon fMLF, GM-CSF, PMA stimulation), as well as 
restricted expression of the chemokine eotaxin-3 to humans.60 The latter point is of 
importance especially in asthma research, as eotaxin-3, which is heavily expressed in lung 
epithelia, triggers a second phase of eosinophil migration in mild asthmatics.61,62 In mice, 
eotaxin-3 is only present as pseudogene and murine eosinophils do not respond to it.63  This 
suggests different roles of eotaxins in the pathogenesis of asthma. 

D.  Monocytes and Macrophages 
Macrophages reside in virtually all tissue differentiated from circulating peripheral blood 
monocytes where they engulf apoptotic and necrotic cells as well as pathogens upon tissue 
damage or infection. In addition to their role as immune effector cell, macrophages are 
important for tissue homeostasis, antigen presentation, and immune regulation.64 

1.  Subsets of Macrophage Activation 
Polarization of murine macrophages into M1 (classically activated) or M2 (alternatively 
activated) macrophages on the basis of gene expression profiles and identification of 
surface markers is often used to explore the different natures of macrophages, and a panel 
of markers exists for these subsets.65 This polarization was introduced to have clear parallels 
to T-helper cell functions. In human macrophages, the identification of M1 and M2 subsets 
is more challenging because of species-related differences in macrophage polarization 
markers. For example, the M2 mouse markers arginase 1, Relma (Fizz1), matrix 
metalloproteinase-1, and Chi3l3 (Ym1) are not expressed in humans, while Chi3l2 (Ykl39), 
fibrinoligase, and platelet-derived growth factor C are not found in mice.66 

2.  Arginine Metabolism in Macrophages 
Great differences exist between human and murine macrophages in arginine metabolism. 
In mice, iNOS plays an important role in producing large amounts of NO and L-citrulline. The 
expression of this enzyme is upregulated by several orders of magnitude upon incubation of 
murine macrophages with LPS and IFNγ.67  However, in  human  macrophages  iNOS is not 
expressed and NO is not produced by these agents.65,68 
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The lack of iNOS expression in human macrophages remains puzzling. There are discussions 
about dismissive factors in culture media and the lack of required epigenetic alterations.65 

Murine macrophages are able to synthesize the iNOS cofactor tetrahydrobiopterin. This 
cofactor is not formed in human macrophages.69 Even the addition of this cofactor to 
isolated human macrophages did not induce NO production in stimulated cells.70 

Contrary, there are several reports about a strong expression of iNOS in human 
macrophages and other cells and an enhanced NO production in these cells under severe 
disease conditions.71–73 However, mechanisms for this iNOS activation remain unknown. 
Maybe other cytokines and cytokine combinations cause this activation of iNOS in human 
macrophages. For example, interferons α and ß are known to induce expression of iNOS in 
human macrophages. In contrast, murine macrophages are unable to produce NO in the 
presence of IFNα. Further cytokine combinations known to produce NO in human 
macrophages are IL4+IFNγ and IL-4+anti-CD23.72 

Arginine is also metabolized by arginase to L-ornithine and urea. In mice, cytoplasmic 
arginase type-1 is upregulated in alternatively activated macrophages. It antagonizes the 
activation of iNOS in classically activated macrophages.74 In this way, activation of arginase 
type-1 dampens tissue damage by pro-inflammatory agents associated with pro-
inflammatory cytokines and iNOS activation but favors parasite survival and proliferation.75   

In unstimulated murine leukocytes, there is no expression of arginase type-1. Contrarily in 
humans, the arginase type-1 is constitutively expressed in azurophilic granules of 
neutrophils, where it contributes to antimicrobial defense likely by arginine depletion in the 
phagolysosome.76 This arginase expression is insensitive to Th2 cytokines. In traumatic 
patients, expression of arginase type-1 is increased in mononuclear cells.77 This enzyme is 
not induced by IL-4 or IL-13 in human monocytes and macrophages in contrast to murine 
cells.78 

E.  Killing of Pathogenic Microorganisms 
In mice, several essential genes have been knocked out with the consequence of an 
impaired killing of selected pathogens.79 Knockout of phox components of NADPH oxidase is 
detrimental in both mice and humans. The corresponding human disorder is known as  
chronic granulomatous  disease. These patients suffer similarly to the corresponding 
knockout mice from recurrent infections.80,81  In the case of myeloperoxidase, several 
adverse experimental scenarios with MPO-deficient mice have been described.82–84 

Myeloperoxidase deficiency is common in humans but usually without serious problems. 
The only problem in human MPO deficiency concerns fungal infections in some 
immunosuppressive patients.85 Killing of Candida albicans is completely abolished by human 
neutrophils in the absence of MPO.85 In contrast, MPO-deficient mouse neutrophils exhibit 
a residual ability to kill this pathogen.83  Knockout mutations for elastase, cathepsin G, or 
inducible nitric oxide synthase also impaired the ability of these mice to deactivate a 
number of pathogens.79  For the human counterpart, any disease scenarios with primary 
deficiency of these enzymes are largely unknown. 

Collectively, these examples evidence that in addition to the NADPH oxidase and 
myeloperoxidase pathway different synergistically acting components are involved in 
antimicrobial defense in human and murine phagocytes. While a broad range of small 
proteins, such as defensins and others, is characteristic of human leukocytes, nitrogen 
reactive species have a higher impact in microbe killing in mice.79,86 Especially the double 
iNOS and gp91phox knockout mouse is very susceptible to spontaneous infections.87 
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F.   Natural Killer Cells 
Natural killer cells are lymphocytes of the innate immune system with both cytotoxicity and 
cytokine-producing effector function. They are able to destroy compromised host cells such 
as tumor cells and virus-infected cells limiting their spread und subsequent tissue damage. 
Although signaling pathways are largely conserved in human and murine killer cells, there 
are some differences in cell biology and receptor composition between both species.88,89  

In mice, the activity of natural killer cells in spleen and blood is high at 4–10 weeks of age. 
In humans, their activity is relatively stable throughout the whole lifetime. In lung, mice 
have high activity of natural killer cells, whereas their activity is low in man. Expression of 
Fc-receptors on natural killer cells is much higher in humans than in mice.88  

In mice, killer cells use Ly49 proteins as inhibitory receptors for major histocompatibility 
complex (MHC) I molecules. This protein family is absent in humans. Here proteins of the 
killer cell inhibitory receptor family, which is highly divergent to Ly49 proteins, are used as 
inhibitory receptors on the surface of natural killer cells.90 

G. Mast Cells 
Mast cells are large granulated cells which undergo their terminal stage of maturation after 
migration into vascularized tissues. Mast cells express IgE-specific Fc receptors (FcεR) on 
the cell surface. Upon stimulation and receptor cross-linking by immunoglobulin E and 
others, human mast cells release histamine, lipid mediators, cytokines, proteoglycans, and 
proteases. Histamine is released upon sensitization from mast cells in response to 
immunoglobulin E in humans. Although histamine is known to be present in mice blood and 
cell compartments, serotonin is responsible for physiological effects in anaphylactic 
reactions in this species.32 Murine mast cells contain significant amounts of serotonin, 
which is found only in few quantities in human mast cells.91  

Production of TNFα dominates in murine mast cells, while human mast cells are an 
important source of IL-5, explaining the significant role of human mast cells during 
recruitment of eosinophils to sites of allergic inflammations. In contrast, murine mast cells 
resemble more human basophils. For example, IL-3 causes strong responses in murine mast 
cells and human basophils but only weak response in human mast cells. Murine mast cells 
and human basophils are also an important source of IL-4, whereas under normal 
conditions IL-4 is not produced by human mast cells. Furthermore, murine mast cells 
express CD14, like human monocytes, and various Toll-like receptors which are not, or only 
scarcely, found in humans.92 

H.  Ascorbic Acid and Urate 
Inflammatory response and activation of immune cells are accompanied by an enhanced 
formation of reactive oxygen and nitrogen species that may contribute to tissue damage. 
Ascorbic acid and urate are important natural molecules with antioxidant properties. 

Most rodents including mice and rats, but not guinea pigs, are able to synthesize ascorbic 
acid from glucose via a cascade of four subsequent enzyme reactions. In the last step, L-
gulonolactone reacts with dioxygen to form ascorbic acid. This reaction is catalyzed by L-
gulonolactone oxidase which is deficient in humans, other primates, and guinea pigs. In 
these species, the gene of this enzyme is present as a pseudogene.93 Thus, ascorbic acid is 
not synthesized in man and has to be taken up with food. 
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Surprisingly, tissue and blood levels of ascorbic acid are in the same range of order in 
healthy individuals of man and mouse.94,95 The status of ascorbic acid in tissues is 
determined by numerous factors such as expression of transporters, enzymatic reactions, 
and redox processes. Man and other mammals, which are unable to synthesize ascorbic 
acid, express the glucose transporter 1 together with stomatin in their erythrocytes and 
other cells. This unique transporting system mediates the cellular uptake of 
dehydroascorbic acid, the oxidized form of ascorbic acid.96 In cells, dehydroascorbic acid is 
rapidly reduced to ascorbic acid.97,98 In mice erythrocytes, there is no expression of glucose 
transporter 1 and no uptake of dehydroascorbic acid.96 

Despite protecting functions of iron-containing enzymes involved in synthesis of collagen,99   
carnitine,100 and dopamine,101 ascorbic acid exhibits pronounced antioxidant functions in 
biological fluids. However, in humans urate has a higher impact on antioxidant defense 
reactions. The plasma concentration of this end product of purine metabolism exceeds by 
160–450 µM that of ascorbic acid being around 60–80 µM in healthy individuals.102,103  

Young wild-type mice have a urate level of about 60 µM in serum.104  

In mice, urate is further metabolized to (S)-allantoin via sequential conversion of urate 
catalyzed by urate oxidase, 5-hydroxyisourate hydrolase, and 2-oxo-4-hydroxy-4-carboxy-5-
ureidoimidazoline decarboxylase.105 In humans, an active urate oxidase is absent because of 
nonsense mutations.106 The gene of 5-hydroxyisourate hydrolase is also inactive in humans, 
while the gene of the decarboxylase is apparently not expressed in the transcriptome.105 

The significance of the shift from ascorbate to urate in antioxidant defense during human 
evolution remains unknown. It is discussed that urate exhibits in addition to antioxidant 
properties also neuroprotective activities.107 

V.  SELECTED DISEASE MODELS 
A.  Problems in Translation of Disease Data from Mouse to Man 
1.  Cancer Models 

Mouse models of cancer contribute considerably to the knowledge of human cancer 
biology. Previous studies focused on implantation of human or syngeneic mouse tumor 
cells under the skin, into the abdominal cavity, or in the organ of origin of an immune-
compromised mouse. These xenograft models are relative easy-to-use systems, but 
genetics and histology of these tumors are frequently not representative of the human 
ones. Nevertheless, recent advances were made in patient-derived xenografts representing 
clinical patient diversity. Increasing numbers of genetically engineered mouse models were 
developed in the recent years focusing on specific oncogene functions with reverse genetic 
approaches.108 These models are based on extensive techniques for genetic manipulation 
such as conditional and inducible gene targeting,109  chromosome engineering,110  or 
transgenic RNAi technologies.111 Also forward genetic approaches creating more 
phenotype-driven mouse models are available. For example, recombinant inbred mouse 
strains can be used to identify cancer-susceptibility genes.112 Also the transposon technique 
as a mobile genetic element is able to detect novel cancer genes.113 These valuable models 
allow detailed evaluation of mechanisms involved in tumor initiation, progression, and 
development as discussed in several recent reviews.114–117 However, there are still significant 
restrictions in the recapitulation of biological and clinical aspects of human cancers in mice. 
Clear species-specific differences between man and mouse exist. For instance, most mouse 
cells have active telomerase; therefore these cells are transformed more rapidly than 
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human cells are. Furthermore, mouse models tend to form relatively few spontaneous 
metastases or form metastases with divergent tissue specificity. Also drug metabolism and 
drug affinity to target proteins differ between mice and humans derogating the potential of 
mice as an effective drug testing model. Various mouse models possess genetic alterations 
in the germ line or notably in somatic cells representing the predisposition of human cancer 
rather than human sporadic cancer. Point mutations are typical of genetic alterations in 
human cancers. In contrast, overexpression or deletion of genes dominates in mouse 
models of cancer.116 Differences in the microenvironment of tumors and the host immune 
system are further important factors affecting de novo tumor development. 

2.  Autoimmune Disorders 
Autoimmune disorders are usually induced by autoantigenes supplied either by active 
immunization using adjuvants or by infusion of previously activated lymphocytes. In mice, 
disease induction is highly artificial and therapeutic approaches start mostly before 
autoimmune challenge. In contrast, drug administration to autoimmune patients begins 
often after the autoimmune process has become chronic.118  

Induction of murine autoimmune encephalomyelitis is commonly applied to model myelin 
degeneration seen in multiple sclerosis. The protective effect of IFNγ in the mouse model 
failed in multiple sclerosis patients as IFNγ exacerbates the disease process.119,120 On the 
other hand, pharmacological blockade of interaction between the cellular adhesion 
molecules VLA4 and VCAM1 is helpful in both murine encephalomyelitis and multiple 
sclerosis patients.121  

For the therapy of autoimmune disorders, different approaches with antibodies against B-
cell targets have been developed or are under intense investigation.122 For example 
rituximab, a specific anti-CD20 monoclonal antibody, efficiently diminished the titer of 
pathogenic autoantibodies in a mouse model of inflammatory arthritis.123 The majority of 
rheumatoid arthritis patients showed lower serum autoantibody level and clinical 
improvement under therapy with this drug.124,125  Nevertheless, there are a number of open 
questions around therapeutic use of rituximab. These open questions concern the long 
time to clinical response, the unsolved mechanism of action on B-cells, and the application 
to other autoimmune diseases.122 

3.  Sepsis 
In humans, the molecular picture of systemic inflammatory response and multiple organ 
dysfunction syndromes, known as “sepsis” syndromes, is very heterogeneous and the 
underlying mechanisms are still under debate. The sepsis syndrome is commonly associated 
with infection, inflammation, and complex activation of other protecting systems, but also 
especially at later stages, with suppressed immune functions, release of cytotoxic 
components, and organ failure. In severe cases, multiple organ dysfunctions, e.g., acute 
kidney injury, lead to a lethal outcome.126  

Several experimental approaches have been developed to induce sepsis in murine models. 
These approaches are the application of pathogenic bacteria and their products such as 
endotoxin infusion, as well as the disruption of protective barriers, as in the model of cecal 
ligation and puncture.126 Although these models reflect well some features of human 
sepsis, translation of their data is problematic. As outlined in Sec. III. B, mice are generally 
less sensitive to LPS than humans. Therapies with anti-TNFα or anti-IL1, which gave 
promising results in LPS-treated mice,127 did not improve survival of septic patients.128,129  In 
the murine model of cecal ligation and puncture, fecal material penetrates after colon 
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perforation into the peritoneal cavity and triggers immune responses typical of human 
sepsis. However, this model fails to develop reproducible organ injury and the outcome of 
sepsis differs widely among laboratory mice.126 Often young, healthy mice are used in these 
studies. It is more realistic to use already sick animals when sepsis is induced. For example, 
mice with restricted kidney function developed more severe sepsis.130  

Pathogenesis of sepsis is connected to nitric oxide metabolism, a critical regulator of 
vasodilation and vascular homeostasis, but it interferes also with cellular oxygen utilization 
and the excessive formation of oxidants, thereby stimulating an inflammation. Interestingly, 
in septic mice, a much higher plasma level of nitric oxide metabolites is observed than in 
septic patients, indicating that mice are more resistant to pathological NO effects.131,132  

A further important factor contributing to organ dysfunction in severe sepsis is an excessive 
intravascular hemolysis.133,134  Plasma levels of haptoglobin and hemopexin, which both bind 
and remove free hemoglobin and heme, respectively, from circulation, are similar in 
healthy humans and mouse.135–137 Both proteins rapidly drop down by excessive release of 
hemoglobin from red blood cells. Moreover, free hemoglobin efficiently scavenges nitric 
oxide and limits, thus, the bioavailability of NO.138 A connection between the different role 
of NO in the sepsis of humans and mice and the scavenging of NO by free hemoglobin after 
excessive hemolysis could be assumed but is unproven so far. 

4.  Asthma 
A further complex inflammatory disease where mice are widely used as animal model is 
asthma. In mice, antibodies against IL-5 successfully diminished the airway hypersensitivity 
caused by infiltrated eosinophils in an experimental model of asthma.139 In contrast, 
therapeutic application of anti-IL-5 failed in asthmatic patients in effects on late asthmatic 
response and airway hyper-responsiveness despite the pronounced decrease of blood and 
sputum eosinophils.140  Apparently, the interplay between various immune cells such as T-
cells, eosinophils, mast cells, and others is crucial for late asthmatic reactions.140 While 
plasma exudation dominates in bronchial asthma and allergic rhinitis in humans, only little 
plasma exudation is observed in mouse airways.141 Distribution and properties of 
eosinophils differ also in human and murine asthma. While human eosinophils release their 
constituents at inflammatory sites, the mouse counterpart is resistant to 
degranulation.142,143 

5.  Atherosclerosis 
Atherosclerosis is a very common disorder in humans. Oxidative modification of 
lipoproteins and their uncontrolled uptake by macrophages play a key role in atheroma 
development. However, their exact molecular mechanisms and regulatory aspects are only 
poorly understood. Human atherosclerotic lesions contain active myeloperoxidase and the 
myeloperoxidase product chlorotyrosine, indicating the involvement of phagocytes in 
atheroma formation.144,145 Interestingly, myeloperoxidase-deficient individuals developed 
less pronounced cardiovascular problems than normal persons.146  Mice are characterized in 
comparison to humans by a dominance of high-density lipoproteins over pro-atherogenic 
low-density lipoproteins and by differences in expression and regulation of genes that 
control lipoproteins.147 For example, humans but not mice express in their blood the 
cholesterol ester transfer protein that facilitates the transfer of cholesteryl esters between 
lipoproteins.148 As wild-type mice are highly resistant to the development of atherosclerosis, 
different knockout and transgenic mouse strains (such as apolipoprotein E-deficient mice, 
low-density lipoprotein receptor-deficient mice, or ApoE*3-Leiden transgenic mice) are 
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routinely applied in experimental atherosclerosis research.147,149 In atherogenic lesions of 
the low-density lipoprotein receptor knockout mice, no active myeloperoxidase and 
chlorotyrosines were detected. Additional MPO deficiency enhanced the atherosclerotic 
process.83 Otherwise, mice deficient for the low-density lipoprotein receptor and 
additionally transgenic for the human myeloperoxidase gene developed increased 
atherosclerotic lesions.150,151 Thus, different molecular processes dominate in plaque 
formation in humans and mice. 

B.  Differences in Response to Disease Inducers between Mouse and Man 
In humans, there were similar genetic responses between burn and trauma patients despite 
the large heterogeneity in trauma patients concerning demographic aspects, degree of 
injury, variable amounts of blood received by infusion, and different drug therapies. There 
was also a sufficient correlation in genetic response between injured patients and patients 
severely affected by bacterial endotoxins. These data support activation of common 
immune mechanisms in severe inflammatory diseases in humans. In contrast, there was no 
correlation in genetic response to the corresponding mouse models for burn, trauma, or 
endotoxinemia. There was also no correlation between these different mouse models.15 

In this investigation, great differences were also found in activated and depressed pathways 
between both species. In humans, Fc-receptor-mediated phagocytosis by mononuclear 
cells, signaling via TLRs, IL-10, integrins, or B-cell receptors were much more activated 
activated than in affected mice. Several pathways in T-cells were drastically depressed in 
human diseases (e.g., iCOS-iCOSL signaling in T-helper cells, calcium-induced T-lymphocyte 
apoptosis, T-cell receptor signaling), whereas much smaller or no effects were observed in 
mice models.15

 

C.  The Humanized Mouse 
In order to overcome the obstacles between the different immunological responses of man 
and mouse, humanized mice were created. These are immunodeficient mice where human 
cells have been introduced. By this approach, mice with human immunological properties 
were generated. There are four different models utilized in engraftment of the human 
immune system into mice, in which either human peripheral blood lymphocytes or human 
hematopoetic stem cells (HSC) were injected into mice blood and tissue, or where fetal liver 
and thymus fragments were implanted under the renal capsule in mice.152 

Immunodeficient mice with a mutation in the γ-chain of the IL-2 receptor (IL2rγ) facilitate 
considerably the engraftment of human hematopoietic stem cells. Thus, these mice allow 
studies on human immune cells, including T- and B-cells.153 

Major disadvantages of the early humanized mouse models were due to species-related 
differences of cytokines and growth factors and the presence of mouse MHC molecules 
instead of the human leukocyte antigen (HLA) system. Furthermore, humanized 
immunodeficient Rag2−/−IL2rγ−/− mice strains still possess an intact mouse myeloid 
compartment, which might contribute to a low rate of human myeloid cell reconstitution in 
humanized mouse. In addition, engraftment of mice with human stem cells is only 
transient, not lifelong, probably due to inefficient integration and levels of HSC decline after 
4–6 months in the xenogeneic environment. Furthermore, the transplantation rates differ, 
even when the same HSC donor is used.152,154  
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Various technological approaches try to overcome these problems by developing the “next-
generation” immunodeficient IL2rγ−/− mice by expressing human transgenes and the 
targeted inactivation of mouse genes important for the innate immune system.  

For instance, Rongvaux et al. replaced the thrombopoeitin gene by its human counterpart 
in Rag2−/−IL2rγ−/− mice.155 Thrombopoeitin has been previously recognized as a cytokine that 
supports self-renewal and maintenance of HSC. In the knock-in technology it led to a 
multilineage differentiation of hematopoietic cells with an improved ratio of granulocytes 
to lymphocytes, thereby better reflecting human physiological conditions in the bone 
marrow. Further on, maintenance of CD34+ hematopoietic stem and progenitor cells as well 
as engraftment levels were improved. As a side effect of gene replacement, 
thrombocytopenia developed. Since thrombopoeitin is crucial for platelet development, 
reduced levels or an altered biological activity of the humanized variant were not sufficient 
to contribute to thrombopoiesis in the xenogenic model system.155  

Considering the mismatch of MHC molecules on mice and human immune cells, a severe 
response in the form of a xenogenic graft-versus-host disease can develop. It results from 
the action of cytotoxic T-cells directed against mouse MHC molecules. This mismatch in 
MHC molecules, further on, contributes to an impaired T-cell function as well as limited 
immunoglobulin class switching by human B-cells. To overcome these problems, mice 
transgenic for the human leukocyte antigen (HLA) were generated. For instance, transgenic 
expression of the HLA class II molecule DR4 in Rag2−/−IL2rγ−/−  mice infused with HLA-DR-
matching HSC favored homing and development of T-cell precursors in thymus, promoted 
further T-cell repopulation in the periphery, and developed functional CD4 and CD8 T-cells. 
Moreover, those mice developed functional B-cells able to reconstitute immunoglobulin M 
levels com- parable to humans and to undergo immunoglobulin class switching.156 

Besides the achievements gained in the last years, several limitations of the next-
generation humanized mice still exist. Firstly, the expression of human immune factors in 
immunodeficient mice has the disadvantage that many human factors cross-react with 
mouse cells with the possible consequence of unexpected phenotypic changes.157 Secondly, 
lymphoid reconstitution in engrafted mice is challenging. Even though the mesenteric 
lymph nodes develop, the organization and size of the peripheral lymph nodes is less 
sufficient.158,159  

A further impairment of the humanized mouse is the inability of human granulocytes, 
platelets, and red blood cells to circulate appropriately in the peripheral blood of the 
murine host, although progenitors of these cells are detected in bone marrow. It is 
assumed that circulating human cells are removed by murine macrophages. In humanized 
mice, the administration of granulocyte colony-stimulating factor led to an improved 
mobilization of mature human neutrophils into peripheral blood. Subsequent LPS 
administration resulted in a robust neutrophil effector function in vitro.160  In another 
study, the in vivo administration of granulocyte colony-stimulating factor led to an 
enhanced circulation of human myeloid cells.161 However, the number of neutrophils 
detected in both studies in the periphery is still not comparable to human physiological 
conditions. 

In recent years, multiple approaches were developed to construct a humanized mouse 
model. This enables researchers to penetrate much deeper into specific human pathologies 
and to create more detailed models for diseases.153,162,163 Although these approaches were 
mainly directed to evaluate details of the adaptive immune system, their further 
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improvement will also include studies on human innate cells. Nevertheless, it becomes 
obvious that these studies are useful to investigate a clear mechanistic question rather than 
to examine the complete human immune system.152,154 

VI. CONCLUSIONS 
After being divided about 90 million years ago, independent development started for the 
mouse and human lineages. Organization of the immune system differs considerably 
between both species. The considerably longer lifespan of man versus mouse is assumed to 
be a trigger to ensure an efficient control over pathogens by the human immune system. In 
defense against invading microorganisms, resistance mechanisms dominate in humans, 
while tolerance determines the immune response in mice.12,13 Species differences exist in 
activation and function of effector molecules released by immune cells to control 
pathogens. Accordingly, the human immune system is highly susceptible to Toll-like 
receptor agonists in contrast to the murine system.17 Different pathways are also initiated in 
response to IFNγ. In man, tryptophan depletion via enhanced expression of IDO is induced 
by IFNγ, while IRG proteins are expressed and autophagy of pathogen-loaded cells is 
induced in mice.24 Furthermore, a number of pathogens are predominantly found in 
humans but not, or seldom, in mice. To these pathogens belong Mycobacterium 
tuberculosis, Mycobacterium leprae, Shigella flexneri, Plasmodium falciparum, and viruses 
such as measles and dengue virus.65 Importantly, a common strategy against pathogens, 
traumata, and antigens can be evaluated in humans but not in mice.15 

Different strategies in immune response are also reflected in the composition and 
properties of leukocytes. A higher number of neutrophils are characteristic of human blood. 
These neutrophils contain more antimicrobial components than murine cells. Activated 
murine macrophages enhance considerably the expression of inducible NO-synthase and 
arginase, a property that is only scarcely found in human macrophages. Histamine is 
released from human mast cells, while serotonin is liberated from these cells in mice. 

Several consequences arise from the existence of different principal mechanisms to combat 
infections in man and mouse blood. In humans, sepsis and autoimmune disorders might 
develop and lead to numerous complications. It is very hard to induce such disease 
scenarios in more tolerant mice. Here it is necessary to provide additional genetic 
manipulations to alter host response and to induce secondary inflammation. Thus, the 
value of mice models for human diseases with inflammatory pathogenesis is limited. Drugs 
are known to act mostly via distinct molecular mechanisms. Thus, investigation by animal 
models is mainly directed to evaluate these mechanisms. As the main immune mechanisms 
in mice are quite different to humans, it is necessary to develop synthetic human models 
for investigations of disease-mediated alterations in cells and tissues as well as to extract 
information from personal genomes. 

Taken together, these differences in organization of the immune system greatly disturb 
direct translation of data from murine disease models to human pathologies. Thus, it is not 
surprising that in many cases promising therapeutic principles found in mice models do not 
work in humans. In each case, it must be carefully considered which individual aspects can 
be similarly reflected in both species and where differences in pathways, protein 
expression, sensitivity of initiating agents, and others make a direct translation impossible. 
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Figure and Tables 

 

Figure 1: Important differences between mouse and man in immunological defense 
strategies. 

 

Table 1: Main differences between human and mouse genomes10 
 

Genome characteristics Humans Mice 
Number of genes 19,042 20,21

 Functionally related genes 15,187 15,18
 Percentage of orthologous genes 80% 75% 

Gene duplicates 2941 376
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Table 2: Differences in Toll-like receptor properties and signaling between man and mouse 
 

Receptor Property Humans Mice Ref. 
TLR2 Expression in thymus and 

T-cells 
No Yes 164 

TLR2 Expression on circulating 
leukocytes 

Expressed Poorly expressed 164 

TLR2 Recognition of 
Aspergillus fumigatus by 
heterodimers with other 

TLRs 

Heterodimers with TRL1, 
but not TRL6 

Heterodimers with TRL1 
and TRL6 

165 

TLR2 Recognition of tri- 
lauroylated lipopeptides 

No Yes 166 

TLR3 Stimulation of dendritic 
cells and macrophages by 
polyinosinic-polycytidylic 

acid 

No activation of NFκB and 
MAPK; no production of 

TNFα and IL-6 

Activation of NFκB and 
MAPK; production of 

TNFα and IL-6 

167 

TLR3 Effect of LPS and IFNβ LPS prevents IFNβ-mediated 
upregulation of TLR3 

LPS mediates upregulation 
of TLR3 via IFNβ 

168 

TLR4 Recognition of taxol or 
LPS from Leptospira 

No Yes 169,170 

TLR4 Cytotoxic effects of LPS At low doses At high doses 17,18,19–23 
TLR5 Recognition of flagellins  More sensitive against 

most flagellins compared 
to human TLR5 

171 

TLR7/8 Activation by single- 
stranded RNA 

By TLR8 By TLR7 172 

TLR8 Activation by antiviral 
compound R848 

Yes No 173 

TLR10 Response to viral 
components 

Yes Pseudogene 174 

TLR11 Recognition of profilin Pseudogene Yes 175 
TLR12 Recognition of profilin Gene not present Yes 175 
TLR13  Gene not present  176 

 
 
Table 3: Differences in expression and properties of granule constituents in neutrophils in 
man and mouse 
 

Granule expression of Humans Mouse Ref. 
Defensins Strong Absent 48,49 
BPI Strong Poor 55 
MPO Strong Poor 56,57 
β-Glucuronidase Strong Poor 57 
Lysozyme Strong Poor 57 
Alkaline phosphatase Strong Poor 57 
Arginase type-1 Constitutively Only after stimulation 76 
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